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With the increasingly central role of imaging in medical diagnosis, understanding

andmonitoring radiological errors has become essential. In the field of oncology,

the severity of the disease makes radiological error more visible, with both

individual consequences and public health issues. The quantitative trend

radiology allows to consider the diagnostic task as a problem of classification

supported by the latest neurocognitive theories in explaining decision making

errors, this purposeful model provides an actionable framework to support root

cause analysis of diagnostic errors in radiology and envision corresponding risk-

management strategies. The D for Data, A for Analysis and C for Communication

are the three drivers of errors and we propose a practical toolbox for our

colleagues to prevent individual and systemic sources of error.
KEYWORDS

diagnostic errors/statistics and numerical data, radiologists, cognition, scientific
mistake, quality improvement, oncology, risk factors, tomography mammography
1 Introduction

According to an annual complaints report for radiologists in France, “medical error”

affected 1 in 20 radiologists. A similar US analysis of complaints analysis filed over one

decade showed that oncology errors accounted for the largest proportion accounting from

40% up to 80% of complaints when focusing on complaints with high harm (1, 2).

In this context, it is interesting to explore the mechanisms of “radiological error” by

looking more specifically at this most represented field, i.e., cancer diagnostic radiology

Mammography and computed tomography were the most concerned modalities probably

due to the breast cancer screenings over the world and widespread use of CT scans for

generic whole-body analysis (3). Ultrasound, even though it is frequently indicated as a first

line examination was not predominantly concerned maybe due to the impossible
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retrospective analysis unlike other acquired modalities that can be

objectively reassessed by a second opinion.

Previous frameworks for root-causing radiological errors have

been proposed and the most used classification was published in

2014 by Kim and Mansfield (4). However, its applicability in terms

of risk management is not straightforward. Radiological errors

being primarily human errors, we propose to update a

classification in accordance with the latest neurocognitive

knowledge to regroup by underlying concepts and mechanics.

In this paper, firstly, we explore the terminologies of error in

experimental medicine together with the current critical place of

quantitative imaging in oncology. Then, we detail cognitive

mechanisms of decision-making in radiology as applied to

oncology to propose an updated error classification supported by

signal detection theory. Finally, we detail strategies for managing

the risk of error at both the individual and systemic level.
2 The” experimental” medicine and
the concept of biomarkers

2.1 The “error” terminology

The terminology related to “error” is deeply embedded in the

history of experimental and quantitative medicine. This

terminology is critical for understanding scientific literature and

for comparing results across different studies (Figure 1).

However, depending on the field -whether in statistics or

forensic medicine- the same terms can carry different meanings,

often leading to confusion. A frequent source of this confusion is

the distinction between “error” and “variability (5, 6). This issue

dates back to the early days of quantitative experimentation, which

were influenced by Mendel’s mechanistic approach to biology and

his application of mathematical principles.

In the context of image analysis, variability refers to differences

in interpretation between multiple observers. This is typically
Frontiers in Oncology 02
measured through indices that reflect the level of agreement or

discordance among radiologists. These indices are essential for

evaluating the reliability of diagnostic decisions (7).

Since error implies that what is correct is known, the notion of

“truth” is inseparable from the notion to which error refers. In the

era of quantitative medicine, we have inherited the term “ground

truth” or “gold standard”, which is defined by empirical evidence,

i.e., information given by direct sensory or experimental

observation that is known to be true. This idea of truth aligns

with the philosophical notion of “a posteriori knowledge,”

knowledge that is based on experience, as opposed to “a priori

knowledge,” which is derived from reasoning alone (8).

The relationship between error and experience is fundamental

to evidence-based medicine, where decisions are grounded in both

experimental results and practical experience (9).

In legal contexts, the term “fault” is used as a type of error, but

with a critical distinction: an error is considered a fault only when

the reference of the correctness is indisputably known in advance.

In radiology, this typically means adherence to established best

practices (10, 11).

In statistical and cognitive science, we encounter the term “bias”,

which is a systematic cause of error that is mostly unconscious or

invisible and a priori. A cognitive bias specifically refers to errors in

thinking caused by a distortion in how information is processed.

While these terms -error, variability, fault, and bias- are distinct,

they are also interrelated. Figure 1 visually represents the

relationships between these concepts and their importance across

medical, statistical, and cognitive domains.
2.2 Quantitative imaging as a decision-
making tool in cancerology

Medical imaging is a decision-making tool for the cancer

patient that not only has to be performant but must also be used

properly and at the right time to be efficient.
FIGURE 1

Relationship between the different terminologies of medical error. In the absence of intangible ground truth, the variability of analysis is reflected in
discrepancy, where the benchmark can be a third expert opinion or a consensus. A fault is a type of error with a legitimate basis referring to non-
compliance with the commonly accepted guidelines. More than an error, bias is a cause of error that is often systematic and unidentified.
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2.2.1 Imaging biomarkers
The term “imaging biomarker” defines discriminating information

contained in a medical image (12, 13). This information is measured by

imaging modality and must satisfy characteristics that allow it to be

used for decision-making, i.e., accuracy, precision, reliability, and

relevance (14). The first three characteristics are also quantifiable. In

addition, when studying “error” in radiology, it is essential to

continually evaluate the source of information for its relevance and

biological plausibility within the clinical context.

2.2.2 Oncology and surrogate endpoints
The oncologic context provides a good example of “a priori

discriminating” use of biomarkers (Figure 2). Their use differs

depending on cancer stage. It is either a diagnostic question in a

symptomatic or asymptomatic patient (i.e., during screening), or a

question of the cancer treatment’s efficacy (i.e., during follow-up).

In both cases, the ground truth can only be known a posteriori

since it corresponds to histology or surgery (for disease diagnosis),

or death (for treatment efficacy).

Oncology imaging biomarkers are “surrogates” endpoints when

they can be used instead of clinical outcomes. Indeed, invasive

diagnosis is morbid, and death is fatal, therefore imaging

biomarker-assisted decision-making attempts to predict disease or

treatment ineffectiveness as early as possible with minimal error.

The validity of such surrogates is regulatory and based on

previously acquired evidence (15).
3 Cognitive decision model in
cancer imaging

The decision step turns a virtual error into a real, and

potentially harmful entity. Therefore, there is a notion of risk in
Frontiers in Oncology 03
making a decision and since the impact is substantial when

considering oncology imaging, the stakes of this risk are higher.

To understand errors, it is essential to understand how both the

tools (i.e., quantitative imaging biomarkers) and context of the

decision-making (surrogates) described above are integrated by the

individual operator to take his decision.

Modern cognitive science theories allow us to better understand

the brain mechanism underlying decision making in these

situations of uncertainty.

“Signal theory” and the Bayesian model represent the state-of-

the-art of understanding of the decision mechanism, from the

sensorial information to the decisional action (16, 17).

To best illustrate schematically the mental stages during the

radiological diagnosis process, we consider the mammographic

screening use case (Figure 3).

To address this task, the mental activity asks two sub questions

which, for the sake of understanding, are represented sequentially

but are in fact intertwined i.e.:
3.1 “Given what I see on the mammogram,
how plausible is the hypothesis that my
patient has cancer?”

In a probabilistic Bayesian model, this “plausibility” is denoted

by p(H|D) and corresponds to the probability of having cancer (H)

knowing the mammographic information (D). Conversely, the “a

posteriori probability of having this mammographic data knowing

the hypothesis”, is noted p(D|H) and corresponds to the

“likelihood” of the data.

The law of probabilities shows that the plausibility of a given

hypothesis is a function of the likelihood but also the “a priori

probability” of the hypothesis noted p(H). This so-called “prior”
FIGURE 2

Problem statement in oncology and surrogate imaging biomarkers. Radiological diagnosis is over-simplified as a classification problem. In oncology,
the statement of this problem evolves over time and requires discriminating between different populations at entry and exit. At the initial diagnostic
stage, the aim is to discriminate between diseased (in which the cancer) and non-diseased patients. The imaging is compared with the gold
standard, usually, invasive procedure to obtain the histology of the cancer. Following diagnosis, the discriminative test must recognize patients not
responding to the treatment to offer them a better alternative. At this stage, the gold standard for judging the outcome is the death rate and one
assumes that imaging biomarker can be a surrogate predictor of the overall survival rate.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1402838
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Iannessi et al. 10.3389/fonc.2024.1402838
contextualizes the decision making and greatly modifies the

outcome. The law is written as:

p(HjD) ∝ p(DjH)� p(H)

It can be well understood by general radiologists that have

experienced lung parenchymal findings on a coughing patient with

a known evolutive cancer. They know that this may correspond to

either a metastasis or an inflammation suggesting that the

likelihood of the image alone is not discriminating enough. It is

the a priori knowledge that allows us to conclude about

plausibility (18).

In our practice, this “prior” corresponds to theoretical and

experiential knowledge, to the context of the analysis and to the

instructions for performing the task (i.e., reading the images) that is

related to it. In oncology, for example, the latter read rules

correspond to the BIRADS analysis for the mammography or

RECIST criteria for an oncologic follow-up. Those rules are

framing the context of the task (19).

Also, in processing this first sub question, there are two

irreducible variability factors to consider, one concerning the data

i.e., imaging biomarker and its signal/noise ratio (external noise),

the second concerning the performance of the radiologist observer

(internal sensory noise) which is equivalent to a “detector” intrinsic

performance (20). The latest participates both in inter-observer

variability and intra-observer variability as it varies for a same

individual according to mentally perturbating stimuli (e.g.,

tiredness, stress, external stimuli).
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3.2 Given the purpose of the
mammography exam, what criterion
maximizes its gain?

Signal theory suggests that the observer applies a gain

maximization function to set the criterion according to the desired

goal. Indeed, in radiology and medicine in general, unfortunately there

is often overlap between positive images corresponding to the ill state

and so-called negative images corresponding to the non-ill state with a

normal distribution of patients. This phenomenon is expressed simply

by contingency tables commonly used in medicine to evaluate

diagnostic test effectiveness (Figure 4).

In oncology, the physician is torn between a conservative

objective (i.e., avoidance of biopsies and death at the cost of missed

cancers), and a non-conservative objective (i.e., not missing any

cancer, even if invasive diagnostic procedures are required). The

first case minimizes false positives (statistical type I error) and the

second case minimizes false negatives (statistical type II error).

The decision criterion is determined to maximize the gains

according to the objective that the radiologist has set. It is therefore

variable according to the individual and the context.
4 The DAC classification of
radiological errors

The Kim and Mansfield classification is the most widely accepted

classification for error types in radiology (4). Based on a retrospective
FIGURE 3

Cognitive modeling of decision-making during mammography screening (inspired by the theoretical model of decision in complex situations). The
first sensory step is based on the Bayesian law of probabilities and produces plausible diagnostic hypotheses. The second step of the process is
decisional and integrates the risk of error by choosing a decision criterion to separate the different hypotheses. Ultimately, there is an experimental
feedback loop of success/error which influences the “a priori” knowledge for future diagnoses.
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evaluation, this classification determined 12 error types according to

their cause. We feel that this classification is imperfect because it does

not fully cover the chronological nature of the causality principle.

We therefore propose a simpler error classification with a

simpler approach that can be illustrated with the information

flow (Figure 5 and Table 1).

This higher-level classification advantageously integrates the

previously detailed processes of “information to decision” through

the acquisition of information (D for data), its analysis using cognition

(A for analysis) and the communication of this analysis (C for

communication). We separate errors according to this DAC approach:
Fron
1. Error type D: Data or meta-data related errors

2. Error type A: Analysis through cognition related errors

3. Error type C: Communication of diagnostic results

related errors
4.1 Error related to the data (Type D)

The first step of a radiological examination in oncology is to

collect the information necessary to understand and frame the
tiers in Oncology 05
problem. It is important not to corrupt this information processing.

Unfortunately, as every radiologist knows, in our practice several

differential diagnoses share the same image findings (18).

Clinical information is useful to contextualize visual analysis and

this meta-information improves the knowledge of what was previously

named as the “prior”. This type of information is furthermore

necessary as it can indirectly influence the image information when

used to adapt the acquisition protocol and field of view. We also

mentioned above that it influences the maximization criteria. This step

of information processing is therefore critical. Unfortunately,

appropriateness of imaging referral is sometimes not justified with

impact on unnecessary or wrong examination (21).

In practice, meta-information is often available if the radiology

team makes the necessary effort to retrieve it from patients, doctors,

and family (Figure 6). Indeed, for our field of interest, it is crucial to

make comparisons with historical examinations, to know the

surgical interventions already performed and to question the

patient if an image is confusing (Figure 7).

In everyday practice, it should be remembered that this type of

error would be considered as a fault error since the radiologist does

not have an obligation of result but rather an obligation of means.

All necessary means must therefore be put in place to recover all the

required information for interpretation, even if this is never easy.
FIGURE 4

Cognitive modeling of decisional step: contingency table and criterion. Due to the overlapped distribution of probability in healthy patients and those
with cancer, the radiologist must make an inevitable compromise between missing diagnoses (False Negative, FN) and false alarms (False Positive,
FP). Whenever the FP is having a greater impact, the radiologist will try to maximize the precision and whenever the FN is important, the radiologist
will try to maximize the recall.
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The centralized clinical trial illustrates the importance of “prior”

information to contextualize image analysis. Indeed, the censorship of

someof thesite informationduringblinded independentreviewoften led

to mistakes in the selection of targets for RECIST assessment with well-

known benign lesion in the liver suspected to be ametastasis (22, 23).

Ultimately, the pixel-information once the examination is

performed might also be corrupted if the technic of the

examination was not performed correctly. It is important to

provide the best technic of acquisition to avoid confusing

artefacts for the analysis. If one is not satisfied with the technic of

an examination, it should be reperformed with the scope to help a

better-informed decision.
4.2 Error related to the analysis (Type A)

This type of error is also named “cognitive error” as it is linked

to the cognition framework described previously (Figures 3, 4).
Frontiers in Oncology 06
Radiological interpretation corresponds schematically to a visual

search task for significant abnormalities in one or several medical

images. For didactic purposes, the task can again be broken down

chronologically into two steps: detection then characterization (24).

Under-performance can either be a result of under-detection or

a properly detected, but misinterpreted finding (25).

4.2.1 Under-detection (Type A1)
During detection, the two determining factors are the visibility

of the lesions and the radiologist’s detector performance:
• Concerning the visual stimulus associated with the lesion, its

visibility can be estimated by the signal-to-noise ratio. In

addition, its cognitive integration can be conducted through

two processes:
◦ Bottom-up processes depend almost entirely on the

information perceived, and therefore little on the

assumptions or expectations of the perceiving radiologist.
FIGURE 5

Root cause analysis of radiological errors. The virtuous circle of information during imaging diagnostic from input data (D) to data analysis (A) to
communication of output data (C).
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◦ Top-down processes based on integration of the

previously learned information on this perceptual

information. They are high-level cognitive processes

and control the sensory information from knowledge

and experience.
• Regarding the performance of the human detector, this

depends on the analysis method and the level of attention.
◦ The visual analysis strategy varies between

radiologists (Figure 8) depending on their

knowledge and experience. It has been described

that there are significant differences in the
Oncology 07
exploration of a CT volume or mammograms

between radiologists and that these differences

correlate with different detection efficiencies (26, 27).

◦ Attention to the task is also a factor contributing to

variability. It has been documented that radiologists may

miss abnormalities that are visible retrospectively, either

because of a drop in attention level, or because of a shift

in attention. Cognitive biases can interfere with the

radiologist’s attention and lead to non-detection errors.

▪ “Satisfaction bias” is well-documented in

radiology (28). It refers to a drop in attention
FIGURE 6

Data collection: from fragmented information to diagnostic orientation. A 50 year’s old patient is referred to a radiology office for an MRI of the
parotid gland with a prescription from an ENT surgeon which mentions an incidental finding on a PET-CT. It is only after interviewing the patient, his
family and querying the PACS that an evolutive metastatic cancer background status is revealed.
TABLE 1 The “DAC” classification of errors in diagnostic imaging.

ERROR TYPE INFORMATION
PROCESSING

DEFINITION KIM & MANSFIELD
TYPE

%

D

Data Collection of and
Meta-information

Failure to collect pixel and non-pixel
information in respect with the
good practices

Technique 2

Prior examination 5

History 2

Location 7

A

Analysis (A1):
Detection

Failure to see a retrospectively visible
finding (Under-Detection)

Underreading 42

Satisfaction of search 22

Satisfaction of report 6

Analysis (A2): Characterization Failure to recognize the clinical
significance of an identified
finding (Misclassification)

Overreading (complacency) 1

Faulty reasoning 9

Lack of knowledge 3

C
Communication of the Analysis Result Failure to communicate diagnostic

imaging results appropriately (to the
physician or the patient).

Poor communication 0
The incidence of error types is reported according to the original source of the Kim & Mansfield article (4).
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after the discovery of an abnormality. Hence, it

is responsible for the non-detection of additional

abnormalities. In oncology, this is exemplified

by detection of one pathological finding but

miss detection of multifocal lesions.

▪ “Inattentional blindness” bias is also documented

in radiology. It refers to attention locked in a

top-down process that prevents the detection of

unexpected anomalies (Figure 9). This

phenomenon is illustrated by the popular

article entitled “The invisible gorilla strikes

again[ … ]” and others have reproduced the

phenomenon (29, 30).
Oncolo
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4.2.2 Misinterpretation (Type A2)
The characterization process involves the radiologist’s judgment.

Once a finding is detected, the question of diagnosis arises.

Misinterpretation is rarely due to the responsible radiologists’ lack of

knowledge.Indocumentedseries, thisrepresentsaround10%oferrors(4,

24, 25). Frequently, it is todowith the functioningof thebrain, thatuses a

heuristic strategy for informationprocessing.Theseheuristics reduce the

brain’sworkloadatthecostofsystematicerrors.Thesecognitivebiasesare

widely documented in radiology and oncology, with anchoring,

confirmation and availability biasesmost frequently encountered (31).

Oncological follow-up is vulnerable to anchoring bias when the

analysis is conducted in a sequential manner. In such a setting, we

observe that the radiologists tend to confirm the previous
FIGURE 8

Mammography eye-gaze scan path assessments strategies. This figure illustrates two different exploration strategies driven by top-down processes
learned during their training. The radiologist 1 adopted a comparative “quadrant analysis” from outer to inner quadrant to retrieve information from
the comparative analysis with a “Z” shaped scan path. Radiologist 2 adopted a “side analysis” exploring first the entire right breast then the left breast.
FIGURE 7

Type D error: misinterpretation linked to lacking prior information. A 53 year’s old patient is referred for a melanoma cancer follow-up with PET-CT.
At the first follow-up visit, the radiologist was not aware of the metastatic vertebral stabilization with anterior sternotomy. This censored information
misled the radiologist into finding a sternal lytic lesion that he thought was a metastasis.
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measurement result while this measurement operation is reputed to

be non-subjective (Figure 10).
4.3 Error related to the communication of
report (Type C)

In oncology, radiological evaluation is central for diagnosis and

treatment decisions. Tumor follow-up criteria are now used as a

decision-making tool not only for clinical trials, but also for

routine use.

Communication of results is often delicate because it is aimed at

both the patient and the physician, sometimes with a slightly

different objective.

The communication medium is the written report. In routine,

this error is difficult to trace and the Kim and Mansfield analysis

probably underestimates its frequency (4). However, in clinical

trials, non-conformity of reports is documented as a frequent

deviation with 55% (32).

These type C errors are no less impactful and lead to bad

decisions because of incomplete, false, or misunderstood

information (Figure 11) (11).
5 Discussion

Radiology errors are addressed to prevent occurrence of adverse

events. Since error is statistically embedded in the above predictive
Frontiers in Oncology 09
decision-making model, the objective is to minimize the individual

related sources of error previously outlined.

However, it is necessary to consider radiological interpretation

in its global environment to differentiate the control strategy for the

individual’s error from a systemic approach focusing on conditions

and factors acting on this individual (Figure 12) (33).

According to the pareto principle, in relation to the 3 classes of

errors described above, we can propose a toolbox trying to address

the most frequent contributors (Table 2). Cognitive type A errors

dominate and represent up to 80% in reported series (4, 25).

Preventing cognitive errors typically requires the use of

debiasing strategies, which aim to either prevent or correct the

initial judgment, often formed through heuristics However,

corrective strategies face practical limitations, as they require

either revisiting and re-evaluating one’s initial decision or relying

on a concurrent external opinion to provide a counterbalance. Both

approaches are time-intensive and frequently infeasible in high-

pressure environments like clinical practice, where time constraints

may not allow for thorough reconsideration. Moreover, merely

being “aware” of cognitive biases does not necessarily reduce their

impact after they have already occurred. Research has shown that

awareness alone often fails to mitigate cognitive errors because

biases are deeply ingrained in our cognitive processes and operate

subconsciously. Additionally, measuring individual susceptibility to

cognitive biases is still an area of ongoing research (34, 35).

Then, even if type D errors are less frequent, the preventive

action might be more effective in making all necessary efforts to

collect the best clinical information and pixel information.
FIGURE 9

Type A1 error: inattentional blindness bias and missed lesions. During RECIST 1.1 assessments, radiologists are vulnerable to attention bias. In this
example, the radiologist measured 4 targets in total including 2 in the liver using tumor tracking software. During the measurement phase, the
radiologist activates his macular vision which offers the best spatial resolution in a restricted area of the image and contributes to the off-field
detection error. Those targets were stable, so progression was not expected, leading the reader to miss the large new lesion (bounding box) despite
it being visible on the same slice level.
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Also,regulartraininghelpstoreducethetypeAerrorslinkedtolackof

knowledge errors andmight also improve the quality of communication

(6, 36). Large literature insists from several years on the necessity to

improves the quality of reporting by improving communication skills of
Frontiers in Oncology 10
radiologists and using several tools such as structured reports and

multidisciplinarystandardizeddisease lexiconandclassifications(37,38).

Sources of error are multifactorial and dependent on the

radiologist’s environment (39). We can consider primary
FIGURE 10

Type A2 error: anchoring bias and measurement distortion. During oncologic RECIST 1.1 assessments, radiologists are vulnerable to anchoring bias.
In this example, the radiologist chronologically assessed 9 examinations and measured 2 targets in the liver to conclude stable disease. However, the
same measured lesion when reviewed from visit 2 with the visit 8 clearly demonstrated a progression.
FIGURE 11

Type C error: delayed management of a brain metastasis linked to miscommunication. At the first follow-up visit the data collection allowed the office-
based working radiologist to detect and suspect a brain metastasis of an evolutive breast cancer while the hospital-based ENT surgeon prescription was not
mentioning any specific history of cancer (Figure 6). However, one year later the patient came to the same office to perform the same examination and the
brain lesion had increased. After investigation, the initial report has been received by the ENT surgeon who assumed that the oncologist team was already
aware of the brain metastasis. This miscommunication led to a complaint from the patient about delayed management of the brain lesion.
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TABLE 2 Individual risk management.

ERROR
TYPE

PREVENTION

D

• Diversify the sources of collection of clinical information (patient, accompanying person, secretary, technician)
• Adapt the protocol to the region of interest
• Retrieve the imaging history
• Postpone the analysis if there is lack of information
• Contact the referring physician (obligation of means)

A1
• Systematic analysis of what is not related to the specific question
• Checklist (we only find what we are looking for)
• Avoid the satisfaction bias with systematic search for additional findings if an anomaly is detected

A2
• Keep theoretical knowledge up to date (Continuing Medical Education)
• Postpone the decision with a reconsideration of the first interpretation to confirm the first judgment.
• Awareness of the most common cognitive biases

C

• Know and apply of consensus-based criteria for oncologic follow-up
• Consider structured reports and templates
• Be comparative
• Be able to communicate a notion of uncertainty
F
rontiers in Oncology
Corresponding radiologist’s toolbox to prevent errors type DAC.
TABLE 3 Systemic risk management.

SYSTEMIC RISK FACTORS
OF ERROR

PREVENTION

Work Conditions • Adapt amount of work and time to deliver
• Prevent multitasking and interruptions
• Adopt a quality approach in medical practice (risk criticality and mapping with monitoring strategies, external audit)
• Promote peer-review and follow-up of cases

Workflow • Optimize dataflow with available previous examination and measures
• Patient triage to prioritize cases needing more attention
• Human assist or computer assist image post processing automations for repetitive tasks such as measurements

Fail-safe • Tumor tracking software with criteria-read rules and compliance check
• Second opinion
C Second radiologist
C Computer-aided diagnosis
Strategies to reduce risks factors of individual errors or to correct early detected errors.
FIGURE 12

Swiss cheese model and risk management. In addition to the individual level, the risk management model needs to include the environment by
considering the factors contributing to errors and the fail-safes that were not efficient (tertiary prevention).
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prevention to reduce systemic risk factors and secondary or tertiary

prevention for early correction of potential radiologist errors

(5) (Table 3).

We initially illustrated the cognitive feedback loop of the

mistakes to create knowledge for future diagnostics. To make it

possible, the working conditions should promote positive

communication regarding errors, which are in fact an

opportunity for improvement. Sharing errors during a regular

staff meeting or peer review is a good way to dramatize the error

in radiology (40, 41). However, these facilities are resource

intensive, jeopardizing their feasibility (42).

Poor working conditions have been established as a risk factor

for interpretation errors by several authors (43).

The number of images per minute read by radiologists has

increased by 7 in this age of hyper-efficiency, driven by the

digitalization that occurred in the 2000’s (43, 44). In the event of

overwork, the risk of error for the radiologist increases. It has been

estimated that a 2-fold increase in examination rate increases the

risk of omission errors by 25% (45). We conducted a survey of 35

radiologists in the south of France, and found that 80% of

radiologists interpreted >20 CT scans per 4-hour shift; some

authors have shown that there is a significant increase in errors

when performing more than 20 CAP-CT scans per day (46).

More than 2/3 of errors are caused by cognitive attention bias. It

is reported that interconnectivity leads to multiple interruptions in

the workflow that affect the radiologist’s attention (47). This

multitasking distracts the radiologist, increasing the risk of error.

Some authors have shown that radiologists can be interrupted every

4 to 12 minutes.

Workflow in oncology is essential because radiological analysis

consists of comparing and measuring lesions repeatedly. Previous

measurements must be easily available at the time of analysis by

optimized equipment. Moreover, the measurement step is time

consuming, and some authors propose a hybrid workflow after the

baseline measurement to decrease the examination time for the

radiologist without loss of quality (32). The same automatic

computation for image post-processing analysis (mainly

measurements) in any radiological field could greatly help to

reduce workload therefore indirectly reduce attention bias linked

to these mentally consuming tasks.

Furthermore, the negative predictive value of artificial

intelligence could potentially read the content of images and

propose a prioritization of patients with significant radiological

abnormalities, allowing more time and attention to be spent on

these at-risk patients compared to others, but this means to qualify

and build trust into AI-triage systems (48, 49).

It is generally accepted that “two brains are better than one”. An

important fact to keep in mind is the importance of the

communication of one’s confidence level with second readers as

this seems to be a determinant in the application of this adage (50).

The second radiological opinion has been shown to be effective in

several studies and this paradigm is used in centralized independent

imaging readings for clinical trials (23, 51).

The second opinion can also come from a machine. The

developments of artificial intelligence in detection and
Frontiers in Oncology 12
characterization should allow it to compete with a radiologist’s

readings in the future.

Also, specifically in oncology, “tumor tracking” software can

integrate the analysis rules for follow-up criteria and enable

prevention of non-compliance errors during the analysis time i.e.,

number of targets, minimum size.

More generally, awareness about the risk control necessity to

prevent errors is promoted through good practices of quality

management. Imaging departments should start to implement

quality assurance standards helping them to detect and correct

the risks of errors (7).

Audit of their working condition and performance should also

benefit to reduce individual errors by unmasking such correctable

environmental risk factors (52).
6 Conclusion

The errors detected are only the tip of the iceberg as many of

them will not have a significant enough impact to trigger a

complaint. Oncology, which deals with a serious disease and

regular examinations, is the indication that provides the best

insight into the ins and outs of medical imaging errors.

For the sake of understanding, we proposed a threefold

classification of mechanisms of error related to the information

(D), the cognition (A), and the reporting (C).

However, it is important to understand that even if we tried to

systematize it, the error in radiology partially escapes this

systematization because it occurs in a complex and non-

deterministic world. The DAC classification describes an over-

simplified model, still it offers a practical means for risk

management to identify and operate on drivers of errors.

The individual factors of errors are dominated by cognitive bias,

but debiasing strategies seems more feasible through environmental

drivers. The toolbox that we provide are generalist and non-

exhaustive. At the individual level, raising awareness of

preventable errors and adopting a non-blaming behavior will help

to move towards quality driven practices in radiology with benefit

from a sort of collective intelligence thanks to more sharing of

errors and experiences. AI-machines are a hot topic of discussion

regarding error with high promises addressing the quality of care

more than the reduction of the radiologist’s workload (53). Humans

will still be in the loop for a while and error management will not

disappear soon.
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