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Introduction: Esophageal squamous cell carcinoma (ESCC) accounts for 80% of

esophageal cancer (EC) worldwide. The molecular characteristics of locally

advanced ESCC have been extensively studied.

Methods: In this study, we investigate the genomic and transcriptomic

characteristics and try to provide the basic T-cell receptors (TCRs) dynamics

and its genomic and transcriptome association during the radiochemotherapy of

ESCC using multi-omics analysis.

Results: A total of 23 patients with pathologic diagnoses of locally advanced

ESCC were enrolled. The median tumor mutational burden (TMB) of the 23 ESCC

patients were 3.47 mutations/ Mb (mega-base). The TP53, RTK/RAS, and NOTCH

pathways were concurrently prevalent in ESCC. Besides, some less prevalent

pathways, including WNT and HIPPO pathways also exhibited superior

frequencies in ESCC. Meantime, we found the immune-hot tumor had higher

immune infiltration scores. The median TMB in the progression-free survival

(PFS) low group was significantly higher than that in the PFS-high group. The

chromosomal copy number variation (CNV) burden of the neutrophil-to-

lymphocyte ratio (NLR)-high group appeared to be higher than that of the

NLR-low group, and the StromalScore in the NLR-low group was significantly

higher. Clonality score was significantly increased from pre-treat to post-treat

and from on-treat to post-treat. Shannon index was significantly decreased from

pre-treat to post-treat and from on-treat to posttreat. Richness was significantly

decreased from pre-treat to post-treat.

Discussion: Multiomics analysis provided the basic TCRs dynamics and their

genomic and transcriptome association during the radio-chemotherapy of 23
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locally advanced ESCC in China, and provided a valuable insights into the

heterogeneity and the tumor microenvironment and treatment responses.

Meantimes, the identification of biomarkers and the exploration of their

association with treatment outcomes could have important implications for

clinical practice.
KEYWORDS

esophageal squamous cell carcinoma, transcriptome, T-cell receptor analysis,
radiotherapy, multi-omics analysis esophageal squamous cell carcinoma, multi-
omics analysis
1 Introduction

Esophageal cancer (EC) is the tenth most common malignancy

and the sixth most common cause of cancer death in the world (1). In

China, it accounts for the fifth in morbidity and fourth in mortality

across all cancers (2). Esophageal squamous cell carcinoma (ESCC),

the most common histology, accounts for 80% of EC worldwide and

is more prevalent in Asia, Africa, and South America, with more than

half of ESCC cases occurring in China (3–6). For those ESCC patients

with locally advanced disease who are inoperable at the time of

diagnosis, radiotherapy, definitive chemo-radiation therapy (CRT)

and the sequential use of radiotherapy and chemotherapy is first-line

therapies (7–9). Despite the remarkable efficacy of radiotherapy and

chemotherapy (7–9), there is an urgent need for biological and

molecular characterization of the tumor microenvironment that

may affect the efficacy of chemoradiotherapy in locally advanced

ESCC patients.

To identify the molecular aberrations that drive ESCC

tumorigenesis and progression, extensive genomic, epigenomic,

and transcriptomic research has been conducted by The Cancer

Genome Atlas (TCGA) and other organizations (10). Based on the

multi-omics profiling, potential therapeutic targets and diagnostic

markers have been identified, and additional resources could be

provided for future investigations on ESCC. Recently, some

therapeutic targets, predictive and prognostic biomarkers and

molecular classification has been identified in ESCC (11–13).

However, the relationship between genomic characteristics and

radiotherapy in patients with ESCC has not been explored in

depth. In addition, antigen peptides are recognized by specific T-

cell receptors (TCRs) in T cells, which are expressed on their

surface. The specificity of the TCR is determined primarily by

complementarity determining region 3 (CDR3) which is highly

variable (14). Studies have shown that CDR3 diversity has a

significant role in cancer diagnosis, therapy, and prognosis, since

it reflects the diversity of cellular immunity (14–16). Analyzing TCR

evolution dynamics before and after treatment in patients not only

enhances our understanding of the mechanisms of effective or

ineffective anticancer treatment but also provides improved

direction for anticancer treatment.
02
In this study, we aimed to reveal the genomic, transcriptomic,

and TCR dynamics before and after radiotherapy of locally

advanced ESCC in depth. We collected tumor tissue samples

from the enrolled population for whole-exome sequencing (WES)

and RNA sequencing to identify mutations, copy number

variations, hallmark oncogenic pathways, and immune

microenvironment characteristics of ESCC. Subsequently, we

performed TCR sequencing on peripheral blood samples before,

during, and after radiotherapy, and it was identified that patients

with increased TCR diversity during radiotherapy had better

progression-free survival (PFS). This study provides prognostics

of therapeutic effectiveness markers for patients receiving

radiotherapy. Finally, this study explores the associations between

different omics, providing new insights into future treatment

responses for esophageal cancer.
2 Materials and methods

2.1 Patients and samples

A total of 23 patients with a definite diagnosis of ESCC were

enrolled from March 2021 to December 2021 in this study.

Clinicopathological information, including demographics,

pathologic diagnoses, imaging examinations, and treatment

history were collected from each patient. A total of 8 patients

received radiotherapy alone and 15 patients received a combination

of radio-chemotherapy, as detailed in Table 1, the chemotherapy

regimen was based on clinical guidelines, mainly with nedaplatin

and Tegafur Gimer. Tumor tissue samples were collected from all

participants who received radiotherapy to perform the whole exome

(WES) and transcriptome (WTS) sequencing and matched

peripheral blood samples which included three-time points, pre-

treatment, on-treatment, and post-treatment were collected to

perform the TCR-bsequencing. All procedures were conducted by

the Declaration of Helsinki. This study was approved by the Ethics

Committee of Shanxi Provincial Cancer Hospital (Taiyuan, China)

(Approval No: KY2022011) and written informed consent was

obtained from all participants.
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2.2 WES, WTS and T-cell receptor–b library
construction and sequencing

DNA- and RNA-based NGS were performed in Geneplus-

Beijing (Beijing, China) using WES and WTS as published in our

previous study (17, 18). Genomic DNA (gDNA) from WBCs and

tumor tissues were processed into indexed libraries using a DNeasy

Blood & Tissue Kit (Qiagen, Hilden, Germany). RNA was extracted

from the tumor samples using an RNeasy FFPE Kit (Qiagen,

Hilden, Germany). Sequencing libraries of genomic DNA and

mRNA were prepared using the KAPA DNA Library Preparation

Kit (Kapa Biosystems, MA, USA) and NEB Next Ultra™ RNA

Library Prep Kit (Illumina, Inc., CA, USA), respectively. The DNA

and RNA sequencing were performed and all experimental

procedures followed the manufacturer’s instructions. The DNA

and RNA indexed libraries were sequenced using a 100-bp

paired-end configuration on a DNBSEQ-T7RS sequencer (MGI

Tech, Shenzhen, China) or Gene+Seq-2000 sequencing system

(GenePlus, Suzhou, China), producing 30G(150X), 12G (150X),
Frontiers in Oncology 03
12G sequencing data for tumor tissues (WES), WBLs (WES), and

tumor tissues (RNA), respectively. TCR sequencing and data

analysis were performed in Geneplus-Beijing (Beijing, China) as

previously described (14, 16). Multiplex PCR amplification of

CDR3 of the TCR-b chain (TRB) was conducted including PCR1

and PCR2, inclusively and semi-quantitatively. Libraries were

sequenced using the PE150 strategy on the Gene+Seq-2000

sequencing system (GenePlus, Suzhou, China), producing 2G/

sample. Based on the ImMunoGeneTics (IMGT) V, D, and J gene

references, the CDR3 sequence is characterized as the amino acids

situated between the second cysteine in the V region and the

conserved phenylalanine in the J region. The MiXCR software

package is employed to identify and allocate CDR3 sequences (19).
2.3 Bioinformatics analysis

After the removal of terminal adaptor sequences and low-

quality reads (>50% N rate, >50% bases with Q<5) by FASTP

(v0.12.6) (20), the remaining reads were aligned to the reference

human genome (hg19) and aligned using BWA (version 0.7.10)

(21) and HISAT (22) for DNA and RNA sequencing, respectively.

Duplicated reads were removed using the MarkDuplicates tool in

Picard (version 4.0; Broad Institute). Genomic single nucleotide

variants (SNVs), small insertions and deletions (InDels), copy

number variants (CNVs), and structural variants (SVs) were

called with default parameters by MuTect (version 1.1.4) (23)/

NChot, GATK (v3.6-0-g89b7209; Broad Institute) and CONTRA

(version 2.0.8) (24), respectively. Transcript assembly was

performed using StringTie (version 1.2.3) (25). Chromosomal

CNV burden represented the total level of amplifications or

deletions at the chromosome level. Significantly recurrent regions

with amplification or deletion were detected using Gistic 2.0 with a

noise threshold of 0.3, a broad length cutoff of 0.5 chromosome

arms, a confidence level of 95%, and a copy-ratio cap of 1.5 (26).

The mutational landscape was portrayed using the R package

‘maftools’ (version 2.14.0). The CDR3 sequences were identified

and assigned using the MiXCR software package (version 3.0.3)

(19). The relative abundance or distribution of each clonotype.

Shannon’s entropy was calculated on the clonal abundance of all

productive TCR sequences. Clonality score is defined as 1-

(Shannon index)/ln(# of productive unique sequences) (16).

Non-synonymous SNVs and Indels with a mutant allele

frequency greater than 5% per megabase in the coding region

were included in the calculation of Tumor mutation burden

(TMB). R package ‘yapsa’ (version 1.24.0) was performed to infer

the composition of known Catalogue of Somatic Mutations in

Cancer (COSMIC) mutational signatures in EC using the

COSMIC mutational signatures version 2 (27). Normalization,

estimation of dispersion, and statistical testing of differential

expression were performed using the DESeq function in DESeq2

(version 1.38.3) with default parameters. Genes with an adjusted p-

value (q-value) < 0.05 and an absolute log2 fold-change (log2FC) >

1 were considered as significantly differentially expressed. R package

‘clusterProfiler’ (version 4.7.1.3) was used to perform gene set

enrichment analysis (GSEA) enrichment analysis (28) using
TABLE 1 Clinicopathologic characteristics of 23 patients with locally
advanced ESCC.

Characteristics Patients (n=23)

Age at diagnosis-years

Median (range) 69 (53-81)

Gender-No. (%)

Male 11 (47.8%)

Female 12 (52.2%)

Disease stage- No. (%)

II 7 (30.4%)

III 9 (39.2%)

IV 7 (30.4%)

Lymph node metastasis positive - No. (%)

Yes 19 (82.6%)

No 4 (17.4%)

Personal history -No. (%)

Smoking history 10 (43.5%)

Drinking history 6 (26.1%)

Family history 0 (0%)

Therapy-No. (%)

Radiotherapy 8 (34.8%)

Radio-chemotherapy 15 (65.2%)

NLR

Median (range) 1.79 (0.93-8.47)

PFS- months

Median (range) 14 (1-27)
NLR, neutrophil-to-lymphocyte ratio; PFS, progression free survival.
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

database (29) and the Gene Ontology Biological Process (GO BP)

database (30). Cold and hot tumors were distinguished based on the

immune infiltration scores of samples. The approach involved

evaluating immune cell scores using the Gaussian calculation of

the ssGSEA (28) method from the standardized TPM matrix using

GSVA (31). Immune infiltrating cells were activated, suppressed,

and classified into other cell types based on their cellular

characteristics. The TME deconvolution method from the R

package “ IOBR” was ut i l ized to assess the immune

microenvironment, and the function “iobr_cor_plot” was

employed to compute the expression of features or genes and

generate plots. The “iobr_cor_plot” function dynamically

generates statistical results by processing the calculated score

values through the scale function (32).
2.4 Statistical analysis

Statistical analysis and visualization were performed using the

software R 4.3.2 (R Foundation for Statistical Computing, Vienna,

Austria). Sample clustering to distinguish immune-cold and

immune-hot tumors was achieved through the Euclidean method

within the ConsensusClusterPlus function in software R. For the

comparison of TCR dynamics, immune microenvironment,

genomic characteristics, and PFS (progression-free survival), as

well as the NLR (neutrophil-to-lymphocyte ratio) between

groups, a t-test will be performed for variables following a normal

distribution, while the Wilcoxon rank-sum test will be applied for

non-normally distributed variables.Correlation analysis of different

indicators was performed using the Pearson correlation method. A

two-tailed P < 0.05 was considered statistically significant.
3 Results

3.1 Clinicopathologic characteristics

In this study, a total of 23 patients with pathologic diagnoses of

locally advanced ESCC were enrolled, and their clinicopathologic

features and demographics were summarized in Table 1. The

median age at diagnosis was 69 years, ranging from 53 to 81

years, with 47.8% (11/23) males. Among them, 43.5% (10/23) and

26.1% (6/23) patients had a smoking and drinking history

respectively, and none of the patients had a family history. Of all,

30.4% (7/23) patients had stage II disease, 39.2% (9/23) had stage III

and 30.4% (7/23) with stage IV. And 82.6% (19/23) of patients were

identified as positive for lymph node metastasis. The lesions were

located in the cervical segment in 3 cases, the thoracic segment in 19

cases, and both the stiff segment and thoracic segment in 1 case. The

median neutrophil-to-lymphocyte ratio (NLR) was 1.79, ranging

from 0.93 to 8.47. Radiotherapy and radio-chemotherapy were

conducted in 34.8% (8/23) and 65.2% (15/23) of patients,

respectively. Based on a rigorous evaluation of radiological

evidence (MRI and radiography) by two independent radiologists,

19 patients achieved complete response (CR) or partial response
Frontiers in Oncology 04
(PR), and 4 patients were diagnosed with stable disease (SD). The

median progression-free survival (PFS) was 14 months, ranging

from 1 to 27 months.
3.2 Genomic landscape of esophageal
squamous cell carcinoma

Using WES data, a total of 3517 somatic mutations were

detected in 23 patients with ESCC, including 3520 SNVs and 197

Indels. The median number of mutations was 158 (range 22 - 438).

TP53, TTN, PCLO, FAT1, MUC16 and SYNE1 were the top 6

commonly SNVs mutated genes, and mutated in 87%, 57%, 30%,

26%, 26%, and 26% of ESCC, respectively (Figure 1A). We detected

143 gene amplifications in these samples, including 89 gene gain

alterations and 54 gene loss alterations. The most frequent gene

amplifications were of PLD1, TMEM212, FNDC3B, GHSR,

TNFSF10, NCEH1, ECT2, SPATA16 and NLGN1, and the

amplification of these genes were all located on chromosome

3q26.31 (Data not shown).

A total of 11 significantly amplified and 6 deleted regions were

identified by Gistic 2.0 (26) with the q value < 0.1 (Figure 1B). We

also examined the composition of six possible base-pair

substitutions by the Catalogue of Somatic Mutations in Cancer

(COSMIC) mutational signature analysis, we found that nearly 50%

of mutations are C>T (Supplementary Figure S1A), and 75% (41%

+ 34%) of mutational signatures are attributed to either signature 1

(spontaneous deamination of 5−methylcytosine) or signature 2

(APOBEC Cytidine Deaminase), both of which are associated

with C>T mutations (Supplementary Figure S1B).

The median TMB of the 23 ESCC patients was 3.47 mutations/

Mb (range 1-52.86 mutations/Mb). We compared the TMB levels of

the 23 ESCC patients in this study with TMB from other cancers

derived from TCGA and found that ESCC had a relatively high level

of TMB (Supplementary Figure S2). Subsequently, we allocated

mutant genes to 10 hallmark oncogenic pathways. The TP53, RTK/

RAS and NOTCH pathways were consistently prevalent in ESCC

(33, 34). Besides, some less prevalent pathways, includingWNT and

HIPPO pathways also exhibited superior frequencies in ESCC (35).

Among distinct pathways, multiple RTK/RAS alterations and WNT

alterations tended to be concurrent in one patient (Figure 1C).
3.3 Immune microenvironment
characteristics of esophageal squamous
cell carcinoma

All ESCC biopsies were subjected to RNA sequencing (RNA-

Seq). Unsupervised clustering by the euclidean method within the

ConsensusClusterPlus function based on immune infiltration was

used to classify the 23 ESCC patients into two clusters, the immune-

hot group and the immune-cold group (Figure 2A). By comparing

the differences in the immune microenvironment between

immune-hot and immune-cold tumors, we found that tumors

from the immune-hot group were highly infiltrated with B-cells,

macrophages, CD45, CD8+ T-cells, cytotoxic cells, neutrophils, NK
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cells, T-cells, and Th1 cells (Figure 2B, Supplementary Figure S3).

To validate the stability of the results, we extracted RNA-seq data

from 96 esophagus cancer (ESCA) samples in the TCGA database

and performed a comparison of the immune microenvironment

between immune-hot and immune-cold tumors, which yielded
Frontiers in Oncology 05
similar results. In the ESCA analysis, hot tumors also exhibited

high infiltration of CD8+ T-cells, macrophages, and NK cells

(Supplementary Figure S4).

In our study, Differential gene expression analysis was

performed on the raw expression counts of all genes between
FIGURE 1

The genomic characteristics of esophageal squamous cell carcinoma (ESCC). (A) Clinicopathologic information, mutations and copy number
variations landscape of 23 patients with ESCC. The numbers above represent the cumulative counts of different mutation types, while those on the
right represent the mutation proportions of different mutation types; (B) The y-axis represents the amplitude of copy number variations, with the
numerical values indicating the frequency of copy number alterations. The upper portion (in red) indicates copy number amplification, while the
lower portion (in blue) indicates copy number deletion; (C) Mutant genes of 23 patients with ESCC to 10 hallmark oncogenic pathways. The
numbers on the left panel displays the fraction of pathways affected; the right panel shows the fraction of samples affected.
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immune-cold group and immune-hot group. Thresholds for the

adjust p-value (padj) and |log2FC| were set at <0.05 and ≥1,

respectively. As a result, a volcano plot revealed 382 genes

significantly upregulated in immune-hot group tumors, and 446

genes significantly upregulated in immune-cold tumors, with

adjusted p-values less than 0.05 (Figure 2C). We next compared

the mRNA expression profiles and signal pathway enrichment

between the two groups. Olfactory transduction, Cytokine

−cytokine receptor interaction, Neuroactive ligand−receptor

interaction and JAK-STAT signals were significantly enriched in

the immune cold group (Figure 2D). GSEA enrichment analysis was

conducted to identify pathways upregulated in cold and hot tumors.
Frontiers in Oncology 06
Pathways related to the detection of stimulus (NES = 1.48, padj =

2.2 x 10-2) were upregulated in the immune-hot tumors

(Supplementary Table S1).

To explore the relationship between genomic and transcription

characteristics and prognosis, we divided patients into two groups:

PFS-low group (PFS ≤ 14m, n=12) and PFS-high group (PFS > 14m,

n=11). Fisher’s exact test was used to find the differentially mutated

genes between the PFS-low group and the PFS-high group. The

result was not significant. We found the median TMB in the PFS-

low group was significantly higher (p=0.049). However, no

significant difference in TNB (p=0.15), chromosomal CNV

burden (p=0.065), and MSI score (p=0.16) between two groups
FIGURE 2

The association of the immune infiltration derived from RNA sequencing with ESCC. (A) Heatmap of normalized enrichment scores for infiltration of
28 immune cells, used to classify the 23 ESCC patients into two clusters, immune-hot group (right panel, cluster 2) and immune-cold group (left
panel, cluster 1); (B) The differences of the composition of immune cells between immune-hot group and immune-cold group. The signature score
represents the gene characteristic score of the TME in the samples. (C) Volcano plot of differentially expressed genes comparing immune-cold
group and immune-hot group. Red dots and blue dots indicate significantly upregulated and downregulated genes in ESCCs, respectively.
Categories based on hallmark biological processes define pathways as “development,” “DNA damage,” “immune,” “pathways,” and “signaling”. The
size of the points indicates the adjusted p-value. Larger points signify a more significant adjusted p-value; (D) KEGG enrichment pathway of the
immune-cold group. The “gene number” indicates the number of genes present in each pathway; ESCC, esophageal squamous cell carcinoma;
KEGG, kyoto encyclopedia of genes and genomes; ns, p≥0.05; *, p<0.05; **, p<0.01; ***, p<0.001. ESCC, esophageal squamous cell carcinoma;
KEGG, kyoto encyclopedia of genes and genomes; ns, p≥0.05; **, p<0.01; ***, p<0.001.
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(Figure 3A). The composition of COSMIC mutational signatures

was also compared between the PFS-high group and the PFS-low

group (Figure 3B). Mutational signature 1 was present in both the

PFS-high group and the PFS-low group and it was the highest in

both groups. The PFS-high group was mainly associated with

signature 1 (40%) and signature 4 [36%, exposure to tobacco

(smoking) mutagens], and the PFS-low group were a signature 1

(43%) and signature 13 [34%, APOBEC Cytidine Deaminase

(C>G)] (Figure 3B). The analysis suggests that patients with a

better prognosis tend to have a lower TMB.

Based on RNA-seq transcriptome data, we next compared the

pattern of gene expression between PFS-high group and PFS-low

group using the Expression data (ESTIMATE) algorithm to calculate

the ImmuneScore, StromalScore and ESTIMATEScore. We found no

differences in these areas between the two groups (Supplementary

Figure S5A).We then assessed differences in immune cell composition

between two groups and found no difference in the ratio of 22 immune

cells (Supplementary Figure S5B). This suggests that the immune

composition may not differ significantly between patients with

different prognosis. Different immune microenvironment may have

limited influence on prognosis of ESCC.
Frontiers in Oncology 07
We next used the systemic inflammation biomarker, NLR, to

stratify patients and further analyze differences in genomic and

transcription characteristics between different NLRs. We divided

patients into two groups: the NLR-low group (0.93≤NLR ≤ 1.79,

n=12) and the NLR-high group (1.93≤NLR ≤ 8.47, n=11). KMT2D

was mutated in 5 samples (5/12) of the NLR-low group and no

mutation was detected in the NLR-high Group (Supplementary

Figure S6A). Meantimes, we found KMT2Dmutant samples tended

to have higher TMB but no significant difference (Supplementary

Figure S6B). No significant difference in TMB, TNB, and

chromosomal CNV burden between NLR-low group and NLR-

high group (p = 0.93, p = 0.15 and p = 0.065, respectively)

(Supplementary Figure S6C). The composition of COSMIC

mutational signatures was also compared between the NLR-high

group and the NLR-low group. The NLR-high group was mainly

associated with signature 1 (62%), and NLR- low group was

signature 1 (43%) and 2 (30%) (Supplementary Figure S6D).

In addition, we calculated the ImmuneScore, StromalScore, and

ESTIMATEScore comparing the NLR-high group and the NLR-low

group. StromalScore in the NLR-low group was significantly higher

than that in the NLR-high group (p = 0.032) (Figure 3C). There was
FIGURE 3

The relationship between genomic features and PFS (progression free survival) and NLR (neutrophil-to-lymphocyte ratio). (A) The difference in the
median TMB, TNB, the chromosomal CNV burden and MSI-score between PFS-low group and PFS-high group; (B) The Catalogue of Somatic
Mutations in Cancer (COSMIC) mutational signatures composition in patients of PFS-low group (right panel) and PFS-high group (left panel); (C) The
differences of the ImmuneScore, StromalScore and ESTIMATEScore in NLR-high group and NLR-low group. PFS, progression free survival; NLR,
neutrophil-to-lymphocyte ratio; TMB, tumor mutation burden; TNB, tumor neoantigen burden; CNV, copy number variant; MSI,
microsatellite instability.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1495200
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1495200
no significant difference in the ESTIMATEScore and ImmuneScore

between two groups (p = 0.079, p = 0.13) (Figure 3C).

The proportion of 22 kinds of immune cells in the two groups

was analyzed. It was found that the proportion of B_cells_naive and

T_cells_CD4_memory_activated in the NLR-low group was

significantly higher than that in the NLR-high group, and there

was no significant difference in other immune cells (Supplementary

Figure S7). This suggests that naïve B cells and activated CD4+

memory T cells and NLR may have some correlation with NLR

levels (Supplementary Table S2).
3.4 Differences of TCR repertoires
during radiotherapy

We compared TCR clonality, Simpson index (a type of diversity

index, the probability that two clones randomly sampled belong to

the same population, and the lower the Simpson index value, the

higher the diversity), Shannon index (a type of diversity index, and

the lower the Shannon index value, the higher the clonal diversity),

and richness among the pre-treatment (pre-treat), on-treatment

(on-treat) and post-treatment (post-treat) of ESCC patients by t test

using matched samples. Clonality was significantly increased from

pre-treat to post-treat (p = 0.016) and from on-treat to post-treat (p

= 0.03) (Figure 4A). Shannon index was significantly decreased

from pre-treat to post-treat (p = 0.0009) and from on-treat to post-

treat (p = 0.029) (Figure 4B). Richness was significantly decreased

from pre-treat to post-treat (p = 0.019) (Figure 4C). There was no

significant difference in the Simpson index among the pre-treat, on-

treat, and post-treat (Figure 4D). Two patients exhibited a

continuous increase of TCR CDR3 (CHCLPAED_AGGGELFF)

frequency in post-treatment samples compared to on-treatment

samples. Three patients had elevated levels of CDR3 amino acid

sequence (CASSLDSNQPQHF) after treatment. The lower the

Shannon Index, the higher the diversity of TCR, and the diversity

of TCR decreased after treatment. This suggests that radiotherapy in

ESCC patients may result in reduced TCR diversity. To further

validate our findings, we performed a similar analysis in the

GSE120101 dataset, which showed comparable results. Specifically,

Clonality and Simpson index exhibited an upward trend post-

treatment, while Shannon index and Richness both decreased from

pre-treatment to post-treatment, consistent with our study’s findings

(Supplementary Figure S8).

We assessed the relationship between CDR3 diversity and

clinical and molecular characteristics in ESCC patients. As

immune status can be reflected by TCR diversity, we first

evaluated TCR Clonality, Simpson index, Shannon index, and

Richness differences between patients with different NLRs during

the course of treatment to further investigate how TCR diversity in

peripheral blood reflects immune status in ESCC. Unfortunately,

there was no difference between the NLR-high group and the NLR-

low group in the pre-treat, on-treat, or post-treat samples

(Supplementary Figure S9). We continued to explore the

prognostic value of the TCR repertoire for ESCC patient

outcomes post-radiotherapy. To further demonstrate the

similarity between the PFS-high and the PFS-low group, we
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focused on diversity in the Clonality, Simpson Index, Shannon

index, and richness analysis, for each patient were analyzed during

treatment. We found that the richness of PFS-low groups was

significantly higher than that of PFS-high groups in the pre-treat

sample (p = 0.018) (Figure 4E), while there was no significant

difference in the on-treat and post-treat samples (Supplementary

Figure S10). There was no significant difference in the Clonality,

Simpson index, and Shannon index between the PFS-high and the

PFS-low groups (Supplementary Figure S10). Subsequently, the

changes in the TCR Diversity of 23 ESCC patients were analyzed.

The results showed that patients with a significant increase in TCR-

Diversity had better PFS and sustained clinical benefit in the PFS-

high group (p = 0.024) (Figure 4F). In the correlation analysis, we

found that clone type was significantly negatively correlated with

NLR (p < 0.01), and the Shannon index was negatively correlated

with NLR (Figure 4G).

To examine the effect of gene mutations on the TCR clonal

pattern, we assessed the clonal differences between the wild-type and

mutant variants, employing an unpaired t-test for statistical

comparison. We found that the baseline clonality in mutant

FBXW7 (MT) was significantly lower than that in wild-type (WT)

patients (p = 0.0076), while they were not significant after treatment

between FBXW7-MT and WT patients (p = 0.059 in on-treatment

samples; p = 0.18 in post-treat samples) (Supplementary Figure S11).

Intriguingly, in FBXW7-MT patients, the Clonality that underwent

therapy was higher than that at baseline. During radio-

chemotherapy, the clonality in RYR1-MT and UNC79-MT patients

had a similar phenomenon to the FBXW7-MT patients. The baseline

clonality in RYR1-MT and UNC79-MT were significantly lower than

that in WT patients (p = 0.0073 for RYR1 and p = 0.033 for UNC79),

while they were not significant after treatment between MT and WT

patients (Supplementary Figure S11). The results suggested that

FBXW7, RYR1, and UNC79 mutant patients might have better

treatment outcomes upon radio-chemotherapy.
4 Discussion

ESCC is the most common histological subtype of EC, which is

a life-threatening thoracic tumor with a poor prognosis (4).

Therefore, it is necessary to find molecular factors related to

radical radiotherapy and chemotherapy response of ESCC. High-

throughput sequencing techniques provide us with a means to

search for molecular features. With its rapid development and

widespread application, we have better understanding of tumor

development and progression from the molecular perspective,

which has had a profound effect on clinical treatment modes and

survival outcomes of patients with various of cancers (36, 37). DNA

and RNA-based NGS have also been utilized in supporting

treatment decisions for cancer patients, early diagnosis and

screening, and tumor progression (36–38). In this study, we

employed whole exome sequencing (WES) to reveal the genomic

landscape of ESCC, immune microenvironment characteristics

were performed by whole transcriptome sequencing (WTS), and

we also analyzed the relationship between genomic and immune

microenvironment characteristics and prognosis of ESCCs treated
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with radiotherapy was analyzed. In addition, the dynamic TCR

repertoire sequencing monitoring during radiotherapy was

compared, and the correlation between the TCR repertoire and

clinical characteristics and genomic features was explored. To our
Frontiers in Oncology 09
knowledge, this is the first study to comprehensively investigate the

molecular and immune microenvironment characteristics in ESCC

treated with radiotherapy using multi-omics techniques, which

expands our understanding of ESCC.
FIGURE 4

TCRs dynamics and its genomic and transcriptome association during the radio-chemotherapy of ESCC. (A) The TCR clonality among the pre-
treatment (pre-treat), on-treatment (on-treat) and post-treatment (post-treat) ESCC patients; (B) The shannon index among the pre-treat, on-treat
and post-treat ESCC patients; (C) The richness among the pre-treat, on-treat and post-treat ESCC patients; (D) The simpson Index among the pre-
treat, on-treat and post-treat ESCC patients; (E) The differences of the richness of the PFS-low groups and PFS-high groups in the pre-treat sample;
(F) The TCR-Diversity change percent in the PFS-low groups and PFS-high groups; (G) The correlation analysis of different indicators, including TMB,
cloneType, NLR, clonality, simpson Index, shannon index and richness. The asterisks denote the significance thresholds set based on p-values **, p <
0.01; ****, p < 0.0001. Blue indicates negative correlation, while red indicates positive correlation. Correlation scores were obtained through
Spearman correlation. TCR, T-cell receptors; ESCC, esophageal squamous cell carcinoma; pre-treat, pre-treatment; on-treat, on-treatment; post-
treat, post-treatment; PFS, progression free survival; NLR, neutrophil-to-lymphocyte ratio; TMB, tumor mutation burden.
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In multiple previous studies, ESCC genomes were mainly

characterized by hundreds of somatic mutations, copy number

variation (CNV), and high frequencies of TP53 mutations (11, 39, 40).

Many important mutated genes, including TP53, PIK3CA, NOTCH1,

FAT1, FAT2, ZNF750, and KMT2D have been identified in Chinese

populations (11, 39, 40). Similarly, our study revealed that the genetic

variants in ESCC were dispersedly distributed. In terms of mutation

type, SNVs, and Indels were atypical events, whereas CNVs, especially

amplification, were common in ESCC. Other than that, our study found

that ESCC had an extremely high level of TMB and a relatively high level

of chromosomal CNV burden. Consistent with the previous study, the

TP53, RTK/RAS, and NOTCH pathways were concurrently prevalent in

ESCC in this study. Moreover, this study suggested that some less

prevalent pathways, including WNT and HIPPO pathways, also

exhibited superior frequencies in ESCC (35). WNT pathway was

commonly altered regardless of MMR status and the HIPPO pathway

components are structurally and functionally conserved and are notable

for their role in controlling organ size (41, 42). Among the distinct

pathways, multiple RTK/RAS alterations and WNT alterations tended

to be concurrent in one patient.Whether these variations in the multiple

signaling pathways all contribute to ESCC remains to be explored.

Meanwhile, our results also showed the immune-cold group

was significantly enriched in JAK-STAT signaling pathway.

Previous studies have found that activation of the JAK-STAT

signaling pathway is associated with cell proliferation and

metastasis in EC (43, 44). Meantime, we have found the detection

of stimulus pathways (NES=1.48, p=2.2 x 10-2) were upregulated in

the immune-hot tumors by GSEA enrichment analysis. The

stimulus pathways involved in the perception of pain in which a

stimulus is received and converted into a molecular signal. Previous

studies have reported that methylation gene analysis in thyroid

cancer is enriched in pathways related to the detection of stimulus,

but no further analysis has been conducted (45). Also, this pathway

was reported in 2023, suggesting that the down-regulated genes are

highly involved in retinal function and homeostasis (46). However,

the study of the ESCC immune-hot group and this signaling

pathway has not been reported, and the specific biological

mechanism need to be further studied.

Previous studies have found hot tumor immune status was not

associated with poor prognosis compared to the other groups in

ESCC (47). A study found IS (immune subtype) 1 can be considered

“hot,” with high immune infi l trate respond better to

immunotherapy and mRNA vaccines, while IS2 patients respond

less well to immune-related treatments in ESCC (48). Meantime,

ESCC samples were divided into three ICI (immune cell infiltration)

types that may help guide immunotherapy in the future, because

ICI cluster B presented an immuno-activated phenotype with high

immune, and this was accompanied by high levels of CD8 T cells,

activated memory CD4 T cells, and activated NK cells. Activated

NK cells were consistent with this study, but CD8 T cells, and

activated memory CD4 T cells showed different results (49). Among

other cell types, Mast cells resting appears significantly in immune-

hot groups. Previous studies on cell types in normal and tumor

tissue of ESCC have reported that Activated memory CD4 T cells,

M0 macrophages, M1 macrophages, and Neutrophils are

significantly found in the tumor tissue, while Eosinophils, Resting
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mast cells, Monocytes, Gamma delta T cells, Regulatory T cells

(Tregs), Plasma cells and Memory B cells were significantly

enriched in normal tissue. Activated NK cells were highly

expressed in normal tissues without significant differences (50).

Meantime, higher proportions of resting memory CD4 and Gamma

delta T cells, in addition to M0 and M2 macrophages, were also

found to be negative prognostic markers of clinical outcome. In

contrast, greater infiltration of plasma cells, CD8 T cells, activated

NK cells, and resting mast cells was correlated with improved

prognosis (51). In this study, the immune-hot group were highly

infiltrated with B-cells, macrophages, CD45, CD8+ T-cells,

cytotoxic cells, neutrophils, NK cells, T-cells, and Th1 cells.

TCGA-ESCA database validation analysis of the immune

microenvironment between immune-hot and immune-cold

tumors in the TCGA-ESCA database yielded similar results.

TMB, which represents the number of mutations per megabase

of sequenced DNA in cancer, has been demonstrated to be a

biomarker for immune checkpoint inhibitors across some cancer

types (52, 53). TMB values vary widely among pan-solid tumors

(54), and the prognostic value of TMB in patients with solid tumors

is controversial (53). A previous study observed the relationship

between TMB and prognosis, high TMB had a poor prognosis in all

cohorts, but in 90 WES samples, high TMB had a good prognosis

(40). A previous study showed that the TMB was not significantly

correlated with the response to radiotherapy in ESCC patients (55).

And then in our study, the median TMB in the PFS-low group was

significantly higher than that in the PFS-high group and no

significant difference in the ratio of immune cells between the two

groups, which suggests that patients with a better prognosis tend to

have a lower tumor molecular burden and different immune

microenvironment may have limited influence on prognosis of

ESCC. However, as the study sample size is small, or as the

problem of technical resolution, and whether the analysis of

single-cell transcriptome based on a more detailed immune cell

population can solve this problem, further prospective validation

studies are required.

NLR is a peripheral blood biomarker, whose alterations are

capable of representing systemic inflammation in patients (56). In

EC, NLR is associated with tumor progression and is predictive of

poorer survival in patients (57). NLR is a predictor of the response to

immune checkpoint inhibitor treatment in patients with ESCC, and

the PFS rate in ESCC patients with low NLR (Post treatment, at 6

weeks) was higher than in patients with high NLR (P = 0.027). In

other scenarios, the difference was not statistically significant

including baseline low NLR (58). Our study explored the immune

cell composition and immune microenvironment in tumor tissues

from different NLR patients, intending to be able to analyze the

response to factors that may influence the immune checkpoint

inhibitor treatment and prognosis. It was found that the proportion

of naive B cells and activated T cells CD4 memory in NLR-low group

was significantly higher than that in the NLR-high group, and the

NLR-low group had significantly higher StromalScore than the NLR-

high group, and the NLR-low group ESTIMATE is higher than the

NLR-high group, but the difference is not significant. When

StromalScore and ESTIMATE are high, it may indicate that there

are more stromal components in tumor tissue and the infiltration of
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immune cells is significant. This may be associated with increased

tumor infiltration, immune cell activity, or other microenvironmental

factors. KMT2D has been reported to play an anti-cancer role in

ESCC (40). The previous study discovered that the KMT2D was

associated with the multiple clinical characteristics of ESCC and its

expression in tumor tissue is lower than that in normal tissue (40). In

our cohort, it seemed that the incidence of KMT2D mutations was

lower in the NLR-low group than in the NLR-high group. Patients

with low NLR values had a high incidence of KMT2D mutations,

which required to be verified in further studies.

In our study, we found that the baseline clonality in FBXW7,

RYR1, and UNC79 mutant patients was lower than that in wild

patients, while they were not significant after treatment. In mutant

patients, the clonality that underwent therapy was higher than that

at baseline. Previous research reports that the FBXW7 gene is a p53-

dependent tumor suppressor gene, which targets mTOR for

degradation and cooperates with PTEN in tumor suppression.

Loss or mutation of FBXW7 makes the tumor cells sensitive to

treatment (59). RYR1 is a subtype of RYRs, and the alterations of

RYRs play key roles in a series of rare diseases (60). The RYR1 gene

which is fundamental to the process of excitation-contraction

coupling and skeletal muscle calcium homeostasis, is associated

with proliferation and apoptosis of various tumors (60, 61). UNC79

genes encoding UNC-79 proteins may be susceptibility loci for

several diseases including cancer (62). The FBXW7, RYR1, and

UNC79 gene mutations may play a role in tumorigenesis and

development (62–65). The results of our study suggested that the

FBXW7, RYR1, and UNC79 mutant patients might be sensitive to

treatment and FBXW7, RYR1, and UNC79 might contribute to

immune response upon radio-chemotherapy.

In addition, we observed a significant increase in clonality from

pre-treatment to post-treatment (p = 0.016) as well as from mid-

treatment to post-treatment (p = 0.03). Meanwhile, the Shannon

index showed a notable decrease from pre-treatment to post-

treatment (p = 0.0009) and from mid-treatment to post-treatment

(p = 0.029), indicating a reduction in TCR diversity after treatment.

This suggests that radiation therapy in ESCC patients might lead to

decreased TCR diversity and increased clonality. TCR clonality is

associated with treatment in multiple studies. Hopkins et al.’s study

demonstrated the association between TCR diversity, T-cell clonal

changes, and immunotherapeutic efficacy in pancreatic cancer. They

found that patients with higher pre-treatment TCR diversity or post-

treatment clonal expansion had longer survival rates (66). Ford et al.’s

2018 study revealed that patients who received neoadjuvant therapy

and achieved significant pathological responses exhibited higher TCR

clonality (67). Our study further clarified the relationship between

TCR clonality and chemoradiotherapy. Additionally, we observed

that in pre-treatment samples, patients with shorter PFS had

significantly higher clone abundance compared to those with

longer PFS (p = 0.018), suggesting fewer clone types in patients

with longer PFS. This contrasts with previous conclusions; Benjamin

A. Kansy et al. showed an association between increased TCR

sequence abundance and improved treatment response (p = 0.03)

(68), while S. Ji et al. found significantly higher disease control rates in

patients with high baseline TCR diversity (69). Clonality was
Frontiers in Oncology 11
significantly increased from pre-treatment to post-treatment (p =

0.016) and from on-treatment to post-treatment (p = 0.03). Increased

clonality after treatment may be associated with better survival or

PFS. Shannon index was significantly decreased from pre-treatment

to post-treatment (p = 0.0009) and from on-treatment to post-

treatment (p = 0.029). The lower the Shannon Index, the higher

the diversity of TCR, and the diversity of TCR decreased after

treatment. This suggests that radiotherapy in ESCC patients may

result in reduced TCR diversity. We found that the richness of PFS-

low groups was significantly higher than that of PFS-high groups in

the pre-treat sample (p = 0.018). This suggests that patients with

longer PFS have fewer clonal types.

However, there are still some limitations in this study. Firstly,

this study was the small amount number of participants, which may

reduce the representativeness of certain findings, particularly in a

disease as heterogeneous as ESCC. Therefore, subsequent studies

with large sample size are still needed to verify the results of this

study. Secondly, our study primarily provides cross-sectional data,

longitudinal RNA sequencing and overall survival (OS) were absent,

and that was a non-immunotherapy cohort. Therefore, there are

deficiencies in a more in-depth analysis of the dynamics of immune

response and the change of treatment effect over time, and there is

no gold standard comparison of OS. Follow-up studies should focus

on an in-depth analysis of molecular dynamic response in

immunotherapy and the relationship between multiple omics at

different nodes, and in vitro validation of the obtained conclusions

should be carried out under necessary conditions to improve the

overall research depth. Third, we only conducted validation of

external ESCA RNA data and advanced solid tumors TCR data

(Supplementary Figures S4, S8), and the validation results were

consistent with the present study. We still lack a multi-node, multi-

omics external validation queue to adequately explain our findings.

Therefore, in the follow-up study, it is necessary to increase the

sample size and set the independent verification cohort to improve

the statistical robustness of conclusions.

In conclusion, multi-omics sequencing techniques help us better

understand the molecular characteristics of ESCC. Based on the

genomic and transcriptomic analysis, we can identify potential

biomarkers of ESCC, especially immune microenvironment

characteristics. Based on TCR clonality and Shannon index analysis

among the pre-treatment, on-treatment, and post-treatment ESCC

patients using paired samples, we concluded that TCRs are clonal

expansion after radiotherapy and chemotherapy in ESCC, suggesting

an immune-activated microenvironment after radio-chemotherapy.

Our multi-omics analysis provided the basic TCRs dynamics and its

genomic and transcriptome association during the radio-

chemotherapy of EC, which may provide new ideas for the

diagnosis and treatment of ESCC.
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SUPPLEMENTARY FIGURE 1

Mutation signatures in ESCC samples. (A) Contributions of six possible

substitution types at different nucleotide contexts; (B) The Catalogue of

Somatic Mutations in Cancer (COSMIC) mutational signatures composition
in 23 ESCC patients. ESCC, esophageal squamous cell carcinoma.

SUPPLEMENTARY FIGURE 2

The TMB of the 23 ESCC patients in this study and other cancers derived from
TCGA. The numerical values above the figure indicate the total sample size for

each cancer cohort. ESCC, esophageal squamous cell carcinoma; TMB,
tumor mutation burden.

SUPPLEMENTARY FIGURE 3

Differential expression analysis of immune cell between PFS-H and PFS-L

groups using multiple methodologies. ns, p≥0.05; **, p<0.01; ***, p<0.001.

SUPPLEMENTARY FIGURE 4

The association of the immune infiltration derived from TCGA-ESCA database

RNA sequencing. ns, p≥0.05; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p

< 0.0001.

SUPPLEMENTARY FIGURE 5

The Immune-Score and the ratio of immune cells in PFS-high group and PFS-

low group. (A) the ImmuneScore, StromalScore and ESTIMATEScore, in PFS-
high group and PFS-low group; (B) The ratio of 22 immune cells between

PFS-high group and PFS-low group. The numbers in the boxplots represent

the median scores of each group. PFS, progression free survival.

SUPPLEMENTARY FIGURE 6

The association of genomic characteristics between different NLRs

(neutrophil-to-lymphocyte ratio). (A) The incidence of mutations in NLR-
high group and NLR-low group; (B) The association between mutated gene

and tumor mutational burden, KMT2D mutant (KMT2D-mut) samples tended

to have higher TMB than KMT2D wild-type (KMT2D- wild) samples; (C) The
difference in the median TMB, TNB and the chromosomal CNV burden

between NLR-high group and NLR-low group. The numbers in the figure
represent the p-values obtained from the Wilcoxon rank-sum test. (D) The
Catalogue of Somatic Mutations in Cancer (COSMIC) mutational signatures
composition in patients of NLR-low group (left panel) and NLR-high group

(right panel). NLR, neutrophil-to-lymphocyte ratio; TMB, tumor mutation

burden; TNB, tumor neoantigen burden; CNV, copy number variant.

SUPPLEMENTARY FIGURE 7

The differences of the composition of immune cells between NLR-high

group and NLR-low group. NLR, neutrophil-to-lymphocyte ratio; ns,
p≥0.05; **, p<0.01; ***, p<0.001.

SUPPLEMENTARY FIGURE 8

TCRs dynamics verification by an external GSE120101 dataset of solid tumors.

SUPPLEMENTARY FIGURE 9

The differences of the TCR clonality, simpson Index, shannon index and richness
between NLR-high group and NLR-low group in the pre-treat, on-treat, or post-

treat samples. TCR, T-cell receptors; NLR, neutrophil-to-lymphocyte ratio; pre-

treat, pre-treatment; on-treat, on-treatment; post-treat, post-treatment.

SUPPLEMENTARY FIGURE 10

The differences of the TCR clonality, simpson Index, shannon index and richness

between PFS-high group and PFS-low group in the pre-treat, on-treat, or post-
treat samples. TCR, T-cell receptors; PFS, progression free survival; pre-treat, pre-

treatment; on-treat, on-treatment; post-treat, post-treatment.

SUPPLEMENTARY FIGURE 11

The association between the Clonality and mutated genes.
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