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Bladder cancer (BC) is themost commonmalignancy of the urinary tract. About 75%

of all BC patients present with non-muscle-invasive BC (NMIBC), of which up to 70%

will recur, and 15% will progress in stage and grade. As the recurrence and

progression rates of NMIBC are strongly associated with some clinical and

pathological factors, several risk stratification models have been developed to

individually predict the short- and long-term risks of disease recurrence and

progression. The NMIBC patients are stratified into four risk groups as low-,

intermediate-, high-risk, and very high-risk by the European Association of

Urology (EAU). Significant heterogeneity in terms of oncological outcomes and

prognosis has been observed among NMIBC patients within the same EAU risk

group, which has been partly attributed to the intrinsic heterogeneity of BC at the

molecular level. Currently, we have a poor understanding of how to distinguish

intermediate- and (very-)high-risk NMIBC with poor outcomes from those with a

more benign disease course and lack predictive/prognostic tools that can specifically

stratify them according to their pathologic and molecular properties. There is an

unmet need for developing a more accurate scoring system that considers the

treatment they receive after TURBT to enable their better stratification for further

follow-up regimens and treatment selection, based also on a better response

prediction to the treatment. Based on these facts, by employing a multi-layered –

omics (namely, genomics, epigenetics, transcriptomics, proteomics, lipidomics,

metabolomics) and immunohistopathology approach, we hypothesize to decipher

molecular heterogeneity of intermediate- and (very-)high-risk NMIBC and to better

stratify the patients with this disease. A combination of different–omicswill provide a

more detailed and multi-dimensional characterization of the tumor and represent

the broad spectrum of NMIBC phenotypes, which will help to decipher the
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molecular heterogeneity of intermediate- and (very-)high-risk NMIBC. We think that

this combinatorial multi-omics approach has the potential to improve the prediction

of recurrence and progression with higher precision and to develop a molecular

feature-based algorithm for stratifying the patients properly and guiding their

therapeutic interventions in a personalized manner.
KEYWORDS

bladder cancer, recurrence, progression, non-muscle-invasive, -omics, genomics,
epigenetics, transcriptomics
1 Introduction and background

Bladder cancer (BC) is the most common malignancy of the

urinary tract and is the sixth most commonly diagnosed form of

cancer in Europe, while it ranked ninth worldwide (1, 2). Moreover,

the estimated number of new cases will almost double from 2022 to

2050 (3). Although BC is approximately four times more commonly

seen in males, females are more frequently diagnosed with advanced-

stage disease when compared tomales in the same age group (4). This

gender discrepancy is partially attributed to gender differences in

smoking, which can also explain the increasing incidence of BC in

women in developed countries. Tobacco smoking is by far the

principal risk factor for the development of BC, accounting for

approximately 50-65% of new cases each year. Occupational

exposure to carcinogens (including aromatic amines, polycyclic

aromatic hydrocarbons, and chlorinated hydrocarbons) is the

second most frequent preventable risk factor for BC in

industrialized countries. These compounds are commonly found in

industries where dyes, paint, metal, rubber, and petroleum products

are produced (5, 6). Apart from a history of pelvic radiotherapy, the

other risk factors for BC, for which the International Agency for

Research on Cancer (IARC) has reported sufficient evidence, are

environmental exposures (arsenic, X or gamma radiation),

medications (cyclophosphamide, chlornaphazine), opium

consumption, and Schistosoma infection (7). Moreover, candidate

association studies have unveiled that the gene polymorphisms of N-

acetyltransferase (NAT-2) and glutathione S transferases (GSTM1

and GSTT1) (detoxifying arylamines and polycyclic hydrocarbons),

and of arsenic (+3 oxidation state) methyltransferase (AS3MT) are

associated with a higher risk of BC (6, 8). At present, Lynch

syndrome, caused by germline mutations in DNA mismatch repair

(MMR) genes (MSH2, MSH6, MLH1, PSM2, and EPCAM), remains

the only identified hereditary cancer syndrome associated with a

higher BC risk (8).

More than 90% of BCs in Europe and North America are

urothelial carcinomas (UC), derived from the urothelium.

Confirmation of the diagnosis and clinical staging is performed

by transurethral resection of the bladder tumor (TURBT). At

initial presentation, 25% of cases are diagnosed with muscle-
02
invasive BC (MIBC). These patients have aggressive disease, as

approximately one-third have undetected metastases, while 25%

have lymph node involvement (9). Treatment modalities are well

defined by international guidelines, with aggressive combination

treatments, such as radical cystectomy with (neo-)adjuvant

chemotherapy, to be recommended (9). The remaining 75% of

BC patients present with non–muscle-invasive BC (NMIBC),

disease confined to the mucosa (stage Ta, carcinoma in situ

[CIS]) or submucosa (stage T1). Up to 70% of the NMIBC cases

will recur, and 15% will progress in stage and grade (10).

Therefore, NMIBC patients are scheduled to undergo frequent

monitoring, currently based on cystoscopy and cytology, which

makes BC one of the costliest of all cancers to manage (11).

The recurrence and progression rates of NMIBC are strongly

associated with several clinical and pathological factors. To

individually predict the short- and long-term risks of disease

recurrence and progression, the European Organization for

Research and Treatment of Cancer (EORTC) Genito-Urinary

Cancer Group (GUCG) has developed a risk calculator consisting

of a scoring system and risk tables (12). The EORTC risk calculator

is the result of a post-hoc statistical analysis of 2596 patients from

seven separate prospective trials with 291 to 517 included patients.

These patients, treated between 1979 and 1989, were categorized by

the old (pre-2004) World Health Organization (WHO) grading

system. Because only a minority of patients (n=171) in the EORTC

cohort were treated with bacillus Calmette-Guérin (BCG), and none

of them received maintenance treatment (which is now considered

mandatory for at least 12 months to lead to effect), the Spanish

CUETO (Club Urologico Español de Tratamiento Oncologico)

consortium developed another risk stratification model based on

a total of 1062 patients treated with BCG between February 1990

and May 1999 in 4 prospective trials (13). Both risk calculators have

poor discrimination for prognostic outcomes in external validation

(14, 15). In a Brazilian cohort, the discriminative ability of the

EORTC model overestimated the short- and long-term progression

rates, especially in high-risk patients (14). Another retrospective

multicentric study demonstrated that both the EORTC and the

CUETO risk calculators overestimated the risk of disease recurrence

and progression in high-risk patients. Moreover, it was observed
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that these overestimations remained in the BCG-treated patients,

especially when the EORTC model was used (15).

Based on clinically available prognostic factors and, in

particular, the data from the EORTC risk tables, the European

Association of Urology (EAU) Guidelines recommend stratification

of NMIBC patients into four risk groups: low, intermediate, high,

and very high risk. Specific treatment recommendations have been

defined for these groups (9). Low-risk patients have a low risk of

disease progression and a low to moderate risk of recurrence. With

the defined treatment modalities, these patients have excellent

survival. Management of intermediate- and (very-)high-risk

NMIBC consists of TURBT and bladder instillations with

chemotherapeutics or BCG plus intensive follow-up. Despite this

intensive treatment and follow-up schedule, these patients have a

high risk for disease recurrence (73-84%) and a moderate risk for

progression to MIBC (8.1-14%) at 5-years. On the other hand, very

high-risk tumors have a very high probability of disease progression

(29-54%). Equally, the rate of BCG non-responders amounts to

40% (9).

Patients with NMIBCs in the same EAU risk group can have

significant heterogeneity in terms of oncological outcomes and

prognosis. The failure to accurately predict outcomes of this

scoring system, which is solely based on clinico-pathological

features, may be partly attributed to the intrinsic heterogeneity of

BC at the molecular level. The generation of large-scale, high-

throughput molecular data and the development of new profiling

technologies and analytical algorithms have led to molecular

subtyping of the disease (16). Early molecular profiling revealed

evidence for a dual-track model according to which BC develops

from two distinct pathways - the papillary and the non-papillary

pathway (17–19). The papillary NMIBCs develop via urothelial

hyperplasia and are associated with disruption of the PI3K-AKT-

mTOR (Phosphoinositide 3-kinase/Protein kinase B/Mammalian

target of rapamycin) pathway and mutations in the FGFR3 and

HRAS genes (20, 21). The non-papillary MIBCs develop from flat

dysplasia and CIS and are characterized by genetic alterations in

tumor suppressor genes that regulate cell cycle and apoptosis (TP53,

CDKN2A, CCND1, CDKN1B, and RB1) (20, 21). Although this

model includes many characteristic features of BC, it does not fully

address the heterogeneity of the disease (18, 19).

Based on gene expression, the first molecular classification of

mixed samples of MIBC and NMIBC revealed five different

subtypes (22). Later, two distinct subtypes, basal-like and non-

basal-like, were identified again through transcriptomic analysis of

MIBC with NMIBC (23). Molecular classification of only MIBC

based on gene expression showed two main distinct subtypes:

luminal and basal (24). Further research revealed first three

different subtypes and then four subtypes, similar to those of

breast cancer (Figures 1A, B) (25–27). The revised classifications

by The Cancer Genome Atlas and Lund University showed five and

six subtypes, respectively (Figure 1C) (28, 29). However, these

subclassifications were based on DNA/RNA analyses performed

mainly on retrospective cohorts of MIBC patients, with very little

data from NMIBC patients. With the intense work on this
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showed six different molecular subtypes in MIBC (Figure 1D) (30).

Comprehensive transcriptome profiling has revealed the presence

of three biological subclasses in NMIBC (UROMOL Class 1, 2, and

3), thus different from that of MIBC (Figure 1E) (31). With the recent

update of this cohort with an integrated multi-omics analysis

(genomics, transcriptomics, and spatial proteomics), four subclasses

(UROMOL2021 Class 1, 2a, 2b, and 3) were identified (Figure 1E)

(32). Another recent subclassification of only the T1 stage showed five

different molecular subtypes (Figure 1E) (33).

The current significant challenges and unmet needs are to better

understand and model the disease at the molecular level, to unveil

and validate new subtype-specific molecular biomarkers, and to

improve the current stratification models by integrating new

molecular information. Molecular data is starting to emerge in

NMIBC; however, it will still take time to incorporate this data into

current models. Further research is required, and then the translation

of the novel findings into the clinical routine by independent

randomized studies is needed for an accurate stratification of

intermediate-/(very-)high-risk NMIBC to identify which patients

are at the highest risk for disease progression, to predict treatment

response, to identify novel targets for treatment, and to improve

existing management modalities. Besides genetic alterations

(mutations, copy number alterations [CNA], single nucleotide

variations [SNV], insertions-deletions [indels], loss of

heterozygosity [LOH], translocations, tumor mutational burden

[TMB], microsatellite instability [MSI]), additional layers of

information can be gained by studying control of gene activity and

expression (DNA methylation, histone modification or short/long

non-coding RNAs – epigenetics), RNA-RNA and RNA-protein

interactions (transcriptomics), protein composition, structure and

activity, and protein-protein interactions (proteomics), and unique

chemical fingerprints of specific cellular processes (metabolomics-

lipidomics), which might expand the current typing even further.
2 The hypothesis

It is now well known that cell functions, such as the synthesis of

peptides/proteins or other metabolites, are more complex processes

than the ones explained by the central dogma of molecular biology.

As Figure 2 depicts, alterations in each step, including replication,

transcription, and translation, e.g., epigenetic regulations of genes,

transcriptional regulations (RNA processing), translational

regulations, and post-translational modifications of proteins, and

crosstalk between different processes can all be associated with the

development of cancer. Apart from the ‘in-tumor’ processes, there

are also other biological pathways that are driven by different cells

(such as tumor microenvironment [TME], immune response, etc.)

and external stimuli (carcinogens, lifestyle, radiation, infection,

etc.), which play a role in the manifestation of cancer.

Several pathways, commonly altered in oncogenesis and cancer

progression in general, also play a significant role in BC

(summarized in Figure 3):
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2.1 TP53 pathway

The tumor suppressor gene TP53, also known as ‘the guardian

of the genome’, is the most frequently mutated gene in human

tumors, and the process of tumor development is strongly related to

the dysfunctions caused by TP53 mutations. The protein coded by

this gene, p53, functions primarily as a transcription factor and

regulates various cell functions such as cell cycle, apoptosis,

autophagy, DNA repair, and metabolism. Mutant TP53 promotes

the development and progression of BC through inhibition of

apoptosis, alteration of DNA methylation patterns, activation of

oncogenic pathways (e.g., PI3K/AKT/mTOR pathway), induction

of multiple metabolic changes, modulation of TME with

immunosuppressive changes and enhancement of metastatic

potential (26, 34–37).
2.2 Cell cycle pathway

The cell cycle is a highly regulated pathway enabling cell

growth, duplication of genetic material, and cell division. The cell
Frontiers in Oncology 04
cycle machinery, composed of proteins (cyclins) and their catalytic

partners called cyclic-dependent kinases, drives progression from

one cell-cycle phase to another. Interestingly, these proteins play a

role in tumorigenesis by affecting not only tumor cells but also TME

(e.g., anti-tumor immune response). Dysregulation of this pathway,

through amplification or rearrangements of genes encoding D-, E-,

A-, and B-cyclins (CCND1, CCND2, CCND3, CCNE1, CCNE2,

CCNA1, CCNA2, CCNB1), CDK4, CDK6, CDK2, CDK1, and

CDK7, has been documented in a vast number of cancers,

including BC (26, 34, 35).
2.3 PI3K/AKT/mTOR pathway

This pathway is essential in regulating the cell cycle. Dysregulation

of this pathway, through mutations or amplification in PIK3CA, loss or

inactivation of PTEN, hyperactivation of AKT or mTOR, or

inactivating mutations in TSC1, can lead to uncontrolled cell growth

and survival, altered metabolism, increased angiogenesis and epithelial-

to-mesenchymal transition (EMT), and chemoresistance (38, 39).
FIGURE 1

Molecular subclassification of bladder cancer by different research groups: (A) initial molecular classification of bladder cancer, (B) molecular
classification of breast cancer, (C) recent molecular classification of MIBC, (D) consensus classification of MIBC, (E) molecular classification of only
NMIBC and only T1 stage. Lund, Lund University; IC, Institute Curie; UNC, University of North Carolina; MDA, MD Anderson Cancer Center; TCGA,
The Cancer Genome Atlas; UroA, Urobasal A; UroB, Urobasal B; SCC, Squamous cell carcinoma; Neuro, Neuronal; Epi-Inf, Epithelial-infiltrated;
SCCL, SCC-like; Mes-Inf, Mesanchymal-infiltrated; Sc, Small-cell; NE, neuro-endocrine-like; LumU, Luminal unstable; LumNS, Luminal non-
specified; LumGU, Luminal genomically unstable; Inflam, Inflammed; TLum, True luminal.
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FIGURE 2

Overview of cellular processes from replication of genes to protein synthesis.
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2.4 Ras/Raf/MEK/ERK pathway (also known
as MAPK [mitogen-activated protein
kinase] pathway)

It is a critical signal transduction cascade that transmits signals

from extracellular stimuli to the nucleus, which in turn influences gene

expression and impacts cell proliferation, differentiation, survival, and

apoptosis. It is crucial for normal cell functions and is highly

conserved evolutionarily across different organisms. It is one of the

most commonly altered pathways in cancer, including BC, and its

mutations or dysregulations can lead to uncontrolled cell proliferation

and reduced apoptosis, which are foundational hallmarks of cancer. In

BC, mutations in the components of this pathway, such asHRAS, lead

to constitutive activation of the pathway, which promotes tumor

initiation and development. This continuous activation also

contributes to tumor growth and progression. It can also evade

apoptosis by influencing transcription factors that regulate pro-

survival genes when activated. The chronic activation of this

pathway is also linked to angiogenesis, metastasis, and resistance to

specific therapies, particularly those targeting upstream components

like tyrosine kinase receptors (38, 40).
2.5 Fibroblast growth factor
receptor pathway

This pathway is a critical signaling cascade involved in various

cellular processes such as cell proliferation, differentiation, migration,

and survival. Its activation is initiated by binding one of 22 defined

fibroblast growth factors (FGF) to one of four FGFRs, which leads to

the dimerization of receptor and autophosphorylation of the tyrosine

kinase domain. Aberrant activation of the FGFR signaling, often due

to mutations or overexpression, initiates continuous activation of

several downstream pathways, including the Ras/MAPK, PI3K/AKT,

and PLCg (phospholipase C gamma). These pathways promote

cellular proliferation, inhibit apoptosis, influence cell behaviors

(e.g., loss of contact inhibition, anchorage-independent growth),

enhance cell survival mechanisms, and alter the TME, which

contributes to oncogenesis and progression of BC (41).
2.6 ErbB pathway

The ErbB family proteins function as cell membrane receptor

tyrosine kinases, which are activated following ligand (epidermal

growth factor [EGF], transforming growth factor-alpha [TGF-a],
neuregulins, etc.) binding and receptor dimerization, regulate

several essential cell functions such as cell proliferation,

migration, differentiation, apoptosis, and motility. Their organ-

specific expression plays a role in cardiac development, synaptic

formation, and proliferation/differentiation of glial cells.

Overexpression of ERBB1 (encoding epidermal growth factor

receptor [EGFR]=ErbB1=Her1) or ERBB2 (encoding
Frontiers in Oncology 07
ErbB2=Her2) or both contributes to shorter recurrence periods and

earlier disease progression in early-stage BCs (38).
2.7 Vascular endothelial factor pathway
(also known as angiogenesis pathway)

Activation of the vascular endothelial factor receptors

(VEGFRs, particularly VEGFR2) triggers angiogenesis through

promoting several processes such as endothelial cell proliferation

and migration, increased vascular permeability, endothelial

progenitor cell mobilization, and anti-apoptotic effects, which in

turn end up with tumor growth, progression, and metastasis

(38, 40).
2.8 NOTCH pathway

It is a highly conserved cell signaling system present in most

animals and plays a major role in neurogenesis and regulation of

embryonic development. This pathway has a dual function in BC,

where it suppresses proliferation by upregulating dual-specificity

phosphatases when activated and leads to tumorigenesis by ERK1/2

phosphorylation when inactivated. Inactivation of this pathway,

through loss-of-function mutations in NOTCH1 and NOTCH2, loss

of HES1 expression, and overexpression of NOTCH3 and

JAGGED2, contributes to tumor angiogenesis, stemness, EMT,

and cancer progression (42).
2.9 Sonic hedgehog pathway

It plays a critical role in organ development, acting as a

morphogen involved in patterning many systems, such as several

parts of the central nervous system, lungs, teeth, limbs, and digits, and

regulating the proliferation and differentiation of adult stem cells.

Dysregulation of this pathway by means of mutations in genes

encoding its components (e.g., PTCH1, SMO, GLI), epigenetic

modifications in the promoter regions of the pathway genes,

overexpression of pathway components (SHH ligands, transcription

factors), and crosstalk with other signaling pathways, drives key

processes such as EMT, BC stem cell maintenance, and lymph

node or distant metastasis (43).
2.10 Wnt/b-catenin pathway

This pathway is highly conserved across multiple species and

critical to both embryological development and adult tissue

homeostasis regeneration. Aberrant activation of this pathway,

often through mutations or epigenetic alterations in the pathway

components (e.g., APC, CTNNB1, PTEN, Wnt ligands or

antagonists), leads to nuclear accumulation of b-catenin and

subsequent transcriptional activation of Wnt target genes (e.g.,
frontiersin.or
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MYC [c-Myc], CCND1), which in turn contribute to uncontrolled

proliferation, evasion of apoptosis, promoting EMT, and enhanced

metastatic potential (44).
2.11 Hippo-YAP pathway (also known as
MST/WW45/LATS pathway)

It is involved in cell growth, apoptosis, homeostasis, and

controlling organ size during embryonic development.

Dysregulation of this pathway, through, e.g., overexpression of

transcription factor YAP (yes-associated protein) or transcription

coactivator TAZ (PDZ-binding motif) or decreased expression of

MST1/2 and LATS1, plays a role in invasion, metastasis, and

resistance to the cytotoxic effects of chemotherapy (especially

cisplatin) and radiotherapy (26, 35, 40).
2.12 Histone modification (chromatin
regulatory) pathway

Histone modifications such as acetylation, methylation,

phosphorylation, ubiquitination, SUMOylation, and ADP-

ribosylation regulate chromatin structure and gene expression.

Dysregulation of specific histone-modifying enzymes such as

histone acetyltransferases, histone deacetylases (HDACs), histone

demethylases or their catalytic subunits (e.g., EZH2), through

overexpression and loss-of-function mutations in the encoding

genes (KDM6A, HDAC1, HDAC2, HDAC3, EZH2, MLL2

[KMT2D], SETD2), plays role in cancer initiation, increased

genomic instability and aggressiveness, stemness, progression, and

metastasis (26, 35, 38).
2.13 SWI/SNF (SWItch/Sucrose Non-
Fermentable) complex

This complex is a subfamily of ATP-dependent chromatin

remodeling proteins and regulates transcription of specific genes

by altering the chromatin structure and functions as a tumor

suppressor in cancers. Mutations in the genes encoding the

subunits of the SWI/SNF complex such as ARID1A (the most

frequent), ARID1B , SMARCA4 , SMARCA2 , SMARCC2 ,

SMARCC1, and PBRM1, promote several key hallmarks of cancer

such as cell proliferation and survival, invasion, stemness, and

interactions with the other oncogenic pathways, which in turn

increases the aggressiveness of BC (26, 40).

Apart from the abovementioned ones, there are also other

pathways involved in tumorigenesis and progression of BC, which

play a role in cancer cell metabolism and cancer stem cells such as

IL6/IL6R/STAT3, COX2/PGE2/SOX2, ALDH1A1/TUBB3, ARRB/

ALDH/CD44 pathways (40). External carcinogenic stimuli such as

cigarette smoke and occupational exposure cause BC development

through several mechanisms, including formation of DNA abducts

and oxidative DNA damage (e.g., 8-oxodeoxyguanosine),

accumulation of somatic mutations, aberrant DNA methylation
Frontiers in Oncology 08
(hypermethylation of tumor suppressor genes, hypomethylation of

oncogenes), histone modifications (acetylation, methylation, other

post-translational modifications), microRNA dysregulation,

platelet-activating factor (PAF) accumulation, activation of

multiple pathways (e.g., STAT3 and ERK1/2 by nicotine), and

affecting EMT process (45, 46). Even though the effect of smoking

on disease recurrence has been widely studied, it is less investigated

for disease progression, and the results have been ambiguous (47).

Very few studies could find an association between smoking and

progression. In contrast, the others have failed to do so, probably

due to the limited power of studies because of a relatively small

number of patients and/or events and progression being not the

primary endpoint of those studies. A recent systematic review and

meta-analysis has found that the risk of progression was not

increased for smokers vs. never-smokers, while ever-smokers had

a compromised progression-free survival both for all patients and

subgroups of high-risk and BCG-treated patients (48). On the other

hand, several studies have shown that cigarette smoke induced the

initiation and progression of BC and mediated the EMT and ERK1/

2 pathway (49). A very recent study using single-cell and multi–

omics analyses identified 33 tobacco carcinogens-related genes and

constructed a prognostic score that showed high-risk patients had

significantly worse overall survival. This study also highlighted that

cancer-associated fibroblasts mediated the crosstalk between EMT

and immune evasion, which in turn played a role in disease

progression (50). A serum metabolic profiling study identified 40

metabolites, including an increased abundance of amino acids

(tyrosine, phenylalanine, proline, serine, valine, isoleucine,

glycine, and asparagine) and taurine, in smoker BC patients. An

integromic analysis of differential metabolomic gene signature and

transcriptomics data revealed an intersection of 17 genes (catechol-

O-methyltransferase, iodotyrosine deiodinase, and tubulin tyrosine

ligase being the most important ones) that showed a significant

correlation with the survival of smokers with BC (51).

Even though our current knowledge about how these oncogenic

pathways is dysregulated has increased enormously with recent

studies, there are still unknowns. More importantly, revealing these

pathways individually is not enough, as the crosstalks between these

pathways make the whole process much more complicated.

Understanding the missing parts and the relationships of these

pathways with each other can facilitate the development of novel

diagnostic and therapeutic strategies. Moreover, our knowledge is

fragmented as most studies focus on only one specific oncogenic

pathway. We need to look broader to understand the whole picture.

Current technology allows for such multiplatform analyses.

There is an unmet need to develop a more accurate classification

system in NMIBC. A better patient stratification for specific follow-

up regimens and selected treatments, based on prediction of disease

prognosis and response to treatment, is needed. This will require the

assessment of multiple biological parameters. Based on these

assumptions, by employing a multi-layered –omics (namely,

genomics, epigenetics, transcriptomics, proteomics, lipidomics,

metabolomics) and immunohistopathological approach, we

hypothesize to demonstrate molecular heterogeneity of

intermediate- and (very-)high-risk NMIBC and to stratify the

patients better.
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Overestimation of the risk of disease recurrence and

progression in high-risk patients by the EORTC and the CUETO

risk calculators and the fact that some researchers have failed to

validate these calculators externally can be explained by the

inherent disease heterogeneity. The molecular characterization of

MIBC has already shown several subgroups with clearly different

characteristics (21–29). The same has recently been proved to be

true also for NMIBC (30–32).

These facts support our hypothesis that a combinatorial multi–

omics approach will be more powerful for detecting and explaining

existing disease heterogeneity. Each –omics layer provides unique

and different but limited information; however, only combining

several –omics with high-performance data linkage using powerful

bioinformatics will unravel a better, more detailed, and multi-

dimensional characterization of disease mechanism and (novel)

treatment targets. Meanwhile, the transfer of the results of multi–

omics into immunohistopathology will allow us to use the

new data in routine daily practice, even without the need for

sophisticated infrastructure.

For this reason, we propose to perform a comprehensive

multilayer assessment of the genome, epigenome, transcriptome,

proteome, lipidome, metabolome, and immunohistopathological

characteristics that represent the broad spectrum of NMIBC

phenotypes. This has the potential to improve the prediction of

recurrence and progression and to develop an algorithm (based on

clinical, pathological, and molecular features) to adequately stratify

patients and guide therapeutic interventions in a personalized

manner. The lack of predictive value of the currently used risk

calculators results in under- or over-treatment of patients, which

ultimately leads to poor quality of life, observed high BC fatality

rates, and increased treatment costs (11, 52, 53). Moreover, a

comprehensive depiction of the mechanism(s) of non-

responsiveness to intravesical BCG treatment of NMIBC will

reveal unique molecular pathways that can further guide drug

development in the future by identifying novel therapeutic targets.
3 Evaluation of the hypothesis

Recent technological improvements in molecular biology have

tremendously increased our knowledge of the biological character

of cancer, including BC. The data from different –omics studies help

us unravel the molecular complexity of BC more efficiently.
3.1 Genomics

Increasing evidence suggests that genetic mutations (germline

or somatic) significantly influence the incidence of BC (54, 55). For

this reason, most research has focused on detecting genomic

alterations. The most recent studies performed on a large number

of patients with NMIBC showed that the most frequently altered

genes are TERT promoter (73%), FGFR3 (49%-34%), KDM6A

(38%-18%), PIK3CA (26%-25%), STAG2 (23%-10%), ARID1A

(21%-5%), TP53 (21%-9%), FAT1 (15%-11%), KMT2D (24%-

12%), and KMT2C (11%-10%) (the first and second percentages
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come from Ref. #56 and #32, respectively). RTK/PI3K, TP53/cell

cycle, chromatin modification, and DNA damage repair (DDR) are

frequently altered pathways (32, 56). The most frequent CNAs in

BC involve CDKN2A, TP53, FGFR3, HRAS, ERBB2, TSC1, RB1,

PTEN, CCND1, MDM2, and E2F3 (56–58).

TMB is defined as the total number of somatic missense

mutations per megabase (Mb) of the tumor’s genomic DNA. It

serves as a biomarker for predicting response to immunotherapy,

with higher TMB often correlating with better prognosis and

increased sensitivity to immune checkpoint inhibitors. In BC, a

threshold of 10 mutations/Mb is commonly used to distinguish

high from low TMB. Key genes involved in BC with high TMB

include TP53, KMT2D, KDM6A, ARID1A, KMT2C, PIK3CA, FAT4,

EP300, and RB1. Additionally, some of the MMR (MSH2, MSH6),

DDR (ATM, BRCA2 , POLQ , CDK12, ATR, BRIP1), and

polymerase-encoding genes (POLE, POLD1) are frequently altered

in TMB high tumors (59, 60). In the 100,000 Genome Project, the

UC of the bladder was found to have median mutations of 7.2/Mb,

and 11.9% of the cases had a high TMB, defined as >20 mutations/

Mb (61).

Resulting from genomic hypermutability, variations in the

length of repetitive sequences (microsatellites) in the entire

genomic structure are known as MSI. In tumor cells with MSI,

DNA mismatches in microsatellites cannot be repaired due to a

deficient MMR machinery, which results in the accumulation of

mutations in tumor suppressor genes and/or oncogenes (62).

Recent studies have shown that MSI can be used as a predictor of

response to immune checkpoint inhibition in various solid organ

tumors as well as BC (62). Microsatellite analysis (MSA) can be used

to identify both initial or recurrent tumors, with a better sensitivity

and specificity than urine cytology, where low-grade and low-stage

disease can be detected as accurately as high-grade and high-stage

disease (62). LOH is identified by comparing the DNA isolated from

tumor tissue to normal DNA, generally isolated from blood, with

the MSA. LOH at 9p, 17p, 9q, 8p, 13q, 11p, and 4p have been shown

to have prognostic value in NIBC (62).
3.2 Epigenetics

Although genetic mutations are mainly investigated, epigenetics

represents more prevalent DNA alterations that can lead to the

development and progression of cancer. Epigenetic alterations can

be defined as stable molecular changes of the phenotype of a cell

that are inheritable during somatic cell divisions (and sometimes

germ line transmissions) but do not involve changes in the DNA

sequence itself. The major epigenetic phenomena in cancer cells are

mediated by several molecular mechanisms comprising DNA

hypermethylation, histone modifications, nucleosome remodeling,

and RNA-associated silencing (Figure 3).

The most studied epigenetic mechanism of these is DNA

hypermethylation that occurs in CpG islands (a cytosine that

precedes guanine in a CpG dinucleotide) in promoter regions.

Besides the methylated genes common to various cancer types

(GSTP1, CDKN2A, RB1, MLH1, APC, PTEN, DAPK1, MSH6,

MGMT, RASSF1A, TIMP3, BRCA1, CDH1, VHL, CDKN2B,
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FHIT, TWIST1, ONECUT2, WIF1, HIC1, PRAC1, SFRP5, RUNX3,

SOCS1, etc.) and more specific to BC (ZNF154, HOXA9, POU4F2,

EOMES, ACOT11, PCDHGA12, CA3, PTGDR, TBX4, FGFR3,

PMF1, PCDH8, PCDH17, GDF15, KISS1, ISL1, ALDH1A3, TBX3,

etc.), new candidate genes will be found as further studies are

performed, which can be used for screening, diagnostic and

prognostic purposes (63–65).
3.3 Transcriptomics

The majority of the molecular research performed on BC

depends on transcriptomic analyses. With gene expression studies

by using messenger (m) RNA, several molecular subclassifications

of BC have been performed. First, binary subtyping, namely luminal

and basal, has been proposed (22–24). Later, with further research,

up to six subtypes have been identified by different research groups

(25–29). With an effort to mitigate the differences and

inconsistencies among these molecular subtypings, a consensus

subclassification has been performed, which showed six different

molecular subtypes: luminal papillary, luminal non-specified,

luminal unstable, stroma-rich, basal/squamous, and neuro-

endocrine-like (30). Transcriptomic profiling of only NMIBC

identified three molecular subtypes (UROMOL2016 Class 1, 2,

and 3), which has been recently updated with employing multi-

omics and revealed four different subclasses (UROMOL2021 Class

1, 2a, 2b, and 3) (31, 32).

Apart from molecular subtyping studies, numerous research

focused on the differential expression of specific genes and their

effect on BC formation, progression to muscle-invasive or

metastatic disease, prognosis, and response to chemotherapy or

immunotherapy. Recent research on micro (mi) RNAs revealed

their roles in stratifying patients, detecting disease progression, and

predicting clinical outcomes in BC, which have the potential to be

used as promising biomarkers (66, 67). An increasing number of

recent studies on long non-coding (lnc) RNAs showed their roles in

proliferation, differentiation, migration, invasion, apoptosis, and

metabolism (e.g., glycolysis) of tumor cells, resistance to cisplatin,

stemness, and EMT (68, 69). Additionally, circular (circ) RNAs,

another type of small non-coding RNAs, have emerging oncogenic

and anti-oncogenic functions, particularly regulating migration,

invasion, and drug resistance, in BC (70, 71).
3.4 Proteomics

Proteomics can be broadly classified into discovery and targeted

proteomics, which are highly complementary to each other.

Discovery proteomics is predominantly conducted using mass

spectrometry (MS)-based technologies, which allow comprehensive

analysis of proteins and post-translational modifications without the

requirement of generating target-specific antibodies. However, it still

has several technical challenges, and newer methods are being

developed to make it more efficient by increasing its dynamic range

of peptide sampling and resolution (72, 73). Liquid chromatography-

coupled tandemmass spectrometry (LC-MS/MS) is the gold standard
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for current proteomics research; however, it cannot identify and

quantify specific proteins in complex mixtures with a similar scale

and sensitivity to that of next-generation DNA sequencing. The

proteomic data can be used for several purposes, such as screening

(detection of new or recurrent disease), patient stratification,

prediction of treatment response, and identification of novel drugs/

drug targets (74).

A recent systematic review has identified the top ten enriched

pathways of proteomic biomarkers for BC, namely the immune

system, innate immune system, complement cascade, integrin beta

3 cell surface interactions, mesenchymal-to-epithelial transition,

EMT, FGFR signaling, c-Myb transcription factor network,

endogenous TLR signaling, and Trk receptor signaling mediated

by the MAPK pathway (75). Strogglios et al. reported the first

proteomic classification of 98 NMIBC samples based on an

unbiased comprehensive LC-MS/MS approach, in which three

NMIBC proteomic subtypes (NPS) were identified: NPS1 (mostly

high stage/grade/risk samples) was the smallest group (17.3%) and

overexpressed proteins reflective of an immune/inflammatory

phenotype, involved in cell proliferation, unfolded protein

response, and DNA damage response. While NPS2 (mixed stage/

grade/risk composition) presented with an infiltrated/mesenchymal

profile, NPS3 had differentiated/luminal phenotype, in line with its

pathological composition (mostly low stage/grade/risk samples)

(76). Based on The Cancer Genome Atlas (TCGA) dataset, the

immune-related prognostic signature (IRPS) was constructed with

seven immune-related genes (STAT3, TGFB1, CTSG, NFKB1,

SNRPD2, PDCD1, and TAP1). It was related to poor five-year

overall and disease-free survival (77). Dressler et al. have analyzed

242 tumor samples from different stages and identified five

proteomic subtypes: PAULA (Proteomic Analysis of the

Urothelial cancer LAndscape) 1 was a low-risk cluster with the

highest number of samples and the longest survival, where PAULA

IIa/IIb/IIc were the intermediate-risk clusters, and PAULA III was

the high-risk cluster with the shortest survival (78). While some

studies present proteins specifically for disease stage (e.g., coded by

PRDX1, UMP/CMPK, GSTM1, PGAM1, PRDX6, PSME1, HSPB-1,

ANXA1, and CAPG for NMIBC; BLVRB, PRDX2, and HPGD for

MIBC), recent studies reveal novel potential biomarkers for BC in

general such as RET, PVRL4, AREG, FGFBP1,WFDC2, ESM-1, SPR,

AK1, CD2AP, ADGFR1, GMPS, and C8A (79–81).
3.5 Lipidomics & metabolomics

Even though the exact mechanism is not still clearly unraveled,

it has been known for a long time that most cancer cells produce

their energy predominantly through anaerobic glycolysis followed

by lactic acid fermentation, which is known as the Warburg effect,

instead of the usual citric acid cycle and oxidative phosphorylation.

Recent research has proven that both cancer development and

metastatic disease progression are characterized by a unique

reprogramming of cellular energy, glucose, and lipid metabolisms,

which is required for the maintenance of rapid proliferation of

cancer cells (82–85). Moreover, the deregulation of cellular

metabolism is now considered one of the hallmarks of cancer (86).
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Recent studies have shown that a variety of characteristic

metabolic changes, including increased glucose utilization for

glycolysis and de novo fat synthesis, elevated sorbitol pathway

intermediates, oxidative metabolism imbalance, glutamine

consumption, altered metabolism of membrane lipids, and

differential derivation of nucleic acid components pyrimidine and

purine, are observed in NMIBC and MIBC (87–89). Piyarathna

et al. have reported a progressive decrease in the levels of

phosphat idy lser ine , phosphat idy le thanolamines , and

phosphocholines, whereas an increase in the levels of

diacylglycerols with increasing tumor stage in UC. The levels of

diacylglycerols and lyso-phosphatidylethanolamines were

significantly elevated in tumors with lymphovascular invasion and

lymph node metastasis, respectively (90). Comparative lipidomic

profiling of two isogenic human T24 BC cell lines showed

reprogrammed lipid metabolism was associated with cisplatin

resistance (91). These findings encourage further research to

identify various potential biomarkers for non-invasive diagnosis

and also for prediction of recurrence and progression in BC.

While these ‘bulk’ profiling methods have offered invaluable

insights into the key biological events and the molecular

characteristics of mechanistic pathways involved in BC, they lack

the ability to show intratumoral heterogeneity, as tissue specimens

are processed as a whole and the data originating from different

components of the tumor (e.g., tumor cells, immune cells,

endothelium, connective and/or muscle tissue cells) cannot be

recognized separately. At this point, state-of-the-art technologies

such as single-cell/-nucleus sequencing and spatial –omics help fill

the existing gaps and increase our knowledge. Very recent research

using single-cell and/or spatial transcriptomics, proteomics, and

metabolomics has substantially augmented our pre-existing corpus

of knowledge by improving our perception of the molecular basis of

the intratumoral heterogeneity and tumor cell-TME interaction in

BC (92–95).

Even though it has been less than a decade since these two

technologies have been commercially available, the number of

techniques has increased tremendously, and every single new

method tries to compensate for the disadvantages or hurdles of

the existing approaches (96). However, there are still some aspects

that need to be improved, such as detection efficiency,

transcriptome-wide profiling, spatial resolution, sequenced tissue

section area, cost, and tissue compatibility/usability. Most of these

methods are applicable only to fresh-frozen (FF) tissues, while very

few techniques have been implemented in formalin-fixed paraffin-

embedded (FFPE) tissues, such as deterministic barcoding in tissue

sequencing (DBiT-seq), CellScape (Canopy, Biosciences, St. Louis,

MO, USA), and Visium Spatial and Xenium In Situ (10x Genomics,

Pleasanton, CA, USA) (97). While FF tissues are disadvantageous as

they are inappropriate for prolonged storage, prone to deformation

over time, and gene diffusion during tissue permeabilization, the

RNA in FFPE samples is of inadequate quality.

On the other hand, whether it is spatial or not, sequencing only

one of the abovementioned –omics provides information from a

single aspect of the tumor. It would be more promising if altered

(mutated, under-/overexpressed) genes, control mechanism(s) and

mediator(s) of their (in)activation, expressed and (possibly)
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altered metabolites of the cellular functions, and histopathological

anatomy of the cancer tissue could be viewed simultaneously,

preferably from the same slide. This holistic approach would

extensively deepen our knowledge of cancer pathophysiology. By

providing invaluable information from different aspects of the

tumor, the (spatial) multi–omics technology provides a

comprehensive understanding of the functions and regulations of

driver genes, expressed proteins, and metabolites (mid-/end-

products of different pathways) for cancer initiation and

progression. When it is implemented for NMIBC, this multi-

layered large-scale data will help to improve molecular and

clinical subtyping, delineate tumor cell behavior, predict tumor

response to treatments, find novel druggable targets, detect tumor

development, recurrence, or progression with more efficient liquid

biopsies, and to support clinical decision-making.

For testing the combinatorial approach of multi–omics in

NMIBC, biosamples (urine, blood, and BC tissue) should be

collected prospectively from all patients who are planning to

undergo TURBT, as some of the –omics studies mentioned here

can only be performed on FF biosamples. According to predefined

standard operating procedures for each –omics study, biosamples

should be collected and stored immediately at -80°C till analyses are

performed. Multi–omics data have value only when combined with

long-term follow-up data, which should be collected simultaneously

from the same patient cohort. Furthermore, longitudinal molecular

profiling of cancer tissue, urine, or blood during patient follow-up

will reveal the disease’s evolution when there is a recurrence or

progression. At this point, accurately identifying novel biomarkers

showing the presence of recurrence and/or progression can

potentially decrease the number of cystoscopies and/or imaging

performed during the follow-up.

It is obvious that an enormous set of data points will be

generated with the combination of the abovementioned multi–

omics approach. Here, researchers face another big challenge:

Previous approaches, such as the Pearson/Spearman correlation

and the Kaplan-Meier method, could only perform pairwise data

integration and were insufficient to process multi-layered big data.

Recent advancements in mathematical methods, such as matrix

deconvolution, network approaches, and machine learning, have

significantly enhanced mult i–omics data integrat ion.

Bioinformaticians have developed new, specialized bioinformatic

pipelines necessary for collecting, processing, and manipulating –

omics data to integrate their associations with clinico-pathological

features. Key steps for data collection, preparation, representation,

and clinical use in a multi–omics approach can be summarized as

follows (98):
I. Data collection: Raw data, consistent in experimental

conditions and data format, are collected from different

–omics plat forms and then converted into

quantitative data.

II. Data cleaning and quality assessment: Missing values

and outliers are identified, and data quality control

metrics are used to ensure data reliability before

downstream analyses.
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III. Normalization: Data normalization methods are used

for different –omics layers to mitigate biases and to

ensure comparability and compatibility.

IV. Feature selection: Genomic and epigenetic alterations,

differential gene expression, and other proteomic/

metabolomic/lipidomic abnormalities are identified,

and relevant features are selected based on biological

and/or statistical significance. Filter methods (e.g.,

correlation analysis), wrapper methods (e.g., recursive

feature elimination), and embedded methods (e.g.,

LASSO regression) are commonly used feature

selection approaches. Dimensionality reduction

methods such as principal component analysis (PCA),

t-distributed stochastic neighbor embedding (t-SNE),

uniform manifold approximation and projection

(UMAP) are used to mitigate computational

complexity and to facilitate appropriateness of data

input for different analysis tools.

V. Data integration: Frequently used computational

methods and their available tools (in brackets)

include PCA [Scikit-learn], canonical component

analysis (CCA) [MixOmics], independent component

analysis (ICA) [FastICA], non-negative matrix

factorization (NMF) [NIMFA], Tensor factorization

[TensorFlow], multiple kernel learning (MKL)

[MKLpy], regularized regression models [GLMNET],

ensemble methods [DIABLO], network-based

integration [OmicsNet], and deep learning models

[Keras, TensorFlow].

VI. Annotation: The integrated data are annotated with

relevant biological and functional information such as

gene ontology terms, gene regulatory network,

metabolic pathways, and signaling pathways. There

are various publicly available pathway databases for

different purposes, such as KEGG (Kyoto Encyclopedia

of Genes and Genomes), WikiPathways, Reactome,

PANTHER (Protein ANalysis THrough Evolutionary

Relationships), TRANSFAC (TRANScription FACtor

database), Pathway commons, etc.

VII. Data fusion: The integrated data are fused into a

cohesive representation so that the information from

different –omics layers is combined.

VIII. Clustering & subtyping: Unsupervised or supervised

clustering techniques are employed to identify clusters

or subtypes within the integrated data, which in turn

provide insights into tumor heterogeneity.

IX. Machine learning modeling: Unsupervised (k-means

clustering, hierarchical clustering, Gaussian mixture

models) or supervised (support vector machines,

random forests, neural networks, logistic regression,

decision trees) learning techniques are used to group

samples based on similar –omics profiles and predict

outcomes or uncover patterns within the multi–

omics data.

X. Visualization: Several data visualization tools, such as

scatterplots, heatmaps, network plots, circos plots,
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hexbins, are used to understand the variability and

subpopulations within datasets. Interactive visualization

tools enable researchers to explore and analyze multi–

omics data interactively.

XI. Interpretation: Interpreting the findings in the context of

biological knowledge, pathways, and functional relevance

helps not only understand the biological significance of

observed patterns or specific subpopulations but also find

novel information and decipher biological heterogeneity.

XII. Validation: The validity, robustness, reproducibility,

and generalizability of the findings from the

integrated data should be ensured using rigorous

validation methods, cross-validation techniques, and

independent datasets.
Various multi–omics tools such as iCluster, PARADIGM

(PAthway Recognition Algorithm using Data Integration on

Genomic Models), MetScape 2, BCC (Bayesian Consensus

Clustering), SNF (Similarity Network Fusion), LRAcluster (Low

Rank Approximation based multi–omics data clustering), PaintOmics

3, iOmicsPASS, SALMON (Survival Analysis Learning with Multi-

Omics Neural Networks), NEMO (NEighborhood based Multi-Omics

clustering), MONET (Multi Omic clustering by Non-Exhaustive

Types), PIntMF (Penalized Integrative Matrix Factorization),

MergeOmics 2.0, OmicsAnalyst, Arena3D, NeDRex, OmicsNet 2.0,

DriverDBv4, are currently being used to integrate multi–omics data

(99–102). However, these tools rely on different mathematical theories

and computational approaches from each other and can support

different data types. Therefore, to reach the defined goal with the

multi–omics data, researchers should select appropriate multi–omics

tool(s) according to their data type. Moreover, they are not very user-

friendly and require advanced skills and experience in R, Python, or

MATLAB. As the data are different from bulk multi–omics data,

specific computational methods have been developed for the

integration of data originating from single-cell multi–omics platforms

such as MOFA+ (Multi-Omics Factor Analysis), scAI (single-cell

Aggregation and Inference), scMVAE (single-cell Multimodal

Variational Autoencoder), DCCA (Deep Cross-omics Cycle

Attention), citeFUSE, and Seurat v4 (103, 104). With the recent

developments in artificial intelligence (AI), various AI-based

computational tools for multi–omics data integration have been

developed for different purposes such as molecular subtyping,

prediction of drug response, survival prediction, patient clustering

(e.g., OmiEmbed, MetaCancer, DeepDRK, PathME, DeFusion,

AKLIMATE, PRODeepSyn, etc.) (105). However, there is still ample

room for further studies to develop newer computational methods for

better, more proper, and robust multi–omics data integration, enabling

systematic assessment of multi-layered findings.

When the multi–omics pipelines are used for NMIBC, the

integrated multi-layered data would allow to identify significant

associations of genome, epigenome, transcriptome, proteome,

lipidome, metabolome, and immunohistopathological profiles to

improve stratification of intermediate- and (very-)high-risk

patients, and to develop classifiers for predicting disease outcomes

and response to treatment (e.g., discriminating high-risk tumor

profiles that have a higher potential to progress to MIBC and not to
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respond to intravesical BCG treatment) (Figure 4). The clinical

performance of these classifiers should be tested (specificity,

selectivity) and compared to the currently used criteria (EAU risk

groups and risk stratification according to Gontero et al.) (12, 106).

The analytical assay should be validated regarding repeatability,

intermediate precision, and reproducibility.

We know that testing this hypothesis in the abovementioned setting

will have some limitations. As the number of parameters that will come

out from each –omics is not precise in the beginning, it may not be easy

to determine the number of patients required for the training and

validation cohorts. This would affect the power analysis and create a risk

of ‘over-fitting’; however, this risk can be eliminated using the

Bonferroni correction and more sophisticated computational methods.
4 Consequences of the hypothesis
and discussion

Intensive work is currently being done in the field of BC

markers with the goal of characterizing BC earlier, both at the

initial diagnosis and at recurrence and/or progression. Although

various –omics biomarkers have been identified for disease

recurrence and progression up to now, the study of BC

biomarkers is still in its developmental state.

The current major challenge and unmet need are twofold. First,

there is a need for real-life contemporary data on NMIBC patients,
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which can be provided by setting up a multicentric organization that

merges the results of already existing datasets. The second unmet need

is the development of a more accurate scoring system, which takes into

account the treatment they received after TURBT, to enable better

stratification of the intermediate- and (very-)high-risk NMIBC patients

for treatment selection and further follow-up scheduling, also based on

a better prediction of response to treatment.

With this hypothesis, the aim is to define the tumor at the

molecular level using high-resolution multi-layered –omics profiling

and to use the molecular and clinical data to guide therapeutic

intervention at a personalized level for NMIBC. A comprehensive

depiction of the mechanism(s) of non-responsiveness to intravesical

BCG treatment of NMIBC will reveal unique molecular pathways

that can further guide drug development in the future by providing

novel therapeutic targets (Figure 5).

A rapidly increasing number of research has been recently

published in which disease heterogeneity, patient stratification,

predictive and/or prognostic biomarkers, and cancer drug response

were targeted to be improved using the bi-/tri-/multi–omics approach.

Some of these studies with important molecular or clinical implications

are summarized here (Figure 6). Among these critical researches, the

most important can be emphasized as the tri–omics (genomics,

transcriptomics, proteomics) approach improving the existing

UROMOL2016 subclassification of NMIBC by identifying four

different prognostic molecular subtypes (class 1, 2a, 2b, and 3 in

UROMOL2021) (32). Anurag et al. showed that CIS samples had a
FIGURE 4

Possible setup of the experimental method for the characterization of intermediate- and high-risk NMIBC by using multi–omics.
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46-gene expression signature in which the druggable targets MTOR,

TYK2, AXIN1, CTP1B, GAK, and PIEZO1 were selectively upregulated

while BRD2 and NDUFB2 were selectively downregulated (107). With

stage-stratified multi–omics profiling of NMIBC (Ta vs. T1),

unsupervised clustering of copy number data revealed four clusters

(CN1-CN4) within all tumor samples. Furthermore, Hurst et al. showed

that there was sufficient molecular heterogeneity in both stages and,

therefore, proposed to divide the Ta and T1 stages into three and four

expression groups (TaE1-TaE3 vs. T1E1-T1E4), respectively, which

provided prognostic information (108). Strandgaard et al. observed that

post-BCG CD8 T-cell exhaustion was associated with post-BCG high-

grade (HG) recurrence. They found that pre-BCG tumors of patients

with HG recurrence had high expression of genes related to cell division

and immune function, and the post-BCG urine of these patients had

higher concentrations of immunoinhibitory proteins (CD70, PD1,

CD5). A high pre-BCG exhaustion score, calculated based on the

mean expression of five immunoinhibitory processes-related genes

(PDCD1, CTLA4, LAG3, HAVCR2, and KLGR1), was associated with

worse post-BCG recurrence-free survival (109). Using multiplatform

mutational, proteomic, and metabolomic spatial mapping on a whole-

organ scale, Czerniak et al. identified the molecular evolution of BC

frommucosal field effects, which might span nearly 30 years and can be

divided into two phases: The dormant phase was characterized by the
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gradual development of a mutations. The progressive phase lasted

approximately five years and was signified by the bmutations, while the

gmutations developed during the last 2-3 years of disease progression to

MIBC (110). By employing mutation, CNA, methylation, mRNA, and

lncRNA profiling, Lu et al. refined the consensus classification of MIBC

(30) and identified four robust integrative consensus subtypes (iCS1-

iCS4) which had distinctivemolecular patterns andwere associated with

stratified prognosis, different tumor immune microenvironment, and

distinct sensitivity to immune checkpoint inhibitor therapy (111).

Another multi–omics approach (mutation, methylation, mRNA,

miRNA, and lncRNA) integrated with machine learning revealed

three cancer subtypes (CS1-CS3) in MIBC that were related to

prognosis and identified 12 hub genes that constituted a consensus

machine learning-driven signature (CMLS). The low-CMLS group

exhibited a more favorable prognosis and responded better to

immunotherapy, while the high-CMLS group had a poor prognosis

and a lower likelihood of benefitting from immunotherapy (112). In a

recent multi–omics study, linoleic acid metabolism was found to be

associated with variations in trained immunity induced by distinct BCG

strains (113). With proteogenomic characterization, Groeneveld et al.

demonstrated five unsupervised proteomic groups (uPG_A-uPG_E) in

NMIBC and MIBC. They also identified the enrichment of proteins

involved in tumor necrosis factor-related apoptosis-inducing ligand
FIGURE 5

The interaction of the elements of the hypothesized risk stratification.
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(TRAIL)-mediated apoptosis in FGFR3-mutated tumors, which could

not be captured through transcriptomics (114).

Further multi–omics studies depicted distinct predictive or

prognostic biomarkers for prognosis, programmed death ligand 1

(PD-L1) expression, response to chemotherapy and immunotherapy,

immune escape of BC, and immune infiltrates (115–119). A bi–omics

study revealed that a TME score (low vs. high) can predict the

prognosis and the response to immunotherapy (120). Another study
Frontiers in Oncology 15
defined therapeutic vulnerability gene combinations and prognostic

risk of BC by integrating multi–omics and clinical data (121). In two

other studies, jorunnamycin A and talaroconvolutin-A were found to

suppress MIBC via targeting fatty acid synthase (FASN) and

topoisomerase 1 (TOP1), and cell cycle and ferroptosis, respectively,

which could be a potential candidate for treating BC (122, 123). These

existing results can be interpreted as proof that multi–omics will

provide us a better understanding of BC.
FIGURE 6

Simplified schema for multi–omics integration strategies in BC with examples of recently published papers for the use of findings (Created with
BioRender.com). BC, Bladder cancer; BCG, Bacillus Calmette-Guérin; circRNA, Circular RNA; CIS, Carcinoma in situ; CNA, copy number alteration;
HG, High grade; LOH, Loss of heterozygosity; lncRNA, Long non-coding RNA; MIBC, Muscle-invasive bladder cancer; miRNA, Micro RNA; ML,
Machine learning; MSI, Microsatellite instability; NMIBC, Non-muscle-invasive bladder cancer; PD-L1, Programmed death ligand 1; PT,
Posttranslational; QC, Quality control; SNV, Single nucleotide variation; TMB, Tumor mutational burden; TME, Tumor microenvironment.
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The following impacts can be expected in the management of

NMIBC with the success of a multi–omics approach:
Fron
1. Improvement of the disease outcome of NMIBC by tailoring

available treatment options according to the tumor’s

molecular profile and predicted treatment response. As such,

the proposed approach has a significant direct impact on

patient-relevant issues: survival and quality of life.
tiers in
A. Clinical risk models currently used for intermediate-

and high-risk NMIBC patients are based on clinical

parameters and lack accuracy. Moreover, they only

provide an estimation of the risk of a tumor to recur

or progress and offer physicians predictions that are

not accurate enough for precision medicine.

Therefore, urologists/multidisciplinary teams treat

their patients based on ‘subjective’ decisions

(interpretation of a certain percentage risk).

Incorporating biomarkers into the risk-scoring

systems may provide accurate and individual

predictions. Thus, through better risk stratification,

physicians will avoid over- and under-treatment of

NMIBC patients and change the diagnostic and

therapeutic decision tree. By improved prediction

of the risk of progressing to muscle-invasive disease

at the time of initial TURBT, patients who are not

likely to respond to conservative treatments (such as

intravesical BCG) may be directed to early radical

cystectomy in a timely manner and may be offered

an increased probability of cure. Better risk

prediction may also improve treatment guidelines

and lead to more ‘objective’ treatment decisions.

B. Accurate prediction of the risk of progressing to MIBC

would also allow the identification of a subgroup of

patients in whom conservative treatment modalities

may be considered safe. These patients represent the

majority of the intermediate- and (very-)high-risk

NMIBC group, and accurate risk prediction would

allow them to avoid aggressive and invasive

treatments (radical cystectomy, chemotherapy,

radiotherapy). As a result, their quality of life would

be retained. Moreover, for patients in whom the risk of

developing future MIBC would be estimated to be

elevated by the use of biomarkers, cancer-specific and

overall survival may increase as they could be offered

early curative treatment.
2. The interactions between putative causative factors,

individual features of recurrence and progression, and the

spectrum of molecular alterations underlying disease

heterogeneity in NMIBC (e.g., response to BCG

treatment) will be revealed. In this way, the data would

enable the identification of novel therapeutic targets in

NMIBC and guiding caregivers in directing the patients

who are not responding to gold-standard treatments.

3. If patients suitable for conservative treatment could be

determined more accurately and objectively by using

biomarkers, the cost of treatment may decrease with a
Oncology 16
patient-tailored treatment and follow-up scheme. Besides,

better risk stratification of NMIBC patients would

significantly increase the quality of BC treatment.
The risk stratification developed based on this hypothesis will

require external validation. This will prove its scientific accuracy

and potential for use in clinical routine practice. In addition to this,

it will need valorization in a real-life clinical setting through

evaluation of its added value to the quality of treatment and

modification of treatment and follow-up, which will impact the

cost of disease management and the quality of life of the

patients (Figure 5).

In conclusion, it is evident that there is ample room for further

research to develop a better and more accurate stratification of

intermediate- and (very-)high-risk NMIBC. Multi-layered –omics

studies can provide the ‘missing’ information necessary for

increasing the quality of treatment and the quality of life of these

patients, as well as for determining novel therapeutic targets.
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initially treated with Bacillus Calmette-Guérin: results of a retrospective multicenter
study of 2451 patients. Eur Urol. (2015) 67:74–82. doi: 10.1016/j.eururo.2014.06.040

107. Anurag M, Strandgaard T, Kim SH, Dou Y, Comperat E, Al-Ahmadie H, et al.
Multi-omics profiling of urothelial carcinoma in situ reveals CIS-specific gene signature
and immune characteristics. iScience. (2024) 27:109179. doi: 10.1016/j.isci.2024.109179

108. Hurst CD, Cheng G, Platt FM, Castro MAA, Marzouka NS, Eriksson P, et al.
Stage-stratified molecular profiling of non-muscle-invasive bladder cancer enhances
biological, clinical, and therapeutic insight. Cell Rep Med. (2021) 2:100472.
doi: 10.1016/j.xcrm.2021.100472

109. Strandgaard T, Lindskrog SV, Nordentoft I, Christensen E, Birkenkamp-Demtroder
K, Andreasen TG, et al. Elevated T-cell exhaustion and urinary tumor DNA levels are
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4E-BP1 Eukaryotic translation initiation factor 4E (eIF4E)-binding
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protein 1
ACOT11 Acyl-CoA thioesterase 11
ADGRF1 Adhesion G protein-coupled receptor F1
AK1 Adenylate kinase 1
AKT RAC(Rho family)-alpha serine/threonine-protein kinase (also

known as Protein kinase B)
ALDH1A3 Aldehyde dehydrogenase 1 family member A3
ANXA1 Annexin A1
APC Adenomatous polyposis coli
AREG Amphiregulin
ARID1A AT-rich interactive domain-containing protein 1A
ATM Ataxia-telangiectasia mutated
ATR Ataxia-telangiectasia and Rad3-related protein
BAD BCL2-associated agonist of cell death
BC Bladder cancer
BCC Bayesian consensus clustering
BCG Bacillus Calmette-Guérin
BCL2 B-cell lymphoma 2
BCL2L1 BCL-2-like protein 1
BLVRB Biliverdin reductase B
BRCA1 Breast cancer type 1 susceptibility protein
BRCA2 Breast cancer type 2 susceptibility protein
BRIP1 BRCA1-interacting protein
C8A Complement C8 alpha chain
CA3 Carbonic anhydrase 3
CAPG Macrophage-capping protein
CCA Canonical component analysis
CCND1 Cyclin D
CD2AP CD2-associated protein
CDH1 Cadherin-1 (E-cadherin= epithelial cadherin)
CDK4/6 Cyclin-dependent kinase 4/6
CDK12 Cyclin-dependent kinase 12
CDKN1A Cyclin-dependent kinase inhibitor 1A
CDKN2A Cyclin-dependent kinase inhibitor 2A
CDKN2B Cyclin-dependent kinase 4 inhibitor B
circRNA Circular RNA
CIS Carcinoma in situ; CMLS, Consensus machine learning-

driven signature
CKIa Cyclin-dependent kinase inhibitor a
CNA Copy number alteration
Co-A Co-activator
CTLA4 Cytotoxic T-lymphocyte associated protein 4
CTSG Cathepsin G
CUETO Club Urologico Español de Tratamiento Oncologico
DAPK Death-associated protein kinase
DAPK1 Death-associated protein kinase 1
DCCA Deep cross-omics cycle attention
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Deptor DEP domain-containing mTOR-interacting protein
DDR DNA damage repair
DBiT-seq Deterministic barcoding in tissue sequencing
DLL Delta-like ligand
E2F3 Transcription factor E2F3
EAU European Association of Urology
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
eIF4B/E Eukaryotic translation initiation factor 4A/B/E
ELK1 ETS-like 1
EMT Epithelial-to-mesenchymal transition
EOMES Eomesodermin
EORTC European Organization for Research and Treatment

of Cancer
EP300 E1A-associated protein p300
ERBB2 Erythroblastosis oncogene B2 (human epidermal growth

factor 2=HER2)
ERK1/2 Extracellular signal-regulated kinase ½
ESM1 Endothelial cell-specific molecule 1
FASN Fatty acid synthase
FAT4 FAT tumor suppressor homolog 4
FF Fresh frozen
FFPE Formalin-fixed paraffin-embedded
FGF Fibroblast growth factor
FGFBP1 Fibroblast growth factor-binding protein 1
FGFR Fibroblast growth factor receptor
FGFR3 Fibroblast growth factor receptor 3
FHIT Fragile histidine triad protein (Bis[5’-adenosyl]-triphosphatase)
FOS Finkel–Biskis–Jinkins murine osteogenic sarcoma virus
FRMD FERM domain-containing protein
GDF15 Growth differentiation factor 15
GLI1/2/3 Glioma-associated oncogene 1/2/3
GLIFL Full-length glioma-associated oncogene
GMPS Guanine monophosphate synthase
GSK3 Glycogen synthase kinase 3
GSTM1 Glutathione S-transferase mu 1
GSTP1 Glutathione S-transferase pi 1
GUCG Genito-Urinary Cancer Group
HAVCR2 Hepatitis A virus cellular receptor 2
HIC1 Hypermethylated in cancer 1 (ZBTB transcriptional

repressor 1)
HG High grade
HOXA9 Homeobox A9
HPGD Hydroxyprostaglandin dehydrogenase 15
HSPB1 Heat shock protein family B (small) member 1
IARC International Agency for Research on Cancer
ICA Independent component analysis
iCS Integrative consensus subtypes
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IKK Inhibitor of nuclear factor k
Frontiers in Oncology
Indel Insertion-deletion
ISL1 ISL LIM homeobox 1 (Islet1)
IRPS Immune-related prognostic signature
JAG Jagged
KDM6A Lysine demethylase 6A
KEGG Kyoto Encyclopedia of Genes and Genomes
KIBRA Kidney and brain expressed protein
KIF7 Kinesin family member 7
KLRG1 Killer cell lectin-like receptor subfamily G member 1
KMT2C Lysine methyltransferase 2C
KMT2D Lysine methyltransferase 2D
KISS1 KiSS-1 metastasis suppressor (kisspeptin)
LAG3 Lymphocyte-activating 3
LATS1/2 Large tumor suppressor kinase 1
LC Liquid chromatography
LEF Lymphoid enhancer-binding factor
lncRNA Long non-coding RNA
LOH Loss of heterozygosity
LRAcluster Low rank approximation based multi-omics data clustering
LRP5/6 Low-density lipoprotein receptor-related protein 5/6
MAML Mastermind-like protein
MAPK Mitogen-activated protein kinase
Mb Megabase
MDM2 Mouse double minute 2 homolog
MEK1/2 Mitogen-activated protein kinase 1/2
MER MER proto-oncogene
MGMT O-6-methylguanine-DNA methyltransferase
MIBC Muscle-invasive bladder cancer
miRNA Micro RNA
MKL Multiple kernel learning
MLH1 MutL homolog 1
mLST8 mammalian lethal with SEC13 protein 8
MOB1 Mps one binder 1
MOFA+ Multi-omics factor analysis
MONET Multi-omic clustering by non-exhaustive types
mRNA Messenger RNA
MS Mass spectrometry
MSH2 MutS homolog 2
MSH6 MutS homolog 6
MSI Microsatellite instability
mSIN1 mammalian stress-activated protein kinase interacting

protein 1
MSK1 Mitogen- and stress-activated kinase 1
MST1/2 Macrophage-stimulating 1/2
mTOR Mammalian target of rapamycin
mTORC1/2 Mammalian target of rapamycin complex 1/2
MYB Myeloblastosis
MYC Myelocytomatosis
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NEMO Neighborhood-based multi-omics clustering
NFkB Nuclear factor kappa-light-chain-enhancer of activated B cells
NFKB1 Nuclear factor kappa B subunit 1
NICD NOTCH intracellular domain
NMIBC Non-muscle-invasive bladder cancer
NMF Non-negative matrix factorization
NOTCH Neurogenic locus notch homolog protein
NPS NMIBC proteomic subtype
ONECUT2 One cut homeobox 2
PANTHER Protein analysis through evolutionary relationships
PARADIGM Pathway recognition algorithm using data integration on

genomic models
PCA Principal component analysis
PCDH8 Protocadherin 8
PCDH17 Protocadherin 17
PCDHGA12 Protocadherin gamma subfamily A, 12
PDCD1 Programmed cell death 1
PDK1 Protein 3-phosphoinositide-dependent protein kinase-1
PD-L1 Programmed death ligand 1
PGAM1 Phosphoglycerate mutase 1
PI3K Phosphoinositide 3-kinase
PIK3CA Phosphatidylinositol-4,5-biphosphanate 3-kinase, catalytic

subunit alpha
PIP3 Phosphatidylinositol (3,4,5)-triphosphate
PLCg Phospholipase C gamma
PIntMF Penalized integrative matrix factorization
PMF1 Polyamide modulated factor 1
POLD1 DNA polymerase delta 1, catalytic subunit
POLE DNA polymerase epsilon, catalytic subunit
POLQ DNA polymerase theta
POU4F2 POU class 4 homeobox 2
PRAC1 PRAC1 small nuclear protein
PRAS40 Proline-rich AKT1 substrate
PRDX1 Peroxiredoxin 1
PRDX2 Peroxiredoxin 2
PRDX6 Peroxiredoxin 6
Protor Protein observed with Rictor
PSME1 Proteasome activator subunit 1
PTCH1 Patched 1
PTEN Phosphatase and tensin homolog
PTGDR Prostaglandin D2 receptor
PVRL4 Poliovirus-receptor-like 4 (Nectin 4=Nectin cell adhesion

molecule 4)
RAF Rapidly accelerated fibrosarcoma
Raptor Regulatory-associated protein of mTOR
RAS Rat sarcoma
RASSF1 Ras-associated domain family member 1
RASSF1A Ras association domain-containing protein 1A
RB Retinoblastoma protein
RB1 RB transcriptional corepressor 1
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Rictor Rapamycin-insensitive companion of mTOR
Frontiers in Oncology
RPB-J Recombination signal binding protein for immunoglobulin

kappa J region
RUNX3 RUNX family transcription factor 3
S6K1 Ribosomal protein S6 kinase beta-1
SALMON Survival analysis learning with multi-omics neural networks
SAV1 Protein Salvador homolog 1
scAI Single-cell aggregation and inference scMVAE, Single-cell

multimodal variational autoencoder
SFRP5 Secreted frizzled-related protein 5
SHH Sonic hedgehog
SMAD1-4 Mothers against decapentaplegic homolog 1-4
SMO Smoothened
SNF Similarity network fusion
SNRPD2 Small nuclear ribonucleoprotein D2 polypeptide
SNV Single nucleotide variation
SOCS1 Suppressor of cytokine signaling 1
SPR Sepiapterin reductase
SUFU Suppressor of fused kinase
SUMO Small ubiquitin-like modifier
SWI/SNF SWItch/Sucrose Non-Fermentable
STAT3 Signal transducer and activator of transcription 3
TAP1 Transporter 1, ATP binding cassette subfamily B member
TAZ Transcriptional coactivator with PDZ-binding motif
TBX3 T-box transcription factor 3
TBX4 T-box transcription factor 4
TCF T-cell factor
TCGA The Cancer Genome Atlas
TEAD1-4 Telomere ends-associated domain family member 1-4
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TGF-a Transforming growth factor-alpha
TGFB1 Transforming growth factor beta 1
TIMP3 TIMP metallopeptidase inhibitor 3
TLR Toll-like receptor
TMB Tumor mutational burden
TME Tumor microenvironment
TOP1 Topoisomerase 1
TP53 Tumor protein 53
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand
TRANSFAC Transcription Factor database
TRK Tyrosine receptor kinase
TSC1/2 Tuberous sclerosis 1/2
t-SNE T-distributed stochastic neighbor embedding
TURBT Transurethral resection of the bladder tumor
TWIST1 Twist-related protein 1
UC Urothelial carcinoma
UMAP Uniform manifold approximation and projection
UMP/CMPK Cytidine/uridine monophosphate kinase 1
uPG Unsupervised proteomic group
VEGF Vascular endothelial factor
VEGFR Vascular endothelial factor receptor
VHL Von Hippel-Lindau tumor suppressor
WFDC2 WAP four-disulfide core domain protein 2 (human

epididymis protein 4)
WHO World Health Organization
WIF1 Wnt inhibitory factor 1
Wnt Wingless-Int 1
YAP Yes-associated protein
ZNF154 Zinc finger protein 154
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