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The diagnosis of thyroid cancer (TC) has increased dramatically in recent years.

Papillary TC is the most frequent type and has shown a good prognosis.

Conventional treatments for TC are surgery, hormonal therapy, radioactive

iodine, chemotherapy, and targeted therapy. However, resistance to

treatments is well documented in almost 20% of all cases. Genomic

sequencing has provided valuable information to help identify variants that

hinder the success of chemotherapy as well as to determine which of those

represent potentially druggable targets. There is a plethora of targeted therapies

for cancer, most of them directed toward point mutations; however,

chromosomal rearrangements that generate fusion genes are becoming

relevant in cancer but have been less explored in TC. Therefore, it is relevant

to identify new potential inhibitors for genes that are recurrent in the formation of

gene fusions. In this review, we focus on describing potentially druggable variants

and propose both point variants and fusion genes as targets for drug

repositioning in TC.
KEYWORDS

thyroid cancer, variants, repurposed drugs, gene fusions, mutations
Introduction

Thyroid cancer (TC) is the most common malignant tumor of the endocrine system,

with 586,202 new cases worldwide in 2020 (1). The overall incidence of TC has increased

dramatically in the last 30 years. This increase may be due to overdiagnosis, thanks to

improvements made in diagnostic procedures (2). Morphologically and clinically, TC is

classified into two main groups: differentiated cancer—comprising papillary and follicular

thyroid cancer—and undifferentiated TC, designated anaplastic carcinoma of the thyroid

(3). The most prevalent is papillary thyroid cancer (PTC), which accounts for up to 85%

and has a good prognosis (5-year survival rate of more than 95%, mainly in patients with
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stage I or II disease), as does follicular thyroid cancer (FTC), which

is less prevalent, accounting for 15% of all cases (4). Patients with

poorly differentiated or anaplastic TC, advanced-stage disease, or

distant metastases have higher mortality rates (5). Moreover, about

20% of PTC patients manifest disease recurrence because of drug

resistance, suggesting a change in treatment approaches. This points

out the need to personalize treatments, including drug repositioning

(6). Target therapy can be repositioned and offers greater success

since it can be customized according to the patient’s genomic

alterations. In this review, we highlight therapeutic opportunities

for TC, focusing on druggable genes with potential repositioning for

personalized therapy.
Classical point mutations in thyroid
cancer: windows of opportunity for
the use of drug repositioning

Radioactive iodine administration and/or surgery remain the

first line of treatment for TC; however, for advanced disease,

chemotherapy (CT) becomes the systemic option of treatment

available (7). Nevertheless, CT constantly faces resistance and

severe secondary effects (8). Therefore, it is necessary to overcome

resistance by recognizing drug-susceptible mutations, which may

lead to the identification of a broad spectrum of target therapies that

could be repositioned in TC (Figure 1).

Next-Generation Sequencing (NGS) has made it possible to

sequence the genomes of different types of cancer, which has

revealed that around 90% of patients with TC have one or more

genetic abnormalities (9). Dysregulation of phosphatidylinositol 3-
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kinase (PI3KCA) and mitogen-activated protein kinase (MAPK)

signaling pathways is mainly affected by point mutations in target

genes such as B-Raf proto-oncogene, serine/threonine kinase (BRAF),

A-Raf proto-oncogene, serine/threonine kinase (RAS), and ret proto-

oncogene (RET) (10). One of the best-documented and highest

prevalence point mutations in PTC is BRAF exon 15 p. V600E (45%

of all cases), which is associated with poor prognosis and high

recurrence (11). The BRAF exon 15 p. V600E variant has

constitutively active BRAF serine–threonine leading to the activation

of effectors of the MAPK pathway and, consequently, surveillance and

proliferation (11). Vemurafenib has shown antitumor activity in

patients with BRAF exon 15 p. V600E-positive progressive PTC,

representing a potential new therapeutic option (12, 13). Ipilimumab,

nivolumab, dabrafenib, and trametinib are also approved target therapy

options for BRAF mutations in melanoma (14) that could be

repositioned to TC. In addition, drugs blocking phosphatase and

tensin homolog (PTEN) and PI3KCA homogenize the font of the

letter with that of the rest of the text effects (Table 1).

PI3KCA is another gene with several missense mutations in

three subtypes of TC: follicular, papillary, and anaplastic.

Interestingly, PI3KCA mutations are associated with drug

resistance in BRAF exon 15 p. V600E-positive cases. In this

scenario, it is worth looking at how alpelisib can counteract the

resistance mechanism by diminishing the EPH receptor B2

(EPHB2)-induced signaling (38). Consistent with the latest,

PTEN, which has a negative regulatory role in the same pathway,

has reported variants in TC (39).

KRAS proto-oncogene, GTPase (KRAS), is a G protein that

plays an important role in the PI3KCA/MAPK signaling pathway.

Point mutations in KRAS usually occur at codons 12, 13, and 61 and

have been found in FTC and PTC at a frequency of 50% and 20%,
FIGURE 1

Drugs with potential to be investigated in thyroid cancer clinical trials according to mutational profile.
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respectively. These mutations confer a more aggressive phenotype

and increase the risk of mortality (40). Sotorasib and adagrasib are

KRAS exon 2 p. G12C mutation drugs approved for non-small cell

lung cancer (NSCLC) (16, 41). It remains of interest to analyze the

effect of these drugs on TC harboring the KRAS exon 2 p. G12C

mutation. RET is another gene commonly mutated in PTC and

medullary thyroid cancer (MTC), with both large rearrangements

and point mutations reported. RET is a receptor tyrosine kinase that

regulates growth, survival, migration, and survival, activating

multiple intracellular signaling pathways, including PI3KCA/AKT

serine/threonine kinase 1 (AKT),MAPK, mitogen-activated protein

kinase 8 (JNK), and others. Oncogenic activating point mutations

can occur mainly in the extracellular domain, particularly in codon

C634 of exon 11, in 609, 611, 618, or 620 of exon 10, and in M918 of

exon 16, being RET exon 16 p. M918T mutation the most common

and represents more than 75% of all RET somatic mutations found
Frontiers in Oncology 03
in MTC (42). Selpercatinib and pralsetinib are RET-specific

inhibitors approved for the MTC variant and have been well

tolerated (43–45). Other multitargeted kinase inhibitors used to

inhibit the PI3KCA/AKT/mechanistic target of the rapamycin

kinase (MTOR) pathway in MTC are vandenitib and

cabozantinib. The first one inhibits RET but also inhibits other

kinases such as vascular endothelial growth factor receptor 2

(VEGFR2), vascular endothelial growth factor receptor 3

(VEGFR3), and epidermal growth factor receptor (EGFR), while

cabozantinib inhibits RET, vascular endothelial growth factor

(VEGF), MET proto-oncogene, receptor tyrosine kinase (MET),

and ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) (46).

Both inhibitors have shown efficacy and improved overall survival

in patients harboring RET exon 16 p. M918T mutation (47, 48).

MET is a receptor tyrosine kinase that has an oncogene role in

promoting angiogenesis due to downstream activation of RAS,
TABLE 1 Variants in potentially druggable genes in thyroid cancer.

Drug Gene Variant in thyroid cancer Cancer Reference

Ipilimumab, nivolumab, dabrafenib, and trametinib BRAF V600E Melanoma (14)

Alpelisib PI3KCA GAA>AAA, G1564A/
CCA>TCA, C3031T

Breast (15)

Sotorasib and adagrasib KRAS G12C NSCL (16)

Vandenitib and cabozantinib RET Codons: 609, 611, 618, and 620
Val804Met. S836S

NSCL (17)

Amivantamab, cabozantinib, capmatinib, crizotinib, osimertinib,
tepotinib, and sitagliptin

MET rs1621 AG NSCL, thyroid (18) (19–
23), (18)

Sitagliptin CTNNB1 c.133T>C Thyroid (24)

Afatinib, lapatinib, and pertuzumab NRG1 rs2439302 Colorectal, breast (25)

Entrectinib SPP1 rs4754 Cervical (26)

Eltrombopag BAX −248 G>A ––– (27)

PS121912 VDR (rs2228570) CT/TT Leukemia (28)

Rituximab IL-10 G-1082A B-cell non-
Hodgkin’s lymphoma

(29)

Nu-1 TERT C>T (C228T) and 1,295,250
C>T (C250T)

Lung and colorectal (30)

Vandetanib CCDC6-RET Gene fusion NSCL (17)

Larotrectinib ETV6-
NTRK3

Gene fusion Secretory breast cancer (31)

Crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib STRN-ALK Gene fusion Lung adenocarcinoma (32)

Crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib EML4-ALK Gene fusion Lung (33)

Suramin BRAF-SND1 Gene fusion ––– (33)

––– IGF2BP3-
THADA

Gene fusion ––– (34)

Pioglitazone, GW9662 PAX8-
PPARG

Gene fusion Thyroid (35)

NEO2734 NUT-BRD4 Gene fusion NUT
midline carcinoma

(36)

Amivantamab, cabozantinib, capmatinib, crizotinib, osimertinib,
tepotinib, and sitagliptin

TGF-MET Gene fusion Sarcoma, glioma (37)
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PI3KCA, and signal transducer and activator of transcription 3

(STAT3) signaling pathways (49). Drugs that inhibit MET are

amivantamab, cabozantinib, capmatinib, crizotinib, osimertinib,

and tepotinib (50). Particularly, MET has a reported variant in

NSCLC that skips the exon 14 and makes the protein constitutively

active (51). In TC, it constitutes an inclusion criterion for thyroid

gland medullary carcinoma (52, 53). Currently, therapy targeting

MET, although only indicated to treat NSCL, represents a potential

target in TC. Furthermore, a PTC expression signature has been

identified in which three genes are overexpressed, promoting

metastasis and being associated with poor prognosis: dipeptidyl

peptidase 4 (DPP4), MET, and catenin beta 1 (CTNNB1). The

signature is associated with immunosuppression and correlates with

tumor infiltration of tumor-associated macrophages, which leads to

T-cell exclusion. Interestingly, sitagliptin, an FDA-approved drug to

treat diabetes type II, has affinity not only to DPP4 (diabetes target)

but also to MET and CTNNB1 (54–56). Moreover, the affinity for

MET and CTNNB1 is even higher than FDA-approved inhibitors

specific for each of them, like crizotinib and PNU-74654,

respectively. Therefore, sitagliptin represents a multidrug therapy

window for TC (18).

Paired box 8 (PAX8), a gene implicated in proliferation and

migration, is usually overexpressed in TC. Likewise, in high-grade

serous ovarian cancer, PAX8 is upregulated (57). Remarkably,

losartan and captopril, which are FDA-approved drugs, have been

found effective at inhibiting PAX8 expression and function. This

evidence suggests potential therapeutic opportunities using losartan

and captopril, not only for ovarian cancer but also for TC (57).

Besides the variants reported in the above-mentioned genes,

there are also polymorphisms associated with TC (58). For instance,

neuregulin 1 (NRG1) acts as an oncogene through its role as a

glycoprotein that mediates cell-to-cell signaling (59). In breast

cancer, lapatinib may be used to inhibit EGFR and erb-b2

receptor tyrosine kinase 2 (HER2) kinases, two receptors of also

relevant function in TC. Nonetheless, resistance is acquired and

correlates with an increased expression of NRG1. By trying to

overcome it, adding pertuzumab has shown promising results in

decreasing NRG1-acquired resistance and tumor progression (25).

Similarly, secreted phosphoprotein 1 (SPP1), an integrin-

binding glycophosphoprotein overexpressed in TC that promotes

tumorigenesis through the inhibition of differentiation factors of

thyroid cells, represents an opportunity for drug repositioning (60,

61). Although there are no current FDA drugs approved for

inhibiting SPP1, a recent publication showed a promising

inhibitory drug for cervical cancer: entrectinib (26). This

represents a highlight, as entrectinib is an FDA-approved drug

for NTRK fusions in solid tumors, including TC (62).

As with SPP1, another window of opportunity for targeted

treatment is BCL2-associated X, apoptosis regulator (BAX). This

gene participates in mitochondrial regulation of cell death; however,

in cancer, it contributes to cell death dysregulation (63).

Importantly, in TC, BAX has a reported polymorphism positively

correlated with PTC, and more importantly, the FDA-approved

drug eltrombopag acts as a BAX inhibitor, which drives apoptosis

induction (64, 65). SPP1 and BAX are not the only genes in which

polymorphism is related to TC. VDR stands for vitamin D receptor
Frontiers in Oncology 04
and has been associated with cancer development (66). It is not well

established if TC contributes to or attenuates tumor growth;

however, two polymorphisms, FokI and TaqI, are associated with

a more aggressive type, and the heterozygous FokI to metastasis

(67). Remarkably, it has been shown that antagonists of vitamin D

have therapeutic effects as they inhibit downstream cell cycle

proliferation. There is already an insight into potential therapies

using VDR as a druggable target. For instance, PS121912 has shown

promising therapeutic effects by acting as a selective VDR

inhibitor (28).

In the immunology context, several profiles have been described

causing differential expression and immune cell proliferation

among TC subtypes (68). Interleukin-10 (IL-10) is one of several

dysregulated cytokines in TC associated with immunological and

apoptosis evasion and aggressiveness (68). This effect is caused by

expression induction of BCL2 like 1 (bcl-xL) and BCL2 apoptosis

regulator (BcCL2) and resistance to CD95-mediated apoptosis (69,

70). Due to its oncological role, IL-10 figures as a potential

therapeutic target. Rituximab has promising inhibitory effects

against IL-10 through downregulation of BCL2 and sensitization

of B-cell non-Hodgkin’s lymphoma to apoptosis (29). However,

resistance constitutes a problem due to broad kinase inhibitor

activity and toxicity, which may limit their use and encourage the

use of more specific inhibitors (71).

Lastly, telomerase reverse transcriptase (TERT), an enzyme

known to be implicated in cancer, has been described as one of

the most frequently mutated genes in TC, particularly in its

promoter, which causes its overactivation. TERT inhibitors are

currently under study, and NU-1 not only sensitizes the cell to

chemo- and radiotherapy but also can inhibit proliferation and

increase immune activity (30).

From NGS of long DNA fragments, gene fusions have been

identified. When two genes conform to a fusion, they either lose or

gain function. In cancer, they can contribute to tumor growth due

to constitutive activation of an oncogene, such as BCR-ABL (72).

Remarkably, some gene fusions are considered drivers, while others

contribute to generating more genomic instability and disease

development. There are gene fusions that are found across

various cancers (73). These features of gene fusions represent an

unprecedented opportunity to develop target therapies aimed at

providing personalized medicine to patients.
Spotlight of novel therapies:
gene fusions

Over 50 gene fusions have been identified in TC, which are

mainly conformed by the RET, neurotrophic receptor tyrosine

kinase (NTRK), ALK, and BRAF genes (74). These genes are

tyrosine kinase overactivated mainly due to kinase retention and

overexpression by transcription factors of the parental genes,

making them druggable targets (75). Currently, three drugs are

being used in clinics to treat TC-targeting gene fusions: pralsetinib,

selpercatinib, and larotrectinib (76). The first two are RET

inhibitors and were first set as a treatment for both point
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mutations and gene fusions; however, selpercatinib shows efficacy

in specific RET variant genotypes that present pralsetinib resistance.

For instance, BaF4/KIF5B-RET shows tumor growth despite

treatment with pralsetinib, while selpercatinib can effectively

inhibit growth (44, 77). However, as with other variants, these

gene fusions are not expressed across all subtypes of cancer, while

some therapies face drug resistance and lack of treatment for

greater, yet untargeted variants (Figure 1).

For RET, 19 fusions have been described; however, only therapies

consisting of RET inhibitors are currently available, leaving the

partner genes pharmacologically unexplored (78). This is of great

importance as it has been described that the inhibitory sensitivity of

several gene fusions varies depending on the partner gene; hence,

drug screening should be performed testing not only the most

common gene. For instance, the coiled-coil domain containing 6

(CCDC6) is a recurrent gene-forming fusion with RET in lung cancer,

where it has shown potential druggability of EGFR inhibitors in

combination with RET inhibitors, decreasing resistance to RET

inhibitors while also enhancing sensitivity to PARP inhibitors (79).

Particularly, the fusion CCDC6-RET is more sensitive to vandetanib

due to the off-target inhibitory effect and crosstalk with EGFR

pathway activation (80). Furthermore, this fusion and ERC1-RET

have not had a response to the RET drug, cabozantinib, supporting

the idea of focusing on the second gene as well (81).

Larotrectinib targets the NTRK genes, which are neurotrophic

tyrosine kinase receptors. If binding occurs, the protein

phosphorylates itself and activates the MAPK pathway. Therefore,

as part of a gene fusion, it causes its constitutive activation (82).

Several fusions involving NTRK1, NTRK2, and NTRK3 have been

described in the lung, colon, brain, head and neck, and TC (83). For

this reason, it has been a promising targeted therapy, as the same

fusions can occur in several tissues. In TC, larotrectinib is

administered to patients diagnosed with the anaplastic subtype, and

tumor growth continues despite other treatments (82). An example of

this is the ETV6-NTRK3 fusion, which has been described as a driver

variant in secretory breast cancer with high efficacy upon larotrectinib

treatment (84). However, larotrectinib therapy targets only theNTRK

gene, while their partner genes remain untargeted. For instance,

sequestosome 1 (SQSTM1) is a gene that conforms to fusions with

both NTRKs and plays a role in autophagy, specifically through the

AKT/protein kinase AMP-activated catalytic subunit alpha 2

(AMPK)/MTOR signaling reported in PTC (84).

Although only three drugs are being used in TC to target gene

fusions, there are several other recurrent genes forming gene fusions

that are already targeted in other cancers. On one hand, there is

ALK, which is widely known for its oncogenic role, especially as part

of gene fusions (85). Currently, ALK fusions do not have a regimen

of treatment for TC, but its potential has already been evaluated. For

example, STRN-ALK and EML4-ALK are promising targets in TC

using the FDA-approved drug crizotinib, among other drugs such

as ceritinib, alectinib, brigatinib, and lorlatinib (32, 33).

On the other hand, there are BRAF fusions, and remarkably, despite

BRAF having several target drugs, none of them are used to treat TC.

Furthermore, among all the gene partners of BRAF, staphylococcal

nuclease and Tudor domain containing 1 (SND1), an oncogene in

several types of cancer acts in addition to posttranscriptional
Frontiers in Oncology 05
modifications (86). This is a highlight for novel therapy, as a small

molecule called suramin has been identified to inhibit their protein by

impairing its interaction with several microRNAs and sensitizing the

response to standard chemotherapy (87).

Interestingly, up to five gene fusions are involved in THADA

armadillo repeat containing (THADA), which stands for thyroid

adenoma-associated gene (Table 1) (74). This gene participates in

metabolism and energy storage through the calcium pathway. In

cancer, not only fusions but also polymorphisms are associated with

the disease development (88). Particularly, it has been described

that THADA is necessary to retain CD274 in the Golgi for

maturation. On the contrary, if suppressed, the immune response

is triggered through the infiltration of CD8 + T cells and increased

toxicity (89). In addition to this finding, the IGF2BP3-THADA

fusion has been demonstrated to cause overexpression of the

partner gene IGF2BP3, leading to sustained growth and invasion

through the activation of PI3KCA and MAPK pathways (34, 90).

For its part, insulin-like growth factor 2 mRNA-binding protein 3

(IGF2BP3) is associated with a poor prognosis implicated in several

mechanisms leading to aberrant metabolism in cancer (91).

Currently, there are no inhibitors for THADA; however, the data

strongly point out THADA as a potential therapeutic target in TC.

Another gene found in 30%–35% of FTC is PAX8-PPARG,

characterized as an oncogene due to its binding to several genomic

regions that code for genes related to cell proliferation, apoptosis

evasion, and motility (92). Contrary to the case of repurposing

losartan to PAX8 alterations, this fusion promotes tumor

progression due to the likely loss of functions of peroxisome

proliferator-activated receptor gamma (PPARG). When inhibited

with pioglitazone, anti-inflammatory effects and growth

modulation are observed; however, the function of the gene

fusion is not yet fully understood (35). Opposed to this idea, the

antitumoral effect of PPARG inhibitor GW9662 has also been

described, indicating the existence of independent pathways of

PPARG (93). Remarkably, PAX8-PPARG is not the only fusion in

TC involving PPARG; there is also CREB3L2-PPARG (94).

NUT-BDR4 is an oncogenic driver fusion that causes a rare type

of cancer named NUTmidline carcinoma. Bromodomain-containing

protein 4 (BDR4) binds to the chromatin, while NUT midline

carcinoma family member 1 (NUT) recrui ts his tone

acetyltransferase (HAT), promoting the expression of several

associated oncogenes (95). This rare fusion has also been described

in some TC cases, and it is associated with high expression of CD274

(96). The prognosis is low, with an estimated overall survival of 10

months, while therapy consists of radiotherapy and standard

chemotherapy for large tumors. With no targeted therapy available,

it is an urgent matter to start studying potential inhibitors for the

treatment of these patients (97). Currently, only one inhibitor has

been proposed to target the NUT-BDR4 fusion. It consists of a dual

inhibitor of bromodomain and extra-terminal motif (BET) proteins

and the p300 bromodomain, named NEO2734, with proven

inhibition of tumor growth and improvement of overall survival (36).

Lastly, MET not only has point mutations in TC but also a

gene fusion. It has been identified that TGF-MET fusion is present

in sarcoma, glioma, and TC (37, 98). Interestingly, in sarcoma,

tumors that have this variant do not fit into a specific subtype,
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which is a remarkable finding due to the existence of effective MET

inhibitors (50, 98).
Conclusions and perspectives

It is relevant to recognize that in the era of personalized

medicine, drug repositioning has a major impact on oncology.

This is possible due to the identification of new therapeutic targets,

which can be shared in different diseases and even between cancers.

This opens a whole window of opportunity for the use of a plethora

of drugs, reducing the time and costs involved in the production of

new drugs, which has a positive impact on patients. In this review,

we found that several drugs used in different types of cancer can be

repositioned to TC, either by the presence of point mutations or by

gene fusions. We found an area of opportunity for 13 genes with

missense mutations and 10 for gene fusions. Among all these drugs,

22 are FDA-approved drugs, while the remaining five are inhibitors

with proven efficacy in in vitro studies, both of which represent a

promising area of therapy opportunity. It is the aim of this work to

highlight the relevance of the identification of new potential

inhibitors for genes that are part of recurrent fusion formation in

TC as well as other types of cancer due to the likelihood of their

contribution to disease development. Hence, it is of interest to the

clinic to elucidate these variants’ potential as biomarkers or

prognostic or therapeutic targets.
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