
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Trygve Tollefsbol,
University of Alabama at Birmingham,
United States

REVIEWED BY

Amrita Sule,
Broad Institute, United States
Zhang Yang,
Fujian Medical University Union Hospital,
China

*CORRESPONDENCE

Qingyun Yang

yqy@imm.ac.cn

RECEIVED 06 July 2024
ACCEPTED 31 October 2024

PUBLISHED 25 November 2024

CITATION

Gong X, Liu C, Tang H, Wu S and Yang Q
(2024) Application and research progress of
synthetic lethality in the development of
anticancer therapeutic drugs.
Front. Oncol. 14:1460412.
doi: 10.3389/fonc.2024.1460412

COPYRIGHT

© 2024 Gong, Liu, Tang, Wu and Yang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 25 November 2024

DOI 10.3389/fonc.2024.1460412
Application and research
progress of synthetic lethality
in the development of anticancer
therapeutic drugs
Xiaoliang Gong, Chunxi Liu, Haoyang Tang, Song Wu
and Qingyun Yang*

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia
Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
With the tremendous success of the PARP inhibitor olaparib in clinical practice,

synthetic lethality has become an important field for the discovery and

development of anticancer drugs. More and more synthetic lethality targets

have been discovered with the rapid development of biotechnology in recent

years. Currently, many drug candidates that were designed and developed on the

basis of the concept of synthetic lethality have entered clinical trials. Taking

representative synthetic lethal targets Poly ADP-ribose polymerase 1 (PARP1),

Werner syndrome helicase (WRN) and protein arginine methyltransferase 5

(PRMT5) as examples, this article briefly discusses the application and research

progress of synthetic lethality in the development of anticancer drugs.
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1 Introduction

Synthetic lethality refers to a phenomenon wherein simultaneous mutations in a pair

of genes lead to the lethality of cells or organisms, whereas cells or organisms still survive

when both genes remain wild type or when either gene is mutated (1, 2). It has become an

important area of research and development for anticancer drugs: if a gene has been

altered (through deletion, mutation, and amplification) in tumor cells, the use of

therapeutic drugs, such as small-molecule drugs for specific regulation, especially to

inhibit the expression or function of another gene, can lead to the death of tumor cells

without substantially affecting normal cells. By utilizing this strategy, therapeutic drugs

can specifically inhibit and/or kill tumor cells, greatly improving the therapeutic safety

window of drugs.

As early as 100 years ago, geneticist Calvin Bridges observed the synthetic lethality of

the genetic combinations of two mutant genes in fruit flies. In 1997, Stephen H. Friend and

others published an article in Science, emphasizing that a mutation in a gene in tumor cells
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leads to changes in entire molecular signaling networks. Such

changes may lead to the excessive dependence of cells on another

gene and its expression product. The pharmacological inhibition of

another gene or its expression product results in the specific death

of tumor cells (3). These studies provided a theoretical foundation

for developing anticancer drugs on the basis of synthetic

lethality theory.

In recent years, research on synthetic lethal gene pairs has

been progressing with the rapid advancement of biotechnology.

The Score, Achilles, and Drive studies performed by the Sanger

Institute, Broad Institute, and Novartis, respectively, utilized

CRISPR-Cas9 or RNA interference technology to specifically

knock out or inhibit tens of thousands of different genes in

thousands of cancer cell lines harboring various genetic

alterations (4–6). The dependence of cells carrying different

al tered genes on specific genes was studied through

bioinformatics analysis. After excluding the essential genes

necessary for cell survival and proliferation, a large number of

synthetic lethal gene pairs were found, and a series of new targets

that can be used for precision cancer treatment were identified. In

each gene pair (genes A and B), using the highly variable gene A in

tumor cells as a marker for tumor patient enrollment and

targeting the protein product of gene B to develop specific

antitumor drugs achieves specific and potent tumor cell killing

without or rarely affecting normal cells (Figure 1). This strategy

greatly improves the effectiveness and safety of drugs and provides

a new direction for the development of anticancer drugs. In this

article, we discuss the application and research progress of

synthetic lethality-based anticancer drugs by combining those

that have been marketed and those that are currently in

clinical trials.
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2 BRCA1/2 mutation and poly ADP-
ribose polymerase inhibitors

Poly ADP-ribose polymerase (PARP) inhibitors are the first

class of anticancer drugs developed on the basis of the concept of

synthetic lethality. Currently, many PARP inhibitors have been

approved for the treatment of patients harboring BRCA1/2-

mutated tumors. The tremendous success of PARP inhibitors in

clinical trials has led to a boom in research and development in the

field of synthetic lethality. The first PARP inhibitor approved for

marketing was olaparib, a PARP1/2 inhibitor, which was launched

in 2014. Subsequently, rucaparib, niraparib, talazoparib, and other

PARP inhibitors were successively approved for marketing, with

their indications constantly expanding from ovarian cancer to other

cancer types, including breast, prostate, and pancreatic cancers. At

the same time, companion diagnostic biomarkers have been

expanded from initial somatic and germline BRCA1/2 mutations

to other DNA homologous recombination deficiencies (HRDs), and

multiple assay kits have been developed or are developing for

patient selection as reviewed by Murai et al. (7). The

representative, commercially available assay is myChoice CDx

developed by Myriad, which calculates HRD score according to

loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and

large-scale state transitions (LST). A score equal to or higher than

42 is defined as HRD, otherwise defined as HR-proficient. Since

clinical usages of PARP inhibitors have been continuously extended

from late-line treatment to front-line treatment, olaparib has

become a blockbuster drug with an annual revenue of several

billion dollars.

Tumor cells generally grow rapidly and DNA damage inevitably

occurs during proliferation. Multiple DNA damage repair

mechanisms exist in cells (8, 9). BRCA1 and BRCA2 repair DNA
FIGURE 1

Synthetic lethality in cancer cells. Green, wild-type genes. Red, mutated genes. (A), cancer cells survive when both genes remain wild type or
when either gene is mutated. (B), left, simultaneous mutations in a pair of genes lead to the death of cancer cells. Right, targeting gene B
products in cancer cells harboring gene A mutation has the potential to achieve specific and potent cancer cell killing without or rarely affecting
normal cells.
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double-strand breaks through homologous recombination in cells,

whereas PARP1 and PARP2 are key enzymes that repair DNA

single-strand breaks (10, 11). BRCA1/2 mutations often occur in

certain tumor types, including breast, ovarian, and prostate cancers.

For patients harboring these mutations, treatments with PARP1/2

inhibitors have achieved excellent therapeutic success (12–17),

resulting in several initially approved indications being approved

for marketing through accelerated approval.

By identifying DNA nick marks and synthesizing poly ADP

ribose (PAR) chains at the site of damage, PARP recruits repair

factors and plays an important role in single strand damage repair.

The inhibition of PARP activity and the inherent trapping activity

of PARP inhibitors can lead to the accumulation of single chain

damaged SSB and replication fork collapse, resulting in a significant

increase in double chain damage. The loss of BRCA function leads

to dysfunction in homologous recombination, forcing cells to utilize

error prone double stranded repair mechanisms such as non-

homologous end joining (NHEJ) for repair, resulting in a large

production of toxic repair products, genomic instability, and

ultimately cell apoptosis (18–20).

In recent years, with the continuous deepening of research on the

synthetic lethality between PARP inhibitors and BRCA dysfunction,

researchers have proposed modified models to explain the observed

synthetic lethality phenomenon (21, 22). In short, during replication

stress-induced DNA damage, BRCA has the ability to prevent the

degradation of nascent DNA mediated by nucleases such as MRE11,

and protect the functional integrity of the reversed fork, thereby

avoiding replication fork collapse and cell apoptosis. However, PARP

inhibition leads to an increase in single chain damage. Meanwhile, its

inhibition of lagging strand maturation results in further growth of

single strand gaps. In addition, the trapping activity of PARP

inhibitors leads to longer lasting existence of DNA single stranded

gaps. In BRCA deficient cells, the inability to protect the single

stranded DNA gap from nuclease degradation may lead to replication

catastrophe. At the same time, the single stranded DNA gap persists

until mitosis and subsequent S phase, forming DSB and continuously

accumulating, ultimately leading to cell death. However, the

mechanism of synthetic lethality is still not fully understood and

further research is needed.

Chemotherapy drugs often cause DNA double-strand damage,

which provides a natural basis for combination with PARP

inhibitors . The combination of PARP inhibitors and

chemotherapy may even be able to overcome the strict limitations

of biomarkers. However, observed hematological toxicity of

PARP1/2 inhibitors has limited their further expansion in clinical

applications, especially in combination with chemotherapy (10, 23)

due to overlapping hematology toxicity. Although both PARP1 and

PARP2 are DNA-dependent PARPs, their substrates are different.

Recent studies have shown that inhibiting PARP1 alone produces a

good synthetic lethal effect with BRCA mutations without

consideration of blood toxicity. By contrast, inhibiting PARP2

leads to severe hematological toxicity, especially red blood cell

toxicity (24, 25). All the evidences suggested that a PARP1

selective inhibitor with the absence of PARP2 binding has the
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potential to maintain the capability to kill BRCA-mutated tumor

cells but avoid hematology toxicity. On this basis, the development

of selective PARP1 inhibitors has become a research hotspot in

recent years.

In search of favorable starting points for optimization and

discovery of PARP1-selective inhibitors, scientists from

AstraZeneca collected 7 commercial available PARP inhibitors

and compared their selectivity for PARP1 (26). Among these

inhibitors, FR257531 showed excellent selectivity (~300 fold) for

PARP1 over PARP2, confirming the possibility of discovery of a

PARP1 inhibitor. However, this molecule possesses high LogD,

poor hepatic metabolism stability and cardiotoxicity risk. Scientists

made much efforts to improve the druggability, leading to the

discovery of AZD5305 with a selectivity of ~460 fold. The highly

selective PARP1 inhibitor AZD5305 with strong trapping activity

has entered the clinical trials in recent years (clinical trial no.

NCT04644068 and NCT05367440). Preclinical research data

showed that AZD5305 had the capability to reduce the risk of

hematological toxicity while maintaining potent synthetic lethal

effects (27). Importantly, in mouse CDX and PDX models covering

various cancer types, AZD5305 has demonstrated efficacy and

safety in combination with carboplatin (28, 29). However, despite

of its high selectivity, a recent study showed that AZD5305 also

exhibited a clear allosteric effect on PARP2 and retains PARP2 on

DNA breaks (30). In addition, due to the unique trapping activity of

PARP inhibitors, the high rate of germline mutations in BRCA

mutations and functional difference between BRCA1 and BRCA2

mutations, further clinical studies are still needed to confirm

whether PARP1-selective inhibitors can remarkably reduce

hematological toxicity while remaining synthetic lethality with

BRCA1/2 mutations (31–33).

There are currently a large number of studies on PARP inhibitor

resistance, and various resistance mechanisms are summarized and

discussed in Dias et al’s excellent review (34). Similar to other drugs,

resistance to PARP inhibitors can be divided into two categories:

intrinsic resistance and acquired resistance, including PARP1 point

mutations (35), PAR glycoshydrolase (PARG) deletions (PARG can

reverse PARylation and inhibit PARP activity) (36), BRCA frameshift

mutations/promoter demethylation-mediated homologous

recombination restoration (37), etc. To overcome drug resistance,

extensive research has been conducted, such as utilizing PARG

inhibitors to overcome resistance to PARP inhibitors or combining

Pol-q (involved in NHEJ double chain repair) inhibitors with PARP

inhibitors (38, 39).

Researchers have long believed that the unique trapping activity

of PARP inhibitors is crucial for their efficacy. Some PARP

inhibitors, such as niraparib, talazoparib, and AZD5305, possess

potent trapping activity. However, in clinical practice, high trapping

activity does not appear to bring substantial improvement in

efficacy. A recent article published by Michalis Petropoulos and

others suggests that trapping activity is unnecessary for the efficacy

of PARP inhibitors, but may increase safety risks such as

hematology toxicity, providing new insights for the subsequent

development of PARP inhibitors (40).
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3 dMMR/MSI-H and Werner syndrome
helicase inhibitors

Werner syndrome helicase (WRN) has become the hottest

synthetic lethality target in recent years. In 2017, two large-scale

synthetic lethality studies, Achilles and Drive, showed the

strongest synthetic lethal interaction occured between WRN

inhibition and dMMR/MSI-H (5, 6). Subsequent studies further

confirmed the existence of potent synthetic lethality between

WRN inhibition and dMMR/MSI-H (41) and conducted in-

depth research on the mechanisms behind the synthetic

lethal interaction.

WRN belongs to the Rec Q family of DNA helicases and is

involved in multiple DNA repair pathways, which are important for

maintaining genomic integrity (42). Its mutation can lead to

Werner syndrome, an autosomal recessive genetic disorder

characterized by premature aging and cancer susceptibility (43).

In contrast to the Rec Q family members RecQ1, RecQ4, RecQ5,

and BLM, WRN has two enzymatic activity centers responsible for

helicase and exonuclease activities. Recent studies have shown that

helicase activity, but not exonuclease activity, is crucial for the

observed synthetic lethality interaction (44, 45). At the same time,

this synthetic lethality effect has not been observed in other RecQ

family helicases (41), indicating that WRN is the exclusive helicase

with strong synthetic lethal effects with MSI-H. Further research has

shown that in MSI-H tumor cells, the excessive extension of short

repeat sequences, such as TA, leads to the formation of non-B DNA

secondary structures, resulting in replication fork stalling, ATR

activation, and WRN recruitment, which restores replication fork

progression through WRN unwinding (46). WRN inhibition leads

to replication fork collapse, DNA double-strand breaks, and

subsequent apoptosis in MSI-H tumor cells. This study provided

mechanistic insights and theoretical basis for the observed synthetic

lethal effects.

MSI-H has an incidence of 10–25% in some cancer types,

including colorectal, gastric, ovarian, and endometrial cancers

(47). On this basis, numerous studies have been devoted to the

discovery of selective WRN inhibitors. Currently, two specific WRN

helicase inhibitors, HRO761 and VVD-133214, have entered the

clinical trials but no clinical data has been released yet. HRO761 is a

noncovalent inhibitor developed by Novartis (48), whereas VVD-

133214 is a covalent inhibitor jointly developed by Vividion

Therapeutics and Roche (49). Preclinical data showed that these

two molecules potently inhibit MSI-H tumor cells in in vitro and in

vivo models but lack a remarkable effect on normal cells and MSS

tumor cells, suggesting an excellent safety window.

HRO761 binds to a non-conserved site at the interface of

helicase lobes D1 and D2, and allosterically locks WRN in an

inactive conformation (48) without off-targeting to other Rec Q

family members. Cell panel assays confirmed excellent selectivity of

HRO761 since this molecule potently inhibits most of MSI-H tumor

cells at low nMs and completely spares MSS tumor cells even at

concentrations of high mMs. Interestingly, in addition to helicase

activity inhibition, HRO761 treatment led to significant WRN

degradation though it is not a proteolysis-targeting chimera

(PROTAC) molecule. Further studies suggested that PIAS4-
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RNF4-p97/VCP axis is critical for HRO761-induced WRN

degradation (50). Different from HRO761, VVD-133214

selectively engages a cycteine C727 located in a region of the

helicase domain and exhibits excellent cell growth inhibition in

MSI-H tumor cells, but not in MSS cells (49).

A study performed by Picco et al. validated a positive

correlation of sensitivity to WRN inhibition with expanded TA-

repeats (51). This finding may be used to explain the phenomenon

that some MSI-H tumor cells are not sensitive to WRN helicase

inhibition since some MSI-H cells possess short TA repeats. On the

other hand, to explore potential acquired resistance to WRN

inhibitors, Fowler et al. continuously treated MSI-H tumor cells

(HCT116 and SW48) with HRO761 and other WRN inhibitors

showing a similar mechanism of action (52). Sequencing data

revealed the emergence of multiple point mutations within WRN

helicase domains. Subsequent SW48 xenograft model confirmed

two of discovered mutations and demonstrated some new point

mutations. These mutations either block inhibitor binding or affect

the adoption of binding conformation. Due to distinct action mode,

resistance mechanism of VVD-133214 is supposed to be different

from non-covalent inhibitors such as HRO761 but no data is

available yet.

Currently, there is no clinical safety data available with WRN

inhibitors. In 2017, Kamath-Loeb et al. reported a specific WRN

variant R834C in a population (53). These patients demonstrate

some symptoms, most commonly ametropia, grey hair and some

cardiovascular performance such as high blood pressure and onset

of diabetes mellitus after the age of 20. Interestingly, R834C

mutation leads to abolation of WRN helicase activity, but has no

obvious effect on exonuclease activity. This study suggests that

helicase-specific WRN inhibitors are supposed to be tolerable in

clinic. Combining with high selectivity of WRN helicase inhibitors

in MSI-H tumor cells over MSS normal cells, we are expecting a low

safety risk in clinic and we are waiting for clinical data to verify

the hypothesis.

Though immune checkpoint inhibitors have achieved dramatic

success for treatment of patients haboring MSI-H/dMMR, a large

population of these patients are not responsive to these treatments

(54). As stated above, WRN inhibitors have shown potent anti-

tumor effect in in vitro and in vivo MSI-H tumor models. WRN

inhibitors have the potential to be used for the therapy of

immunotherapy irresponsive and resistant MSI-H/dMMR

patients. At the same time, WRN inhibitors possess excellent

safety profiles and could be combined with other treatments for

cancer therapy. Currently, Novartis has initiated the clinical trials to

evaluate the combination of HRO761 with an anti-PD-1 antibody

pembrolizumab and a chemotherapy drug irinotecan in patients

harboring MSI-H and dMMR (clinical trial no. NCT05838768). As

companion diagnostic methods for immune checkpoint inhibitors,

the detection of MSI-H and dMMR has become increasingly mature

and commercial assay kits have become widely available (47).

However, there is no commercial available assay kit for

measurement of TA repeat length on the market yet.

In addition to WRN inhibitors that have entered clinical trials,

some molecules are currently in preclinical research stage. They

include the covalent small-molecule WRN inhibitor developed by
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Ideaya and GSK (55), Insilico Medicine’s ISM9342 (56), and Puhe

BioPharma’s PH027-1 (57). We expect that these WRN inhibitors

will be clinically validated and benefit patients as soon as possible.
4 Methylthioadenosine phosphorylase
deficiency and MAT2A/
PRMT5 inhibition

The methylthioadenosine phosphorylase (MTAP) gene is

located on chromosome 9p21.3 and often deleted together with

CNKN2A and CDKN2B. It is the most commonly deleted gene in

tumor cells, with an incidence of approximately 10% in all cancers

and approximately 15% in solid tumors (58). In recent years, many

studies have reported that a synthetic lethal interaction exists

between the deletion of the MTAP gene and inhibition of

methionine adenosyltransferase 2a (MAT2A) or protein arginine

methyltransferase 5 (PRMT5) (58–60).

MAT2A is a metabolic enzyme in the body that promotes the

conversion of methionine into S-adenosylmethionine (SAM) (61).

SAM is an important methyl donor in cells and provides methyl

groups for protein arginine methyltransferases (PRMTs), including

PRMT5, to complete the methylation of protein substrates (62).

PRMT5 promotes the symmetric dimethylation of substrate

proteins, participating in RNA splicing, cell proliferation, and

DNA damage repair (63). MTAP is the only enzyme in cells

responsible for the degradation of methylthioadenosine (MTA).

As a result, MTAP gene deletion leads to the accumulation of MTA

in cells (59). Given that MTA and SAM bind to the same site on

PRMT5 with similar affinity (64), the accumulation of MTA can

compete with SAM for binding to PRMT5, resulting in the partial

inhibition of PRMT5 activity and leading to the sensitivity of tumor

cells harboring the MTAP gene deletion to the inhibition of

MAT2A and PRMT5. This phenomenon is the biological basis of

synthetic lethality.

As described by Marjon et al, MAT2A knockdown induced the

most significant cell growth difference (log2 fold change, 15.39) in

HCT116 MTAP-del and MTAP-wt isogenic cell pairs (59). In

contrast, PRMT5 knockdown led to a log2 fold change of 12.62.

Thus, MAT2A was ranked as top SL target for MTAP-del tumors

and PRMT5 was considered as the second best. The trend was

further confirmed by cell proliferation assays with small molecule

inhibitors. AGI-24512, a MAT2A inhibitor, significantly inhibited

cell proliferation of MTAP-del HCT116 cells (IC50, ~100 nM) and

had no obvious impact on MTAP-wt cells (58). However, direct

PRMT5 inhibition mediated by either a substrate-competitive

inhibitor GSK3326595 or a SAM-competitive inhibitor

JNJ64619178 did not show a clear selectivity in HCT116 isogenic

cells (selectivity less than 2×) (65). Currently, several MAT2A

inhibitors are undergoing clinical research, with representative

molecules being Agios Therapeutics’ AG270 (66) and Ideaya’s

IDE397 (67).

It is still not clear why MAT2A inhibition generates a better

selectivity in isogenic cell pairs than PRMT5 inhibition. It is known

that MAT2A is a ubiquitously expressed enzyme responsible for the

production of SAM, and MAT2A inhibition leads to significant
Frontiers in Oncology 05
decrease of SAM levels (58). Since SAM is the methyl donor

responsible for all intracellular transmethylation reactions,

reduction of SAM production affects the activities of many

methyltransferases, including PRMTs and others (68). At the

same time, MTA has the capability to bind to and inhibit activity

of many methyltransferases, such as PRMT5, PRMT6, PRMT3,

PRMT8, EHMT1, G9a, and so on (59). Accumulated MTA in

MTAP-del cells results in the second strike on activities of these

enzymes following SAM reduction. Thus, MAT2A generates

synthetic lethality interaction based on activity regulation of

multiple methyltransferases. This is may be partly responsible for

the difference of SL effects of MAT2A inhibitors and

PRMT5 inhibitors.

In recent years, new-generation PRMT5 inhibitors, namely,

MTA-cooperative PRMT5 inhibitors, were designed to stabilize

the binding of MTA to PRMT5 further and destabilize the

binding of SAM through allosteric regulation, dramatically

increasing the selectivity of PRMT5 inhibitors in MTAP-deleted

over wild-type cells (64). Due to specific accumulation of MTA in

MTAP-del tumor cells, the new action mode make it possible to

specially target tumor cells but spare normal cells with a small

molecule. For example, MRTX1719, a MTA-cooperative PRMT5

inhibitor currently in Phase I clinical trial, potently inhibited cell

growth of MTAP-del HCT116 tumor cells (IC50, 12 nM), but did

not show strong inhibition on MTAP-wt HCT116 cells (IC50, 980

nM), generating a selectivity of ~80× (65). Since PRMT5 is essential

for sustaining hematopoiesis, hematology toxicity is the major

barrier to block the clinical application of first-generation non-

MTA cooperated PRMT5 inhibitors (69). MTA-cooperative

PRMT5 inhibitors have the ability to maintain potent anti-tumor

activities, but avoid dose-limiting hematology toxicity in cancer

patients harboring homozygous loss of MTAP as shown by

MRTX1719 and AMG193’s clinical studies (64, 70). Both

MRTX1719 and AMG193 are in phase I clinical trials and

preliminary data has shown encouraging anti-tumor activities in

multiple cancer types covering lung cancer, pancreatic cancer and

others, and no evidence of clinically significant myelosuppression

has been observed.

PRMTs are responsible for arginine methylation of protein

substrates and can be divided into three different groups (68, 71).

Type I PRMTs (PRMT1, 2, 3, 4, 6, 8) promotes the production of

monomethy l a t ed a rg in ine (MMA) and a symmet r i c

dimethylarginine (ADMA), with PRMT1 responsible for over

90% ADMA. Type II PRMTs (PRMT5 and PRMT9) mediates the

production of MMA and SDMA, with PRMT5 responsible for most

of SDMA. Type III PRMT (PRMT5) is limited to the production of

MMA only. In a study on resistance to PRMT5 inhibitors, Long

et al. discovered that no significant changes in ADMA were

observed in PRMT5i resistant mantle cell lymphoma cells,

suggesting the possibility of type I PRMT inhibitors to overcome

the resistance to PRMT5 inhibition (72). The synergistic anti-tumor

effect has been confirmed in a study performed by Fedoriw et al.

(73). In addition, Long et al. also showed dysregulation of multiple

signaling pathways in cells resistant to PRMT5 inhibition, and

highlighted the relevance of mTOR signaling with observed

resistance (72).
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MTA-cooperated PRMT5 inhibitors can specifically target

MTAP deficient tumor cells without affecting normal cells,

indicating that the precise targeting function of antibody-drug

conjugate (ADC) has been achieved through small molecules,

which is a breakthrough in the development of anti-tumor small

molecule drugs. Currently, several MTA-cooperative PRMT5

inhibitors have entered clinical trials. They include MRTX1719

(clinical trial no. NCT05245500), AMG193 (clinical trial no.

NCT05094336), TNG908 (clinical trial no. NCT05275478),

TNG462 (clinical trial no. NCT05732831), and AZD3470 (clinical

trial no. NCT06130553). At the same time, clinical studies have

investigated the combination of MAT2A inhibitors and MTA-

cooperative PRMT5 inhibitors, such as IDE397 and AMG193

(clinical trial no. NCT05975073), in patients with MTAP

gene deletion.
5 Other synthetic lethality targets

In addition to the above synthetic lethality targets, numerous

other synthetic lethality targets are currently under research. The

following table lists some reported synthetic lethality targets that are

not discussed in details in this article (Table 1).
6 Summary and prospects

Some functional correlations should exist between two targets

of synthetic lethality. Fundamentally, synthetic lethality is a further

expansion and application of precision medicine in clinical practice.

Appropriate predictive markers offer precise guidance for the

clinical use of drugs targeting functionally related targets. The

emergence of synthetic lethality provides new treatment options

base on numerous targets that were previously considered
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undruggable. Currently, with the rapid development of

biotechnology, the biological mechanisms of many synthetic

lethality targets have become increasingly clear, and the relevant

information provides guidance and a theoretical basis for efficacy

evaluation, possible drug resistance mechanisms, and drug

combination options of drug candidates. At the same time,

current research has shown that although the synthetic lethal

effect of some targets is relatively weak, the safety window of

synthetic lethality could be remarkably improved through

synthetic design. For example, the synthetic lethal effect between

PRMT5 inhibitors and MTAP gene deletion is weak. However,

considering the context of intracellular metabolism, the safety

window of synthetic lethality is greatly improved through special

MTA cooperative design (64, 65). Therefore, MTA-cooperative

PRMT5 inhibitors have the ability to inhibit tumor cells potently

while avoid the hematological toxicity commonly caused by first-

generation, non-MTA cooperative PRMT5 inhibitors, such as

GSK3326595 and JNJ64619178 (64, 65).

As mentioned earlier, previous synthetic lethality studies, such

as Achilles, Drive, and Score, focused mainly on tumor cells

themselves. By using a large number of cell lines harboring

different genetic variations and specifically inhibiting or knocking

out single genes, synthetic lethality targets could be discovered

through the inhibition of tumor cell growth. Therefore, the

discovered synthetic lethality targets mainly focused on DNA

damage repair pathways and cell cycle-related targets. These

studies cannot discover targets involving the interaction between

tumor cells and the microenvironment. In recent years, synthetic

lethality research has gradually expanded to the fields of in vivo

screening and tumor immunotherapy. For example, STK11 is a

tumor suppressor gene that has an incidence rate of more than 10%

in lung cancer and is extremely insensitive to immunotherapy (86–

88). Tango Therapeutics generated a STK11-deleted MC38 mouse

cancer model and, through an in vivo CRISPR screening platform,

found that HDAC1 is a key target mediating immune evasion in

STK11-deficient tumors. By using the small molecule TNG260 to

inhibit the activity of HDAC1, especially its specific complex

CoREST, the sensitivity of STK11-deficient tumors to PD-1

inhibitors can be remarkably enhanced. The combination of

TNG260 and a PD-1 inhibitor can lead to the complete

regression of tumors (89, 90). The in-depth assays showed that

TNG260 treatment promoted immune cell adhesion/migration and

antigen presentation, and decreased intratumoral Treg recruitment

in STK11-loss tumors, leading to restoration of sensitivity to anti-

PD-1 treatment (91, 92). TNG260 selectively inhibits CoREST

complex of HDAC1 but not other complexes NCoR, NuRD and

Sin3. In contrast, pan-HDAC inhibitor vorinostat and class I

HDAC inhibitor domatinostat inhibit multiple complex forms

and have no potent immune-regulation effect. Scientists from

Tango therapeutics suggests that complex selectivity is critical for

immune-regulation effects of HDAC1 inhibitors. We expect that

with the maturation of theory and rapid development of technology

in the field of synthetic lethality, additional precise therapeutic

targets can be discovered in other cancer areas and even noncancer

therapeutic areas, providing new options for clinical practice.
TABLE 1 Some reported synthetic lethality targets.

Biomarker Synthetic lethal target Reference

BRCA1/2 mutation Polq (39, 74)

BRCA1 deficiency USP1 (75)

ATM loss of function ATR (76)

ERCC1 deficiency ATR (77)

Polq loss DNA-PK (78)

TRIM37
gene amplification

PLK4 (79)

ARID1A gene mutation EZH2 (80)

ARID1A gene mutation EGLN1 (81)

KRAS mutation SHP2 (82)

BRG1 deficient BRM (83)

RB1 loss Aurora A (84)

KEAP1 loss of function ATM (85)
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