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The aryl hydrocarbon receptor
as a tumor modulator:
mechanisms to therapy
Kanita A. Chaudhry and Anna Bianchi-Smiraglia*

Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York,
NY, United States
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that

is widely recognized to play important, but complex, modulatory roles in a variety

of tumor types. In this review, we comprehensively summarize the increasingly

controversial role of AhR as a tumor regulator and the mechanisms by which it

alters tumor progression based on the cancer cell type. Finally, we discuss new

and emerging strategies to therapeutically modulate AhR, focusing on novel

agents that hold promise in current human clinical trials as well as existing FDA-

approved drugs that could potentially be repurposed for cancer therapy.
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Introduction to AhR signaling

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that was

identified in 1976 as the receptor mediating the effects of 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD) (1). AhR is a member of the basic helix-loop-helix PER-ARNT-SIM

(bHLH-PAS) family of transcription factors, and as such, coordinates transcriptional

activity in response to environmental signals. The AhR protein is comprised of the N-

terminal bHLHDNA-binding domain, two PAS domains for dimerization (with the PAS-B

domain also responsible for ligand binding), and a C-terminal transactivation domain (2)

(see Figure 1).

AhR is normally sequestered in the cytoplasm where it is bound to chaperone proteins,

notably heat shock protein 90 (Hsp90), X-associated protein 2 (XAP2), p23, and Src (3).

Upon ligand binding, AhR translocates into the nucleus and forms a heterodimer with its

canonical binding partner, AhR nuclear translocator (ARNT). The AhR-ARNT complex

binds to xenobiotic response elements (XREs) within the DNA, leading to the induction of

classical targets comprising the “AhR gene battery,” including cytochrome P450 enzymes

CYP1A1 and CYP1A2, ROS scavenger NQO1, poly(ADP-ribose) polymerase TIPARP, and

the AhR repressor AHRR, among many others (4). AhR signaling is regulated via several

mechanisms, including control of ligand availability by CYP enzymes (5). In a negative

feedback loop, AhRR binds to ARNT, limiting AhR/ARNT transcriptional activity (6).
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Finally, AhR is degraded by the 26S proteasome, which is also

triggered by AhR activation (7) (see Figure 2).

In recent years, it has become well-appreciated that AhR can

bind a multitude of exogenous and endogenous ligands,

heterodimerize with several non-canonical binding partners, and

regulate diverse transcriptional programs. While xenobiotics such

as TCDD (1) and polycyclic aromatic hydrocarbons (PAHs) (8)

represent prototypical AhR agonists, an ever-growing list of

exogenous and endogenous ligands have been described. In

particular, tryptophan derivatives including 2-(1’H-indole-3’-

carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (9) as well

as kynurenine (10) are among the most well-characterized

endogenous AhR ligands. Accordingly, differences in ligand

binding may differentially modulate AhR functionality (11).

Indeed, AhR interacts with a diverse set of binding partners, such

as RelA (12), estrogen receptor a (ERa) (13), Kruppel-like factor 6
(KLF6) (14), among others, at both xenobiotic response elements
Frontiers in Oncology 02
(XRE) and non-canonical XRE (nc-XRE) elements within the DNA,

resulting in distinct gene expression changes.

AHR-deficient murine models have provided critical insight

into AhR’s endogenous functions, revealing its role in the immune

system, hepatic growth and development, and fertility (15). AhR-

null mice remain viable and fertile, making them ideal models to

study cancer development and progression.
AhR in tumor biology

AhR is ubiquitously expressed and dysregulated in a wide range

of cancer types. Its function as a tumor modulator is complex, as AhR

can act as pro-tumorigenic or anti-tumorigenic factor depending on

the cancer cell type, sometimes, with conflicting reports (Figure 3).

Here, we summarize the current state of knowledge of the tumor

modulatory roles of AhR based on varying cancer subsets.
FIGURE 1

The domains of human AhR. The human AhR protein consists of an N-terminal basic helix-loop-helix (bHLH) domain for DNA binding, protein
dimerization, and Hsp90 binding; a PAS-A domain for protein dimerization and Hsp90 binding; a PAS-B domain for ligand and Hsp90 binding; and a
C-terminal transactivation domain.
FIGURE 2

AhR signaling. AhR is normally sequestered in inactive form in the cytoplasm through interaction with chaperones (HSP90, XAP2, p23, and Src). Upon
binding of exogenous or endogenous ligands, AhR dissociates from the complex and translocates to the nucleus where it dimerizes with ARNT or
KLF6, among others, to induce transcription of target genes. XRE = xenobiotic response element; NC-XRE = non-canonical XRE.
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Blood cancers

AhR is emerging as a tumor modulator in hematological

malignancies, including acute myeloid leukemia (AML), multiple

myeloma, chronic lymphocytic leukemia (CLL), and lymphomas,

where its precise roles are just beginning to be understood. In AML,

some reports suggest a tumor-promoting function of AhR, with high

AhR expression and constitutive activity observed in AML patients

(16). Scoville et al. (16) found that AML cells produce soluble ligands

that activate AhR signaling in natural killer (NK) cells, resulting in the

upregulation of miR-29b that impairs NK cell function. Consequently,

AhR inhibition re-sensitizes AML cells to NK cell-induced cytotoxicity

(16). On the contrary, other studies have shown reduced AhR signaling

in AML cells, with AhR promoting AML differentiation, suppressing

leukemic burden, and modulating AML resistance to bromodomain

inhibitors (17). These discrepancies may be explained by differential

ligands used among the studies; however, more work is needed to

clarify how AhR alters AML disease progression.

Our group recently identified AhR as a poor prognostic factor in

multiple myeloma patients that positively regulates the polyamine

biosynthesis through transcriptional regulation of key players

ornithine decarboxylase 1 (ODC1) and antizyme inhibitor 1

(AZIN1), and supports multiple myeloma cell proliferation (18).

Subsequent corroborative studies by Hughes et al. (19) have

demonstrated that AhR antagonism suppresses multiple myeloma

cell viability, alters immune surface markers, and sensitizes multiple

myeloma to NK cell cytotoxicity.

In CLL, microarray analysis revealed high AHR mRNA and

target genes expression relative to other human B-cell lineage
Frontiers in Oncology 03
cancers, suggesting an oncogenic role for AhR in the disease (20).

Consistently, CLL cells have been found to express indoleamine 2,3-

dioxygenase 1 (IDO1) (21), which converts tryptophan to

kynurenine, a ligand for AhR. IDO1-mediated kynurenine

production rescues CLL cells from venetoclax-induced apoptosis

and upregulates the pro-survival Mcl-1 in an AhR-dependent

manner (21). Additionally, it was shown that the AhR-activating

enzyme, IL4l1, is highly enriched in tumor-supportive monocytes in

the Eµ-TCL1 mouse model of CLL and promotes CLL tumor

progression (22). Thus, these findings imply that targeting AhR in

the CLL tumor microenvironment could be an attractive

therapeutic approach.

Studies in B and T-cell lymphomas have pointed to an oncogenic

role for AhR. A recent report showed that AhR and its activating

enzymes, IDO1 and tryptophan 2,3- dioxygenase (TDO), were highly

expressed in diffuse large B-cell lymphoma (DLBCL) patient samples

and were inversely correlated with patient survival (23). AhR localizes

to the nucleus of DLBCL cell lines and drives expression of the

germinal center oncogenes, MEF2B and BCL6 (24). These studies

raise the question of how endogenous ligands generated by IDO1 and

TDO could modulate AhR activity in lymphomas.
Breast cancer

Studies in breast cancer have revealed complex tumor

regulatory functions for AhR. AhR is overexpressed and

constitutively active in breast cancer (25), where it is thought to

have varying effects depending on the ligand and cell type. It is well-
FIGURE 3

The dual role of AhR in tumor biology. AhR acts as a tumor promoter or as a tumor suppressor across representative cancer types. AhR regulates a
variety of factors with either an oncogenic function (red) or anti-tumorigenic function (green), sometimes with opposing findings within the same
subset of cancer.
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established that there is an inhibitory crosstalk between AhR and

estrogen receptor (ER) pathways, the mechanisms of which are

described in great detail elsewhere (26) and also mentioned below.

Consequently, ER status may influence the pro- or anti-

tumorigenicity of AhR.

In triple-negative breast cancer – characterized by lack of

expression of ER, progesterone receptor (PR), and lack of human

epidermal growth factor receptor 2 (HER2) overexpression – TDO

is particularly elevated and drives AhR activity to promote

migration, anoikis resistance, and tumor metastasis (25, 27).

Goode et al. (28) showed that shRNA-mediated depletion of AhR

attenuates tumor growth in a xenograft human triple negative

breast cancer (TNBC) MDA-MB-231 murine model. Stanford et

al. (29) determined that AhR controls cancer stemness in human

TNBC Hs578T cells, as AhR knockdown decreases tumor sphere

formation and in vivo tumor growth via downregulation of

ALDH1A1 and SOX2. While these reports provide evidence that

AhR plays an oncogenic role in triple-negative breast cancer, other

studies describe opposite results. siRNA-mediated AhR knockdown

has been found to increase MDA-MB-231 invasion (30). These

discrepancies are further exacerbated by conflicting results obtained

with AhR ligands that suggest AhR acts a tumor suppressor in

triple-negative breast cancer. A wide array of AhR agonists

including TCDD (31), 6-methyl-1,3,8-trichlorodibenzo-furan

(MCDF) (31), and omeprazole (30) have repressed viability,

proliferation, invasion, and/or metastasis in MDA-MB-231 or

MDA-MB-468 cells in an AhR-dependent manner. These findings

suggest that ligand-mediated activation of AhR in TNBC has

differing effects than genetic AhR manipulation. This highlights

the complexity of AhR functions in triple-negative breast cancer

and necessitate further work to understand these differences.

In breast cancer subtypes where ER is positively expressed, AhR

has been described to exert tumor suppressive functions. Köhle et al.

found that expression of a constitutively active mutant of AhR

impairs the estrogen-dependent growth of MCF-7 cells (32).

Consistent with these data, numerous reports have shown that

AhR ligands have anti-tumorigenic effects in ER+ breast cancer

cells. For example, in MCF-7 cells, TCDD counteracts estrogen-

mediated proliferation and G1/S phase cell cycle progression and

suppresses xenograft tumor growth in vivo (32, 33). Thus, there is

consistent evidence from multiple laboratories that AhR is tumor

suppressive in ER+ breast cancer cells. While this has generated

efforts to therapeutically modulate AhR in ER+ patients, clinical

trials have thus far not yielded success.
Colon cancer

An increasing multitude of reports suggest a tumor regulatory

role for AhR in colorectal cancer. A study by Kawajiri et al. (34)

detected low AhR protein levels in human cecal cancer specimens,

and determined that AHR-deficient mice harbor more cecal tumors

than wild-type mice. Moreover, in the APCMin/+ model of familial

adenomatous polyposis, supplementation of the AhR ligands,

indole-3-carbinol (I3C) and 3,3’-diindolylmethane (DIM), in the

diet significantly delayed intestinal carcinogenesis (34). Other
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groups have corroborated a tumor suppressive function for AhR

in colon cancer. Deletion of AHR in the APCS580/+; KRASG12D/+

mouse model of colorectal cancer promotes proliferation and tumor

growth and decreases mouse survival rate (35). At the same time,

various other publications suggest a tumor promoting role for AhR

in colon cancer. Recently, Miyazaki et al. (36) found that patient-

derived colon cancer spheroids express high levels of TDO2 and

kynurenine. TDO2 promotes metastasis of colon cancer cells to the

liver, upregulates programmed death ligand 1 (PD-L1) and

suppresses immune responses, and maintains Wnt signaling in an

AhR-dependent manner (36). Zhang et al. (37) showed that IDO1

expression in colon cancer cells stalls T cell proliferation. In a model

of chronic colitis-associated cancer, IDO1-depleted mice have

smaller and fewer tumors, reduced infiltrating regulatory T cells

as well as increased CD8+ T cell abundance that is reversed with

supplementation of kynurenine (37). Interestingly, gut microbiota

such as Fusobacterium nucleatum produce formate, which drives

metastatic dissemination, stemness, and increased Th17 cell

infiltration via AhR signaling (38). Altogether, these findings

reveal the complexity of AhR as a tumor modulator in colon

cancer. While many in vivo studies suggest a tumor suppressive

role, in vitro studies with ligands have generated opposing findings.

This may be partly explained by the fact that tumor development in

an AHR-deficient mouse model is distinct from AhR gain during

tumorigenesis. Investigation into how the gut microbiome alters

colorectal cancer progression is an emerging topic and further study

will provide valuable insight into this research area.
Esophageal and stomach cancers

In upper gastrointestinal tract tumors of the esophagus and

stomach, a growing body of literature addresses the role for AhR in

cancer progression. In esophageal cancer, various reports suggest

AhR acts as a tumor promoter. It has been shown that AhR is

highly expressed in patient-derived esophageal squamous cell cancers

and correlates with poor overall survival (39). Genetic AhR

overexpression promotes esophageal carcinoma migration and

invasion via upregulation of phosphorylated epidermal growth

factor receptor (p-EGFR) and RhoA/ROCK1 (39). Studies in mice

demonstrate that esophageal squamous cell carcinoma cells express

TDO, which promotes tumor growth and induces monocyte

differentiation into the pro-tumorigenic M2 macrophage via AhR

(40). While collectively these studies support a role for AhR in

promoting esophageal carcinogenesis, differing observations were

noted with ligand AhR activation. Treatment of esophageal

squamous cell carcinoma cells with the AhR ligand 3,3’-

diindolylmethane (DIM) represses proliferation, invasion,

migration, and tumor growth in xenograft models (39).

A pro-tumorigenic role for AhR has also been largely reported

in gastric cancers. Transgenic mice expressing constitutively active

AhR develop hamartomatous tumors in the glandular part of the

stomach, which is accompanied by a downregulation of osteopontin

(41). AhR is strongly expressed and localized in the nucleus of

human gastric cancer tissues and cell lines (42). Genetic depletion of

AhR suppresses viability, proliferation, migration, and invasion of
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gastric cancer cells, and in vivo administration of the AhR inhibitor,

biseugenol, prevents gastric tumor growth, metastasis, and

peritoneal dissemination (42).
Gynecologic malignancies

The role of AhR in gynecologic malignancies, including ovarian

and uterine tumors, is just beginning to be understood. In human

ovarian cancer tissues, immunohistochemistry analysis has shown

positive AhR staining in a range of histological subtypes (43). IDO1

is also expressed by ovarian carcinomas where its levels are

sustained by an autocrine AhR-IL-6-STAT3 signaling loop (44).

In vivo experiments in mice have demonstrated that ovarian

tumoral IDO1 mediates PD-1 upregulation on CD8+ T cells via

AhR and causes infiltration of suppressive immune cells in the

tumor microenvironment, augmenting ovarian tumor growth (45).

These studies suggest a potential oncogenic role for AhR in ovarian

cancer. However, treatment of ovarian cancer cell lines with AhR

agonists appears to have varying effects depending on the ligand

and cell type. For example, exposure of cells to the AhR agonist,

ITE, decreases proliferation of OVCAR-3 cells and suppresses

migration of SKOV-3 cells, but has no effect on the IOSE-385 cell

line (43). As in breast cancer, these data may be partly explained by

inhibitory crosstalk of the AhR signaling pathway with the estrogen

receptor (ER) pathway (46). Further investigation is needed to

clarify the tumorigenic role of AhR in ovarian cancers.

In endometrial cancer, mixed observations regarding the tumor

regulatory role of AhR have been reported. Some studies suggest

AhR plays an oncogenic role in endometrial cancer, as AhR is

upregulated in human endometrial cancer lesions and its increased

expression significantly correlates with higher tumor grade (47).

Recent work by Li et al. (47) shows that genetic depletion of AHR

reverts the growth, invasion, and motility induced by knockdown of

the tumor suppressive transcription factor, nuclear factor 1-C

(NF1C) in HHUA, HEC-6, and hEM cell lines, suggesting that

NF1-C suppresses AhR-mediated tumorigenic functions. Ligand-

induced AhR activation in endometrial cancer largely has anti-

estrogenic and tumor suppressive effects, as seen in ER+ positive

breast cancer. TCDD, B[a]P, and MCDF suppress estrogen-induced

Ishikawa and ECC-1 cell proliferation. ITE reduces proliferation,

migration, and in vivo tumor growth of AN3-CA, HCE-1B, and

Ishikawa cells in an AhR-dependent manner (48). Again, these

results highlight how AhR’s effects are strongly dependent on ligand

and on cell type.
Head and neck cancers

An increasingly important role for AhR as a tumor promoter

has been demonstrated in various head and neck cancers. AhR is

constitutively active in head and neck squamous carcinoma cells

where it promotes migration and invasive capability, and drives

expression of IL-6 and growth factors, including amphiregulin

(AREG), epiregulin (EREG), and platelet-derived growth factor A

(PDGFA) (49). Recently, Frank et al. (50) showed that antibiotic
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treatment of a chemically-induced mouse model of oral squamous

cell carcinoma reduced AhR activity, raising the possibility that

Lactobacillus spp., enriched in this cancer type, activates AhR (50).

Similarly, exposure of oral squamous cell carcinoma cells to the

supernatants from Pseudomonas aeruginosa and Porphyromonas

gingivalis, the latter commonly found in the oral cavity, induced

AhR activity and augmented expression of ALDH1, a marker

associated with chemoresistance (51). Consequently, AhR

antagonism increases sensitivity to cisplatin, decreases tumor

sphere formation, and reduces xenograft tumor growth in oral

squamous cell carcinoma (51). AhR also modulates the tumor

microenvironment of oral squamous cell carcinoma. Kenison et

al. (52) showed that AhR deletion in murine orthotopic oral cancer

cells prevents tumor growth and decreases expression of inhibitory

immune checkpoints PD-L1, CD39, CTLA-4, PD-1, and Lag3 on

multiple immune cell types.
Liver and pancreatic cancers

The tumor modulatory role of AhR is well-appreciated in liver

cancers but remains controversial. Although most reports suggest a

pro-tumorigenic function for AhR in hepatocellular carcinoma,

some studies have documented a tumor suppressive role. It has

been shown that AhR is highly expressed in human liver cancer

tissues and cell lines (53). In the diethylnitrosamine (DEN)-induced

mouse model of hepatic carcinogenesis, some groups found that

constitutively active AhR expression promotes liver tumor

formation (54). Conversely, another report showed that

DEN-induced AhR-deficient mice have greater hepatic tumor

incidence, increased proliferation, and higher IL-6 and TNF-a
expression (55). Interestingly, there are also mixed findings

regarding endogenous AhR activity in liver cancers. Some studies

show the overexpression of TDO in human hepatocellular

carcinoma patient tissues that drives cell growth, migration,

invasion, and epithelial to mesenchymal transition (EMT) via the

AhR pathway (56). However, a contrasting report found that TDO

is downregulated in human hepatocellular carcinomas, inhibits cell

proliferation, and represses tumor xenograft growth (57).

Intriguingly, a recent study suggests that tryptophan metabolites

produced by gut flora such as Lactobacillus reuteri attenuates

expression of sterol regulatory element-binding protein 2

(SREBP2) and correspondingly prevents liver tumorigenesis in an

AhR-dependent manner (58). In summary, these data illustrate that

the tumor modulatory functions of AhR in liver cancers remain to

be fully understood.

AhR has also been found to modulate pancreatic cancer

progression. Early studies by Koliopanos et al. (59) demonstrated

that AhR is overexpressed in human pancreatic cancer tissue

specimens and cell lines. This work has shown that AhR

activation by agonists – including TCDD, MCDF, and DIM –

suppresses the growth of pancreatic cancer cells (59). However,

more recent studies have suggested a tumor promoting role for AhR

in pancreatic tumors. Human pancreatic cancers highly express

IDO1 and TDO, which correlate with poor patient prognosis, and

causes increased migration and invasion of cells and spheroids via
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kynurenine-mediated AhR activation (60). Consistently, metabolic

profiling of pancreatic ductal adenocarcinoma patients revealed that

higher kynurenine levels are associated with poorer overall survival

of patients (61). Tumors expressing high levels of IDO1 are

enriched for AHR pro-tumorigenic target genes, including

NFE2L2 (Nrf2), SERPINB2, IL1b, IL6, and IL8 (61). Furthermore,

AhR is expressed by tumor-associated macrophages where its

activation by Lactobacillus-metabolized tryptophan metabolites

drives immunosuppression and pancreatic tumor growth (62).

Thus, while exogenous AhR activation appears to have a tumor

suppressive effect, emerging evidence suggests that endogenous

ligands may promote pancreatic cancer progression.
Lung cancer

An increasingly visible role for AhR as a regulator of lung

cancer tumorigenicity is being appreciated, with most reports

focused on non-small cell lung cancers. A solid body of data

published by various laboratories supports a pro-tumorigenic role

for AhR in lung cancer. Nuclear AhR expression is significantly

associated with poor survival of patients with non-small cell lung

carcinoma (63). Consistently, AhR inhibition or knockdown

sensitizes non-small cell lung cancer to EGFR tyrosine kinase

inhibitors in vitro and in vivo (63). Interestingly, Wang et al. (64)

found that cigarette smoke upregulates PD-L1 via AhR in non-small

cell lung cancer cells, and treatment with a-PD-L1 attenuates

benzo-alpha-pyrene (BaP)-induced lung cancer in vivo .

Accordingly, AhR inhibition with a-naphthoflavone (ANF)

significantly enhances the efficacy of a-PD-L1 in lung cancer

mouse models and prolongs the lifespan of mice (64). While

these studies provide evidence that AhR acts as a tumor

promoter, there are also reports suggesting a tumor suppressive

function for AhR in lung cancer. Nothdurft et al. (65) determined

that AHR depletion by shRNA augments invasiveness in vitro and

metastatic capability of non-small cell lung cancer cells in vivo via

regulation of the EMT pathway, ATF4 signaling, and MMP24

expression. AhR has also been shown to inhibit tumor growth

and suppress the expansion of lung progenitor cells in a murine

model of KRASG12D-induced non-small cell lung cancer (66). Thus,

the role of AhR in lung cancer requires further study to fully

understand its tumorigenic functions.
Nervous system tumors

AhR has been reported to play increasingly important roles in

central and peripheral nervous system tumors. In the context of

malignant gliomas, including glioblastoma, some groups have

described AhR as a tumor promoter (10, 22, 67, 68), while others

have shown that AhR acts as a tumor suppressor (69). Opitz et al. (10)

originally established TDO-derived kynurenine produced by human

gliomas as an oncometabolite that activates AhR, supports glioma cell

survival and motility, and suppresses immune responses. AhR drives

CD39 and CD155 expression in tumor-associated macrophages,

thereby impairing T cell response in glioblastoma (68).
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Interestingly, R-2-hydroxyglutarate (R-2-HG), a metabolite that

accumulates in isocitrate dehydrogenase (IDH)-mutant gliomas,

enzymatically induces TDO in tumor-infiltrating myeloid cells,

leading to AhR-dependent suppression of macrophage function

and anti-tumor immunity (67). On the other hand, conflicting

reports have demonstrated that kynurenine does not alter AhR

activity or invasion of glioblastoma cells, and that the AhR

antagonist, CH-223191, inhibits glioblastoma invasion in an AhR-

independent manner in both AhR-expressing and AhR-silent cell

lines (69). These studies show that AhR knockdown increases

glioblastoma cell invasion and migration by induction of MMP9,

CXCL12, and CXCR4 (69). Collectively, while these studies

demonstrate the importance of AhR in malignant gliomas, more

research is needed to understand its tumor modulatory roles that may

shed light into contradictory data reported by different laboratories.

The role of AhR in neuroblastoma is largely understudied. Recent

work from our laboratory suggests AhR acts as a tumor promoter in

MYCN-amplified neuroblastoma (70). We have found that AhR

transcriptional activity correlates with poor patient prognosis,

positively regulates MycN, and represses differentiation of MYCN-

amplified neuroblastoma cells by altering chromatin accessibility and

modulating the retinoic acid receptor pathway (70). Accordingly,

AhR antagonism with the AhR antagonist clofazimine (CLF)

synergistically augments retinoic acid-induced differentiation (70),

suggesting that modulation of AhR may be a potential and promising

therapeutic approach for improving standard-of-care in this disease.

We and others have also reported that AhR has a tumor suppressive

role in non-MYCN-amplified neuroblastoma cells. Treatment of non-

MYCN-amplified neuroblastoma cells with TCDD has been found to

induce non-apoptotic cell death via an AhR-dependent mechanism

(71). Wu et al. reported that AhR induces cell differentiation, reduces

in vivo tumor burden, and downregulates MycN expression in the

context of non-MYCN-amplified neuroblastoma (72, 73). Our work

revealed that AhR suppresses cMYC in similar systems (70). Thus,

current evidence lends support to the hypothesis that AhR has a dual

tumor modulatory role depending on the neuroblastoma subtype.
Prostate cancer

In prostate cancer, the tumor modulatory effects of AhR appear

to be context-dependent, differing based on androgen sensitivity or

refractoriness. Multiple lines of evidence suggest AhR exerts tumor

suppressive effects in androgen-sensitive prostate cancer, with some

mixed reports. Studies in the transgenic, androgen-sensitive TRAMP

model of prostate cancer show that AhR protects against prostate

cancer development, as AHR+/+ TRAMP mice exhibit lower tumor

formation than AHR-/- or AHR+/- TRAMP mice (74). In line with

these findings, treatment of TRAMP mice with the selective AhR

modulator, 6-methyl-1,3,8-trichlorodibenzo-furan (6-MCDF), which

displays AhR agonist activity in prostate cell lines, inhibits prostate

metastatic ability (75). In vitro experiments with AhR agonists in

androgen-sensitive human prostate cancer cells have corroborated

these murine studies. The AhR agonist, carbidopa, suppresses LNCaP

proliferation and induces AhR-mediated proteasomal degradation of

androgen receptor (AR) (76).
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In androgen-refractory prostate cancer models, however, AhR

has been suggested to act as a tumor promoter. AhR is highly

expressed and constitutively active in androgen-independent

(hormone-refractory) prostate cancer cells relative to androgen-

sensitive prostate cancer cells (77). Immunohistochemistry of

human prostate cancer tissues shows increasing AhR expression

with tumor grade (77). AhR depletion or inhibition decreases cell

proliferation, reduces AR protein levels, and inhibits AR target gene

expression in androgen-independent cells (77). Further studies are

needed to understand the crosstalk of the AhR and AR pathways

and how they impact prostate cancer progression in both androgen-

sensitive and androgen-refractory settings.
Skin cancers

Several studies imply a tumor regulatory role for AhR in

melanoma. Genome-wide association studies have suggested that

the AHR gene locus at 7p.21.1 confers susceptibility to cutaneous

malignant melanoma (78). Recent work has shown that AhR drives

resistance to BRAF inhibitors in melanoma, and that AhR

inhibition with resveratrol and flavinoids re-sensitize melanoma

to BRAF inhibition (79). Although these studies demonstrate an

oncogenic role for AhR, there are also some reports indicating that

AhR has a tumor suppressive role in melanoma. In particular,

Contador-Troca et al. (80) found that AhR suppresses growth and

metastasis of melanoma in vivo. Immunohistochemistry revealed

that human melanoma patient samples express lower levels of AhR

compared to human nevi (80). Interestingly, Bender et al. found

that tryptophan-derived metabolites derived from Lactobacillus

reuteri promote immune-checkpoint inhibitor efficacy in

melanoma via activation of the AhR (81).
Urothelial tumors

Recent reports suggest a pro-tumorigenic role for AhR in urothelial

cancers. Through analysis of whole-genome sequencing data, Vlaar et

al. (82) identified recurrent in-frame deletions in exons 8 and 9 of AHR

(AHRDe8-9) in 10% of metastatic urothelial cancer patients. AHRDe8-9

causes ligand-independent AhR activation and anchorage-independent

growth of bladder organoids, acting as a novel driver mutation (82).

In addition, Shi et al. (83) newly characterized AHRQ383H as an

apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like

(APOBEC)-associated driver hotspot mutation in bladder cancer.

AHRQ383H leads to higher sensitivity of AhR to ligand activation,

greater AhR activity, and increased dependency of luminal bladder

cancer cells on AhR for cell survival (82, 83). High expression of AhR

and its target genes, CYP1A1 and CYP1A2, has been correlated with

increased histological grade, tumor stage, and progression in muscle-

invasive bladder cancer and upper urinary tract cancers (84).
AhR and immunity

Notably, AhR not only contributes to tumor growth and

survival in a tumor-intrinsic fashion as highlighted in the
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AhR-dependent regulation of the tumor microenvironment,

especially with regard to the immune system, to modulate tumor

immune surveillance and allow escape from immunosuppression. A

plethora of endogenous and exogenous AhR ligands can be found in

the tumor microenvironment due to tumor cells’ related

metabolism, the organismal microbiota metabolism, as well as

dietary consumption and pollutants absorption. In most cases,

AhR activation results in the alteration of the tumor-immune cell

interactions, with suppression of anti-tumor functions and

induction of tumor-permissive or tumor-promoting immune

landscapes, as AhR has been shown to regulate the differentiation

of multiple cell types in both the innate and the adaptive immune

response compartments. Several recent reviews have extensively

described the role of AhR in the regulation of the immune system

during cancer progression (85–88); thus, here we will briefly

summarize some of the recent key findings.

AhR activation has been found to promote the trans-differentiation

of antigen-presenting cells (APCs), such as dendritic cells (DCs) and

macrophages, toward a more tolerogenic or tumor-permissive

phenotype, resulting in the generation of immune-suppressive

regulatory T (Tregs) cells. Hezaveh et al. reported that the activation

of AhR in tumor-associated macrophages (TAMs) from microbiome-

produced tryptophan metabolites leads to immunosuppression in

pancreatic ductal adenocarcinoma (PDAC) thus promoting tumor

growth (62). In the same study, it was found that, conversely, AhR

pharmacological antagonism, as well as AhR deletion from myeloid

cells, results in improved T-cell tumor infiltration, leading to tumor

suppression (62). Likewise, Sadik et al. revealed that interleukin 4-

induced 1 (IL4I1) can generate AhR ligands such as indole metabolites

and kynurenic acid, which result in the suppression of adaptive

immunity (22). Interestingly, immune checkpoint inhibitors (ICIs)

whose use has been incorporated in the standard-of-care of multiple

cancer types, were found to induce IL4I1 and activate AhR, thus

generating a negative feedback loop (22). Inadvertent AhR activation

by chemotherapy, resulting in suppression of innate immunity

responses (i.e interferon type I production) has been recently

reported also in triple negative breast cancer (89).

Work by Wu et al. (90) revealed the presence of an ARID5A-

IDO1-AhR axis that leads to chimeric antigen receptor T-cell

(CAR-T) exhaustion and immune evasion in colorectal cancer.

Additionally, the authors performed a pan-cancer analysis which

revealed high AhR expression in tumor-infiltrating immune cells,

where AhR antagonism with a novel compound (BAY-2416964

(91)), see section below) showed promising potential in restoring

immune cell function and enhancing antigen-specific cytotoxic T

cell responses (90).

The role that AhR plays in the development and cytotoxic

capabilities of natural killer (NK) cells is still complex and

controversial, with some groups proposing AhR activation to be

critical for proper NK cells cytotoxicity and functions (92, 93) and

others claiming that AhR activation dampens NK cells activity

instead (94).

While more work needs to be done to address the discrepancies,

the consensus seems to be that AhR antagonism would be beneficial

to promote a tumor-suppressive microenvironment and relieve the
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immune-suppression often seen associated with the more

aggressive tumors.
Therapeutic modulation of AhR
in cancer

Given the well-recognized role of AhR as a regulator of tumor

biology, many efforts are focused on developing therapeutic strategies

to modulate AhR in cancer patients. Notably, this includes

synthesizing novel AhR modulators as well as repurposing existing

agents for the treatment of cancer patients. Certain agents, including

the AhR agonist aminoflavone (AFP464) and the AhR antagonist

StemRegenin-1 (SR1) (95), have been tested in clinical trials for breast

neoplasms and solid tumors (NCT01015521, NCT00369200,

NCT01233947) or hematological malignancies (NCT02765997),

respectively. However, these trials were either withdrawn or

terminated due to toxicity and poor side effect profiles. Currently,

phase 1 clinical trials are ongoing for a novel AhR antagonist, BAY-

2416964 (96), developed by Bayer and researchers at the German

Cancer Research Center (DKFZ) for patients with advanced solid

tumors (NCT04069026, NCT04999202). Preliminary reports

presented at ASCO 2023 showed that BAY-2416964 seems to be

well tolerated, suppresses AhR activation in vivo, and modulates

immune functions. The authors noted that of 67 patients evaluable
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for response by RECIST, 22 (32.8%) had stable disease (91).

Additionally, Ikena Oncology recently developed the novel AhR

inhibitor, IK-175 (97), which is in phase 1 trials for urothelial

cancers and solid tumors (NCT04200963 and NCT05472506) and

received FDA Fast Track Designation. While not yet approved for

cancer therapy, the AhR agonist tapinarof (98) is in clinical trials

for atopic dermatitis and plaque psoriasis (NCT05142774,

NCT05680740) and could potentially be tested for the treatment of

dermatological malignancies in the future. These up-and-coming

trials are promising and could represent the first AhR modulators

to be clinically approved in patients for cancer therapy.

There are a growing number of FDA-approved drugs approved

for other indications that have been recognized as AhR modulators,

with demonstrated anti-tumor efficacy in pre-clinical studies (see

Table 1). These include carbidopa (DOPA decarboxylase inhibitor)

(76, 99, 100), dopamine (adrenergic receptor agonist) (101),

flutamide (anti-androgen) (102), leflunomide (anti-rheumatic

agent) (103, 104), nimodipine (anti-hypertensive agent) (30, 104),

omeprazole (proton pump inhibitor) (30, 105, 106), raloxifene

(estrogen modulator) (108), sorafenib (kinase inhibitor) (109),

sulindac (nonsteroid anti-inflammatory) (30, 104, 110), transilast

(anti-allergic agent) (107), and vemurafenib (BRAF inhibitor) (79).

Our group previously identified clofazimine (CLF), an FDA-

approved antibiotic approved for drug-resistant tuberculosis and

lepromatous leprosy, as a novel AhR antagonist with anti-multiple
TABLE 1 Clinically approved AhR modulators for cancer therapy.

Agent Mode of
AhR Modulation

Cancer Type(s) Reference
(s)

Clinical Trial FDA
Approval

BAY-
2416964 (96)

Antagonist Head and neck, Lung, Colon 96 NCT04069026 No

Carbidopa (76,
99, 100)

Agonist Pancreatic, Breast, Prostate 76, 99, 100

Clofazimine
(18, 70)

Antagonist Multiple myeloma, Neuroblastoma 18, 70 Yes

Dopamine (101) Agonist Glioblastoma, Colon, Pancreatic 101 Yes

Flutamide (102) Agonist Liver cancer 102 Yes

IK-175 (97) Inhibitor Urothelial 97 NCT04200963 No

Leflunomide
(103, 104)

Agonist/Partial Agonist Melanoma, Breast 103, 104

Nimodipine
(30, 104)

Agonist Breast 30, 104 Yes

Omeprazole (30,
105–107)

Agonist Pancreatic, Breast, Esophageal, Glioblastoma 30, 105–107 Yes

Raloxifene (108) Agonist Breast, Liver 108 Yes

Sorafenib (109) Antagonist Liver, Ovarian 109 Yes

Sulindac (30,
104, 110)

Agonist Breast, Colon 30, 104, 110 Yes

StemRegenin-
1 (95)

Antagonist Acute myeloid leukemia, acute lymphocytic leukemia,
chronic myelogenous leukemia

95 No

(Continued)
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myeloma and anti-neuroblastoma efficacy (18, 70). Importantly, the

favorable safety profiles of these already FDA-approved agents

warrant their testing in clinical trials for cancer patients, as they

hold promise as anti-cancer drugs that could be rapidly translated

into the clinic.

It is important to note, however, that AhR antagonism may not

benefit all type of cancers as, as noted in the sections above, in a

subset of diseases AhR has been shown to act as a tumor suppressor

(i.e. ER+ breast cancer, androgen-sensitive prostate cancer, non-

MYCN-amplified neuroblastoma, see Figure 3). Additionally, while

not many severe side effects have been revealed so far by the use of

AhR antagonists in current clinical trials, systemic inhibition of

AhR may still end up causing co-morbidities later in life, as AhR has

well-documented physiological roles in normal development, as

well as still controversial roles in some of the immune cell

populations (i.e. NK cells).
Conclusions and future perspectives

A tremendous body of literature continues to provide support

for AhR as a critical modulator of tumor progression across a wide

variety of cancer types – from solid and liquid tumors to adult and

pediatric malignancies. Like many other transcription factors, AhR

has a dual role in cancer biology, with either oncogenic or tumor

suppressive effects that are highly contextual, depending on the

specific ligand or cell type. While these context-specific effects have

often produced conflicting results, they also provide avenues for

further investigation. The ligand-specific effects of endogenous

ligands, such as those produced by gut microbiota, on tumor

growth is an exciting and emerging topic with potential

therapeutic applications. Finally, the development and clinical

testing of novel AhR modulating drugs, such as the FDA Fast

Track-Designated AhR inhibitor, IK-175, are promising and could

represent potential new cancer therapies.
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AhR aryl hydrocarbon receptor

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

bHLH basic helix-loop-helix

HSP90 heath shock protein 90

XAP2 X-associated protein 2

ARNT AhR nuclear translocator

AHRR AhR repressor

PAH polycyclic aromatic hydrocarbons

ITE 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester

ER estrogen receptor

PR progesterone receptor

HER2 human epidermal growth factor receptor 2

KLF6 Kruppel-like factor 6

AML acute myeloid leukemia

CLL chronic lymphocytic leukemia

NK natural killer cells

ODC1 ornithine decarboxylase 1

AZIN1 antizyme inhibitor 1

IDO1 indoleamine 2,3-dioxygenase 1

TDO tryptophan 2,3- dioxygenase

DLBCL diffuse large B-cell lymphoma

TNBC triple negative breast cancer

shRNA short-hairpin RNA

siRNA small-inhibiting RNA

MCDF 6-methyl-1,3,8-trichlorodibenzo-furan

I3C indole-3-carbinol

DIM 3,3’-diindolylmethane

PD-1 programmed death receptor 1

PD-L1 programmed death ligand 1

EGFR epidermal growth factor receptor

NF1C nuclear factor 1-C

AREG amphiregulin

EREG epiregulin

PDGFA platelet-derived growth factor A

DEN diethylnitrosamine

EMT epithelial-to-mesenchymal transition

SREBP2 sterol regulatory element-binding protein 2

BaP benzo-alpha-pyrene
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R-2-HG R-2-hydroxyglutarate

IDH isocitrate dehydrogenase

CLF clofazimine

6-MCDF 6-methyl-1,3,8-trichlorodibenzo-furan

AR androgen receptor

Tregs regulatory T cells

CAR-T chimeric antigen receptor T cells.
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