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Hepatocellular carcinoma (HCC) is a prevalent malignant cancer worldwide,

characterized by high morbidity and mortality rates. Alpha-fetoprotein (AFP) is a

glycoprotein synthesized by the liver and yolk sac during fetal development.

However, the serum levels of AFP exhibit a significant correlation with the onset

and progression of HCC in adults. Extensive research has demonstrated that the

tumor microenvironment (TME) plays a crucial role in the malignant

transformation of HCC, and AFP is a key factor in the TME, promoting HCC

development. The objective of this review was to analyze the existing knowledge

regarding the role of AFP in the TME. Specifically, this review focused on the

effect of AFP on various cells in the TME, tumor immune evasion, and clinical

application of AFP in the diagnosis and treatment of HCC. These findings offer

valuable insights into the clinical treatment of HCC.
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1 Introduction

Hepatocellular carcinoma (HCC) is a prevalent malignant neoplasm worldwide, with

the third highest fatality rate and increasing incidence and mortality rates (1–3). Despite

substantial advancements in contemporary medical knowledge regarding the diagnosis and

treatment of HCC, its incidence and mortality rates remain high. Given the high

heterogeneity of HCC, early diagnosis and treatment play a crucial role in improving

patients’ survival (4, 5). Alpha-fetoprotein (AFP) is an important tumor marker for

diagnosing and treating liver cancer. It is also an important indicator for clinical

diagnosis of liver cancer metastasis (6, 7). AFP, a glycoprotein primarily synthesized by

the yolk sac and fetal liver during embryogenesis, is critically involved in sustaining

embryonic development and placental functionality (8). However, the expression of AFP is

extremely low in normal adults (9, 10). Nevertheless, when hepatocytes undergo malignant

transformation, AFP expression exhibits a substantial increase (11, 12). Consequently,

elevated AFP levels serve as a reliable indicator for the development and progression of
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HCC. Generally, high levels of AFP indicate the presence of HCC,

and dynamic changes in AFP level can be used to predict the

prognosis and response to treatment in HCC (7). However, there

are also some patients with liver cancer who have normal AFP levels

or only mildly elevated AFP levels, which may be related to

differences in the type, location, and size of the tumor and the

regulatory mechanism of AFP secretion (11).

The tumor microenvironment (TME) refers to the local tissue

surrounding the tumor, including tumor cells, blood vessels,

immune cells, stromal cells, and matrix molecules (13). The

interaction between the TME and tumor cells plays an important

role in tumorigenesis (14–16). HCCs caused by different etiologies

(hepatitis B virus (HBV), hepatitis C virus (HCV), and chronic

alcohol drinking) exhibit notable differences in their TME. Alcohol

intake has inhibitory effects on immune cells in the TME,

decreasing immune surveillance and enabling tumor cells to

evade the immune response (17, 18). The expression level of AFP

significantly increases during the progression of alcoholic liver

disease to HCC (19). However, the molecular mechanisms

underlying this process are still poorly understood. Chronic

infections with HBV and HCV can lead to immune tolerance,

allowing the viral infection to persist and cause hepatocyte damage,

finally leading to carcinogenesis (20, 21). Studies have found that in

the TME, the X protein of HBV can stimulate the expression of

reprogramming-related proteins by increasing AFP expression,

thus inducing the proliferation of liver cancer stem cells (LCSCs)

(22). HCV infection, on the other hand, upregulates AFP

expression, which decreases the activity of NK cells and reduces

CD4+ cells in the TME (23, 24). The immune dysregulation in the

TME of HCV-related HCC patients is closely related to the elevated

levels of AFP. Although there are significant differences in the TME,

the function of AFP in the TME remains consistent. AFP promotes

the formation of an immune-tolerant microenvironment and

facilitates immune evasion of tumor cells.

As a marker of HCC, AFP plays an important regulatory role in

the TME. However, the current role of AFP in the TME of HCC is

not fully understood. Therefore, a deeper insight into the role of

AFP in the TME is of great significance for the early diagnosis and

treatment of HCC. This article summarizes the role of AFP in the

TME of HCC, especially discussing its effect on liver cancer stem

cells, tumor-associated macrophages, cancer-associated fibroblasts

(CAFs), endothelial cells, mesenchymal stem cells, tumor immune

escape, etc., providing a reference for the clinical diagnosis and

treatment of HCC.
2 The basic structure and function
of AFP

AFP is a fetal-specific alpha-globulin synthesized during fetal

development and present in fetal blood and tissues. It can also be

detected in adult liver and some malignant tumors (25). Human

AFP is similar to albumin, composed of a single polypeptide chain

with a molecular weight of nearly 69 kDa (25, 26). The single-chain

polypeptide of AFP consists of 609 amino acid residues. These
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amino acid residues are arranged in a specific order to form three

structural domains, namely the N-terminal domain (1-210 amino

acid residues; domain I), the central domain (211-402 amino acid

residues; domain II), and the C-terminal domain (403-609; domain

III) (27) (Figure 1A). These three domains of AFP are linked by

disulfide bonds to form a V-shaped structure (Figure 1B). AFP

possesses three distinct structural domains, each exhibiting diverse

biological activities. The N-terminal domain can interact with other

molecules, thereby affecting the function of AFP. For example,

previous studies have found that AFP domain I can bind to the

phosphatase domain of PTEN, thereby affecting PTEN activity (25).

The central domain (domain II) consists of approximately 192

amino acid residues, possesses a high degree of flexibility, and is

easily digested by proteases. The C-terminal domain (domain III) is

the last domain of AFP, which is the most conserved domain,

consisting of about 207 amino acid residues. This domain possesses

a continuous sequence of several hydrophobic amino acids forming

a leucine zipper-like structure. Domain III is responsible for binding

to signaling proteins and receptors, thereby regulating their

biological activity (26–28). Studies also found that AFP domain

III can bind to the C2 domain of PTEN, forming the AFP-PTEN

complex, inhibiting PTEN, activating the PI3K/AKT signaling

pathway, and promoting HCC progression (25). Domain III can

also bind to mucin, scavenger receptors, chemokines, etc. After

binding to its receptor, AFP is endocytosed and packaged with the

receptor and transported to the cell organelles via the Golgi

complex, where it is degraded or activates/blocks cell signaling

pathways (26–28).

AFP secretion and expression are not consistent with HCC

development. One reason is that AFP has two basic forms: native

AFP (nAFP) and tumor-derived AFP (tAFP). nAFP is mainly

produced by the fetal yolk sac and fetal liver and secreted into

fetal circulation. It is a normal plasma protein and does not promote

HCC development. Sometimes, adult individuals express nAFP,

which is mainly observed during physiological cell regeneration and

hematopoiesis. However, tAFP expressed in TME mainly originates

from HCC and can support tumor growth and metastasis.

Interestingly, tAFP is not a mutated form of nAFP and differs

only slightly in terms of glycosylation and lipid-binding

characteristics (29, 30).

AFP described in this article specifically refers to tAFP. AFP

exhibits numerous variability, thereby presenting considerable

challenges in comprehending its biological activity with HCC (31).

AFP variability relies on the types of species, tissues, isoforms,

binding ligands, binding partners, and post-translational

modifications such as N-glycosylation (Figure 1B). Different

variants of AFP possess different biological functions (29); for

example, it was found that the serum levels of fucosylated AFP

variant increased in patients with HCC but were undetectable in the

serum of normal patients (32). Polyunsaturated fatty acids binding

AFP variants play an important role in the TME and affect dendritic

cells (DCs) and natural killer cells (NK cells) activation (33). Despite

extensive studies on the structure of AFP, its biological functions

remain unclear. Further studies are imperative to unveil its precise

association with various physiological and pathological processes.
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3 The role of AFP in the TME of HCC

The interplay among cells within the TME is a crucial factor in

tumor progression, metastasis, and treatment (34, 35). AFP, as a

tumor biomarker, directly modulates tumor cell behavior and the

TME by interacting with tumor-associated cells and molecules.
3.1 AFP is closely related to liver cancer
stem cells

Liver cancer stem cells (LCSCs), also known as liver cancer-

initiating cells, refer to a subpopulation of cells with self-renewal

capacity and stem cell characteristics in the HCCmicroenvironment.

They can produce heterogeneous tumors, are highly invasive and

tumorigenic, and can drive tumor growth, metastasis, and

recurrence (12, 36). Targeted killing of LCSCs can ameliorate

tumor drug resistance and recurrence while preserving normal

tissue activity with high specificity. Due to the presence of various

subpopulations of tumor cells expressing different markers in HCC,

some scholars believe that LCSCs are the key to the development and

heterogeneity of HCC (37, 38).

Previous studies indicated that AFP can enhance the expansion

of LCSCs by activating the PI3K/Akt signaling pathway (39, 40). To

investigate the impact of AFP on LCSCs, researchers measured the

AFP expression in HCC cells firstly, then demonstrated that AFP

not only facilitates the expression of proteins associated with cell

reprogramming but also promotes the expression of LCSCs

markers, including CD44, CD133, and EpCAM. Further analyses

revealed that AFP can induce the malignant transformation of liver

cells by activating the PI3K/AKT signaling pathway, thereby

stimulating the expression of reprogramming-related proteins and

oncogenes and inducing the generation of stem cells (39) (Figure 2).
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Simultaneously, several studies have demonstrated that AFP can

accelerate liver cancer progression by upregulating LCSC markers

K19 and CXCR4 (Figure 2) (41–44). It has also been suggested that

AFP-induced tumor stem cells can secrete AFP (43). LCSCs-derived

AFP can facilitate immune evasion by regulating the behavior of

crucial immune cells in liver cancer cells. Consequently, it has been

suggested that AFP can serve as a biomarker for LCSCs (44). AFP

primarily facilitates stem cell expansion and preserves stemness.

These effects enhance the survival and metastatic potential of

LCSCs, thereby fostering the initiation and progression of HCC.

Subsequent investigations should elucidate the precise mechanism

underlying the interaction between AFP and LCSCs and explore

intervention approaches targeting AFP to enhance the treatment

effect of liver cancer.
3.2 AFP can inhibit the phagocytic ability of
HCC-associated macrophages

A significant number of macrophages infiltrate the tumor

stroma, referred to as tumor-associated macrophages (TAMs)

(45). Experimental evidence indicated that TAMs possess

immune regulatory functions and are closely associated with

tumor growth and progression (46–48). Tumor cell-derived

chemokines, such as CCL2-8 and VEGF, can attract macrophages

into the TME and facilitate their differentiation into the M2

phenotype, thereby promoting tumor progression (49). TAMs

play a crucial role in the malignant progression of HCC (50–52).

Previous studies have demonstrated that purified human

recombinant AFP protein can prevent the phagocytosis of

chicken red blood cells by macrophages. Downregulation of AFP

dampens this inhibitory effect. Subsequent studies have elucidated

that AFP can impede the phagocytic activity of macrophages

toward hepatoma cells and other tumor cells through its

interaction with macrophage receptors (53–55). A recent study

demonstrated that AFP can affect the function of macrophages in

phagocytizing liver cancer cells by inducing the polarization of

TAMs (55). This study employed human monocytic leukemia cells

(THP-1) and monocytes from healthy donors to measure the effect

of AFP on macrophage phenotype and phagocytosis. Their findings

revealed that AFP can facilitate the polarization of macrophages

toward the M2 phenotype and undermine the phagocytic ability of

M1 macrophages toward liver cancer cells. Further analyses

revealed that this process is related to the activation of the PI3K/

Akt signaling pathway. Therefore, AFP is a key cytokine that

inhibits liver cancer cell phagocytosis by macrophages (54).

The effect of AFP on TAMs is multifaceted. It is involved in the

initiation and progression of HCC, thus holding significant

implications for the design of immunotherapeutic approaches for

HCC. Nevertheless, research into the influence of AFP on TAMs

remains nascent. Further elucidation of the mechanisms involved in

the interaction between AFP and TAMs and potential intervention

strategies can undoubtedly enhance the clinical efficacy of

immunotherapy for liver cancer.
A

B

FIGURE 1

The basic structure of AFP. (A) The schematic diagram of the human
AFP protein sequence with three domains. (B) The structure of AFP
and the binding sites of AFP with fatty acids and N-glycosylation.
The structure of AFP displays a V-shaped configuration, consisting
of domain I (N-terminal) on the left side of the V, domain III (C-
terminal) on the right side of the V, and domain II (middle region) at
the base of the V.
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3.3 AFP regulates the immune escape of
liver cancer cells

Immune surveillance serves as the principal protective

mechanism of the human body against external intrusion or

internal genetic alteration, enabling the identification and

eradication of tumor cells. Nevertheless, mutant cells can evade

immune surveillance through diverse mechanisms, accelerating

their proliferation and metastasis, a phenomenon commonly

referred to as tumor immune escape. The mechanisms underlying
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immune evasion of tumor cells encompass a typical expression of

antigens on the tumor cell surface, modification of the molecular

structure of the tumor cell surface, and secretion of

immunosuppressive factors (56).

Based on recent findings, AFP can inhibit the activity of various

immune cells, such as DCs, NK cells, and T cells (56, 57).

Specifically, AFP can reduce the antigen presentation ability of

DCs, thereby preventing DC-mediated activation of T cells (58, 59).

It was found that plasmacytoid DCs (pDCs, immunosuppressive

DCs) are abundant and localized in type 1 Tregs and promote the

production of IL-10 in the TME of HCC. AFP levels correlated with

the high numbers of pDCs, tumor metastasis, and increased tumor

infiltration of Tregs (2).Studies have confirmed that AFP isolated

from human umbilical cord blood acts on monocytes in patients

with liver cancer, inhibiting the conversion of monocytes into

mature DCs. Since AFP can inhibit the maturation of DCs, it can

promote tumor immune escape (29, 60).

Simultaneously, AFP can attenuate its cytotoxicity toward liver

cancer cells by regulating signaling pathways in NK cells (54). AFP

typically does not directly impair the function of NK cells; instead, it

indirectly hampers their function by impeding the maturation of

DCs and decreasing IL-12 secretion by DCs (54, 56). Furthermore,

AFP also suppresses the proliferation and cytotoxicity of T cells,

thereby attenuating their response to liver cancer cells. AFP can

hinder the immune response by inducing lymphocyte apoptosis and

modulating T lymphocyte differentiation into CD4+ T cells and

CD8+ T cells. AFP promotes DC-mediated differentiation of

regulatory T cells (Tregs) and dampens the function of CD8+T

cells and NK cells, thus inducing an immunosuppressive

environment and tumor progression (Figure 3). Despite the
FIGURE 3

DCs and MDSCs involved in AFP-induced immune escape. In the absence of AFP, DCs enhance the function of CD4+ T cells, CD8+ T cells, and NK
lymphocytes, thereby impeding tumor growth. MDSCs activate T and NK lymphocytes, inhibiting tumorigenesis. In the presence of AFP, DCs
promote Treg differentiation but suppress the function of CD8+ T cells and NK cells, consequently fostering an immunosuppressive milieu and
facilitating tumor growth. Additionally, in the presence of AFP, MDSCs hinder the function of T cells and NK cells, thereby promoting tumorigenesis.
FIGURE 2

AFP can promote the expansion of LCSCs. AFP upregulates the
expression of CD133/CD44 and EPCAM by activating the PI3K/AKT
signaling pathway, thereby promoting the expansion of LCSCs. In
addition, AFP can directly upregulate the expression of LCSCs
marker proteins K19 and CXCR4 to accelerate liver
cancer progression.
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limited immunogenicity of AFP, it can provoke immune evasion by

suppressing the function of DCs, NK cells, and T lymphocytes,

forming an immunosuppressive microenvironment, thereby

promoting tumor progression. Myeloid-derived suppressor cells

(MDSCs) are a subset of immature myeloid cells originating from

myeloid hematopoietic stem cells. These cells express CD11b,

CD14, CD15, and CD33 antigens but do not differentiate into

macrophages, DCs, or granulocytes. MDSCs possess AFP receptors

on their cell membranes, which interact with AFP and inhibit the

function of NK cells and T lymphocytes. Consequently, this

interaction establishes a microenvironment conducive to immune

evasion in cancer (30) (Figure 3).

AFP diversely affects the immune evasion of HCC; for example,

it inhibits immune cell activity, disrupts antigen presentation, and

induces immune tolerance. These effects collectively enable liver

cancer cells to evade immune surveillance, thereby augmenting

their immune evasion. Therefore, investigating the mechanisms

governing the interaction between AFP and immune evasion of

liver cancer holds promise for the discovery of novel approaches for

immunotherapy in HCC.
3.4 AFP may interact with cancer-
associated fibroblasts (CAFs) and affect
HCC tumor growth and invasion

Cancer-associated fibroblasts (CAFs) are the most important

cell population in the TME. They promote HCC growth and drug

resistance. They mediate HCC progression by activating signaling

pathways, such as the JAK/STAT, MAPK, and Wnt/b-catenin
pathways (61). AFP also activates these signaling pathways to

promote the malignant transformation of cancer cells. The

interaction of AFP with CAFs is unclear, but AFP can promote

HCC development in patients with liver fibrosis. The blood levels of

secreted AFP can be used to accurately stratify patients with

advanced liver fibrosis for their HCC risk and guide HCC

screening (62). Eliminating serum lectin-reactive alpha-

fetoprotein can suppress post-treatment recurrence of HCC in

cirrhotic patients (63).
3.5 AFP induces endothelial cells to
promote endothelial-to-
mesenchymal transition

The liver is formed by hexagonally shaped anatomical units

named ‘liver lobules’. Blood flows through sinusoidal channels of

the liver lobules and drained into central veins. Sinusoidal endothelial

cells form the wall of liver sinusoids which play critical roles in liver

homeostasis (64). Liver Sinusoidal endothelial cells have multiple

fenestrate that facilitate transferring substrates between blood and the

extravascular compartment (65).

Sinusoidal endothelial cells play important roles in cancer

development. In TME, sinusoidal endothelial cells become

capillarized or defenestrated after exposure to inflammatory
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factors, such as IL-6 and AFP, which promote liver fibrosis,

cirrhosis, and liver cancer. AFP is expressed around fibrotic

bridges in chronic liver damage and at the margins of necrotic

tissues. It promotes the recruitment and proliferation of endothelial

cells, hepatic stellate cells (HSCs), and macrophages. This may

imply AFP reprograms live cells and remodels the extracellular

matrix to promote endothelial-to-mesenchymal transition and

tumor angiogenesis (66, 67). It was found that ramucirumab, a

monoclonal antibody specific for VEGFR2, combined with tyrosine

kinase inhibitors regorafenib and cabozantinib, present specific

benefits for advanced HCC patients with high serum

concentrations of AFP (68).
3.6 AFP mediates mesenchymal stem cells

Mesenchymal stem cells (MSCs) are multipotent cells initially

discovered from bone marrow. MSCs can be differentiated into

chondrocytes, osteocytes, adipocytes, myocytes, astrocytes, and

other cells in vitro. MSCs can be recruited into the TME and

promote or inhibit the development of HCC. The contradictory

effects of MSCs mainly come from TME of HCC, and whether these

cells are endogenous or exogenous. In TME, endogenous MSCs can

promote hepatic fibrosis by regulating the inflammatory

microenvironment. However, in clinical trials, exogenous MSCs

were used to treat hepatic fibrosis (69, 70).

It was found that exogenous MSCs can suppress tumor growth

in animal experiments. For example, co-cultured umbilical cord-

derived MSCs with hepatocarcinoma cell l ine HepG2

downregulated the protein expression of AFP, Bcl-2, and survivin

and accelerated cancer cell apoptosis, which was related to the

apoptosis signal pathway. Thus, exogenous umbilical cord-derived

MSCs can inhibit growth and promote the apoptosis of cancer cells

by downregulating AFP, Bcl-2, and survivin (71).

Exogenous MSCs are a potential source of stem cells for cell

therapy in treating liver cirrhosis due to their many advantages.

MSCs are easy to obtain and easy to culture without losing their

characteristics. ExogenousMSCs can be recruited into the injury sites

and TME and have strong immunoregulatory abilities. In addition,

they have multiple differentiation potential and capacity to repair

injuries and regenerate (70). Several clinical trials have investigated

the potential of MSCs in treating liver cirrhosis, particularly alcoholic

liver cirrhosis (NCT02705742, NCT03626090, NCT05080465,

NCT05227846, and NCT05155657). Satisfactory outcomes have

been observed in clinical trials of exogenous MSCs. New strategies

are needed to improve cell sources for recipients. In the future,

synergistic downregulation of AFP with exogenous MSCs may

improve their therapeutic efficacy in liver cirrhosis and HCC (70).
4 The role of AFP in the diagnosis and
treatment of HCC

AFP is as a serological biomarker for HCC screening, diagnosis,

treatment response monitoring, and prognosis. The sensitivity and
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specificity of AFP for diagnosing HCC are 41–65% and 80–94%,

respectively. However, nearly 50% of patients with HCC are AFP-

negative and AFP may be elevated in benign liver diseases, such as

hepatitis and cirrhosis (72, 73).

AFP-negative and AFP-positive patients display differential

proteomic profiles and metabolomic profiles. The symptoms of

AFP-negative patients are generally mild and they benefit more

from treatment compared with AFP-positive patients. AFP level has

strong relationships with malignant features of HCC (72, 73). The

analysis of tumor-infiltrating lymphocytes in AFP-positive TME

reveals an enrichment of Tregs and exhausted CD8+ T cells.

Accordingly, the number of cytotoxic T-lymphocyte associated

protein 4 (CTLA4) and programmed death 1 (PD-1) T cells is

higher in AFP-positive patients than in AFP-negative patients. Also,

high abundances of regulatory T cells were found in AFP-positive

patients, which drive cytotoxic T cell dysfunction in the TME (74).

TAMs, DCs, and monocytes were more abundant in the

adjacent normal tissues of AFP-positive patients. AFP upregulates

IL-6, transforming growth factor beta 1 (TGF-b1), CXCR4 and NF-
kB, to recruit TAMs into TME. TAMs promote the expression of

angiogenesis-associated genes and downregulate phagocytosis and

lymphocyte response, which may recruit fibroblasts and induce

extracellular matrix remodeling to promote tumorigenesis (75).

Elevated serum levels of AFP typically signify the existence or

recurrence of HCC, thus rendering AFP a valuable tool for diagnosis

and treatment (76).Some patients with HCC are AFP-negative

preoperatively; however, AFP may increase after surgery. AFP can

acutely elevate for about 5 days after partial hepatectomy (77). Rising

concentrations of AFP are closely associated with hepatocyte

regeneration. AFP can be synthesized and released by hepatocytes

undergoing proliferation and mitosis after operation (78). AFP

expression was also seen in the regenerative phase after liver injury,

which was associated with hepatocyte proliferation. During

proliferation, AFP is produced by hepatocytes and released into the

microenvironment and circulation. It was also found that AFP is not

only related to cell proliferation but also related to cellular death and

apoptosis (52). After surgery, AFP level will decline with healing.

However, in postoperative recurrence, AFP is reproduced by HCC

cells and cancer stem cells. AFP production during postoperative

recurrence is related to fast-growing, poorly differentiated, and

malignant HCC cells (44). HCC is an extraordinarily heterogeneous

malignant liver cancer. Preoperative and postoperative recurrence of

HCC are different in molecular characteristics, signal transduction,

and genomic instability. They are characterized by great

heterogeneity. AFP can arise from cancer stem cells, which are

silent in patients before surgery. These cells are more active in the

TME during hepatocyte necrosis, myeloid cell migration, immune

evasion, andmatrix remodeling after postoperative recurrence (44, 79,

80). Thus, AFP not only functions as a marker but also aids in the

interpretation of imaging in liver cancer. The value of AFP can be

associated with the dimensions, progression, and prognosis of HCC.

Elevated levels of AFP may serve as an indicator of a larger or more

aggressive tumor and an unfavorable prognosis (81). Moreover, post-

treatment monitoring of AFP levels in patients with liver cancer can

be employed to assess treatment efficacy and disease recurrence. A
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substantial decrease in AFP level following treatment generally

signifies successful intervention, whereas an increase in AFP level

may suggest tumor relapse or progression (60). Thus, AFP plays a

crucial role in the diagnosis and management of HCC. As a marker, it

can be used for early screening, diagnosis, and follow-up of patients

with liver cancer. In addition, AFP levels can also be used to evaluate

the therapeutic effect and predict the prognosis.

Recently, AFP has increasingly gained interest in HCC

immunotherapy. AFP can be applied in immunization.

Particularly, it can be a marker for immunotherapy and predict

the efficacy of immunotherapy. AFP is highly expressed in nearly

65% of patients with HCC, and serum AFP is as a biomarker for

diagnosing and treating HCC because it is inversely correlated with

prognosis (2, 82). HCC patients cannot tolerate to high serum levels

of AFP which induce significant tumor burdens. AFP is a tumor-

associated antigen, and cytotoxic T lymphocyte (CTL) epitopes for

AFP were identified during tumorigenesis (83, 84). Patients with

high circulating levels of AFP have strong T cell responses. Both

murine and human T cells can recognize the self-antigen AFP,

indicating that it can serve as a tumor rejection antigen. AFP-based

CAR-T cells and AFP-based vaccines have shown an antitumor

immune response in vivo and in clinical trials (85, 86).

AFP is produced intracellularly and secreted by HCC, making it

“untargetable” for chimeric antigen receptor T (CAR-T) cell

immunotherapy. However, peptides derived from AFP are

processed and presented by class I MHC on the surface of HCC

cells. Therefore, antibodies against AFP-derived peptides/MHC

complexes can be designed and engineered into CAR-T cells.

CAR-T cell therapy was successful in liver cancer xenograft

models in vivo (85). Also, CD8+ T cells were found in transgenic

mice that recognized AFP-derived peptide epitope on human HCC

cells. Adoptive transfer of AFP-derived peptide-specific CD8+ T

cells eradicated HepG2 tumor xenografts in mice (87).

Preclinical studies found that AFP-derived peptide-specific

TCR-engineered T cells are unlikely to cause severe off-target

toxicity (88). AFP peptide-based CAR-T therapy in advanced

HCC is being tested in a phase I clinical trial (NCT03132792) to

find the safety of adoptive transfer of engineered T cells, which

target AFP-positive liver cancer (89).

Dysfunction of DCs is also the main mechanism of tumor

immune escape. Vaccination can promote the activity of DCs and

stimulate antitumor responses in HCC. The beneficial immune

responses of CD8+ and CD4+ T cells can be generated if AFP is

presented by more AFP-engineered DCs. It was found that AFP-

pulsed DCs can shift specific cytotoxic T lymphocytes toward AFP-

producing HCC cells (90, 91).

Using AFP-coding adenoviruses to transduce DCs can induce the

antitumor immune response, delay tumor growth, and improve long-

term survival in vivo subcutaneous HCCs. The combination of the

AFP-DCs vaccine with CD40 ligand-DCs vaccine has shown

synergistic results. It changes the TME, enhances the tumor

infiltration of cytotoxic T lymphocytes and DCs, and upregulates

Th1-derived cytokines, leading to tumor apoptosis and regression

(92, 93). A phase I/II trial measuring immunization in HCC patients

found that AFP-DCs vaccine can produce AFP-specific T cell
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responses with increasing IFN-g in the environment of high oncofetal

antigen (86). Nevertheless, more comprehensive studies are

imperative to ascertain the efficacy and safety of these approaches

and vaccines before their implementation in clinical settings.
5 Other therapeutic strategies and
challenges of AFP in the TME

TME is a complex ecosystem comprising tumor cells, blood

vessels, immune cells, stromal cells, and matrix molecules. AFP and

its downstream pathways play a key role in this system, making them

targets for novel tumor treatment. The expression level of AFP is

associated with tumorigenesis and tumor prognosis (94, 95). Hence,

therapeutic strategies that target AFP or its downstream pathways

may be beneficial for treating these tumors. One potential therapeutic

approach is to inhibit the expression or activity of AFP. For instance,

using small interfering RNA (siRNA) or antisense oligonucleotides

(ASO) technology to reduce AFP expression. These technologies can

specifically inhibit the synthesis of AFP or prevent its interaction with

target cells, thereby suppressing tumor growth and diffusion (96, 97).

Secondly, the use of recombinant AFP, combined with anticancer

drugs, has been widely explored. Besides, recombinant AFP fragment

derived from AFP domain-3 was found to suppress tumor cell

growth. Various anticancer drugs exhibited therapeutic prospects

when combined with AFP or AFP fragments, such as carminomycin,

doxorubicin, paclitaxel, sorafenib, and maytansinoid (98–103).

Moreover, AFP can activate downstream signaling pathways, such

as PI3K/Akt in tumor cells, promoting proliferation, survival, and

migration (22, 104). Targeting these pathways with small-molecule

inhibitors or antibodies can inhibit tumor growth. The complexity of

TME makes a single therapy ineffective. Combining multiple

strategies, like targeting AFP and its downstream pathways with

immunotherapy and radiotherapy, may more effectively control

tumor growth and invasion.

In the TME, AFP-targeted therapies still face challenges and

limitations. Firstly, the expression level of AFP has limited

sensitivity and specificity for HCC patients, it is not a marker for

all HCC, and about one-third of the patients with advanced HCC

have no AFP expression (105, 106). Moreover, patients with acute

and chronic liver without evidence of HCC may have high AFP

elevation. Therefore, therapeutic strategies targeting AFP may not

be applicable to all HCC patients. Secondly, the heterogeneity of the

tumor microenvironment is another challenge. AFP expression

varies among different types and stages of HCC (7, 105), and the

accuracy value with advanced HCC varies according to patient

characteristics (7). Due to the significant differences in cell types,

gene expression, and signal pathway activation among different

regions of a tumor (106). Drug resistance is another concern.

Tumor cells may adapt to treatment pressure by activating other

signaling pathways or mutations, leading to treatment failure (107).

Overall, there are challenges in AFP-targeted therapies, and future

studies are needed to understand the mechanism by which AFP is

involved in tumorigenesis and assess the efficacy and safety of AFP-

based treatment strategies.
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AFP utility is limited and challenges, however, targeting the

AFP-TME interaction in HCC treatment has significant benefits to

AFP positive patients (75). Blocking the function of AFP or

inhibiting its interaction with TME can disrupt the connection

between liver cancer cells and TME, thereby inhibiting tumor

growth and diffusion. This strategy may provide a new approach

for treating HCC. Secondly, AFP is also involved in the interaction

between liver cancer cells and the immune microenvironment (29).

AFP overexpression can promote the immune evasion of HCC cells,

protecting them from the immune response. Targeting AFP may

help attenuate this immune evasion, enhancing the immune

recognition and response, thereby improving the efficacy of

immunotherapy. In summary, targeting the AFP-TME interaction

in HCC can disrupt the link between liver cancer cells and the TME,

inhibiting tumor growth, invasion, and immune evasion.
6 Conclusion

In conclusion, AFP holds significant value as an HCC

biomarker, and its high expression is intricately linked to the

development and progression of HCC. AFP can stimulate the

expansion of LCSCs in the TME by activating the PI3K/Akt

signaling pathway. Additionally, AFP can facilitate HCC

progression by upregulating the expression of genes associated

with LCSCs. Furthermore, AFP can undermine macrophage-

mediated phagocytosis of tumor cells by interacting with

macrophage receptors and inducing tumor immune escape.

Simultaneously, AFP may also suppress the function of NK cells,

macrophages, DCs, CAFs, endothelial cells, and mesenchymal stem

cells, and impair the ability of cytotoxic T lymphocytes to eliminate

tumor cells, thus facilitating tumor immune evasion (Figure 4).
FIGURE 4

The role of AFP in the TME of HCC.
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Recent findings have demonstrated that AFP inhibition can

effectively inhibit the malignant behaviors of HCC cells,

suppressing their proliferation, invasion, and metastasis and

inducing cancer cell apoptosis. Consequently, AFP plays a crucial

role in facilitating the malignant progression of HCC. Nevertheless,

AFP is a double-edged sword in the development, diagnosis, and

treatment of HCC (Figure 5). For clinical practice, measuring AFP

levels holds immense significance for the early detection, prognosis,

and treatment of HCC. By monitoring the fluctuations in AFP

levels, medical professionals can monitor disease progression and

treatment response, guiding clinical decision-making. Furthermore,

clinicians can use AFP vaccines to generate AFP-specific CD8+ T

cells and kill cancer cells. In addition, AFP combined with

immunotherapy, can improve the therapeutic efficacy.

In summary, AFP plays a significant role in the TME of HCC. It

modulates the function of tumor-associated macrophages, increases

the population of tumor stem cells, and facilitates the immune

evasion of liver cancer cells. Further studies are needed to gain a

comprehensive understanding of the underlying mechanisms

through which AFP is involved in the TME of HCC and provide

new approaches for treatment and prognosis prediction in HCC.
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FIGURE 5

A double-edged sword of AFP. AFP is a double-edged sword due to its role as both an oncofetal antigen and a diagnostic marker for HCC. Its
participation in various aspects of tumor biology, including proliferation, invasion, metastasis, apoptosis, and TME regulation, underscores its potential
detrimental effects. Conversely, measuring AFP levels can help early diagnosis, prognostic evaluation, monitoring of treatment efficacy, and advancement
of therapeutic interventions in HCC. Additionally, AFP can serve as a valuable target for developing drugs and vaccines (by Figdraw 2.0).
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