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Leveraging radiomics
and AI for precision
diagnosis and prognostication
of liver malignancies
Maryam Haghshomar, Darren Rodrigues, Aparna Kalyan,
Yury Velichko and Amir Borhani*

Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
Liver tumors, whether primary or metastatic, have emerged as a growing

concern with substantial global health implications. Timely identification and

characterization of liver tumors are pivotal factors in order to provide optimum

treatment. Imaging is a crucial part of the detection of liver tumors; however,

conventional imaging has shortcomings in the proper characterization of these

tumors which leads to the need for tissue biopsy. Artificial intelligence (AI) and

radiomics have recently emerged as investigational opportunities with the

potential to enhance the detection and characterization of liver lesions. These

advancements offer opportunities for better diagnostic accuracy,

prognostication, and thereby improving patient care. In particular, these

techniques have the potential to predict the histopathology, genotype, and

immunophenotype of tumors based on imaging data, hence providing

guidance for personalized treatment of such tumors. In this review, we outline

the progression and potential of AI in the field of liver oncology imaging,

specifically emphasizing manual radiomic techniques and deep learning-based

representations. We discuss how these tools can aid in clinical decision-making

challenges. These challenges encompass a broad range of tasks, from

prognosticating patient outcomes, differentiating benign treatment-related

factors and actual disease progression, recognizing uncommon response

patterns, and even predicting the genetic and molecular characteristics of the

tumors. Lastly, we discuss the pitfalls, technical limitations and future direction of

these AI-based techniques.
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Introduction

Liver tumors, both primary and metastatic, have become a

growing global health concern with significant implications.

Treating HCC remains challenging given the heterogeneity and

complexity of the disease. Most HCC patients have underlying

cirrhosis or chronic inflammation. The microscopic changes, in the

setting of chronic inflammation, makes HCC an ideal disease state

to consider for targeted therapy. While immunotherapy has

changed the first line treatment paradigms, there remains a

paucity of treatment options in patients who either progress on

immunotherapy or are intolerant of these agents. Historically,

treatments for HCC have been based on the Barcelona Clinic

liver cancer staging system, with the assessment of tumor burden,

liver function, and general health status guiding the selection of the

best treatment modality (1). However, in the era of precision

medicine, tumor biomarkers and treatment selection challenge

the one-size-fits-all concept in HCC.

The low sensitivity and specificity of biomarkers has rendered

selection of treatment to be difficult. While Alpha-fetoprotein

(AFP) has historically been used for detection of early, potentially

curable tumors, it is limited by its sensitivity to make treatment

decisions (2). Biomarkers that predict response to systemic therapy

are urgently needed. Presently, AFP is the only biomarker to predict

response, and only in a subset of patients who receive ramucirumab

as a second-line agent. Using cell free DNA’s genomic and

epigenetic changes potentially offers a more sensitive and

promising biomarker, especially for detecting minimal residual

disease (2). Genetic changes detected by means of circulating

tumor DNA allows improved understanding of tumor biology

and disease heterogeneity.

Imaging plays a vital role in detecting liver tumors but sometimes

conventional methods often lack the precision needed for proper

characterization, leading to the need for invasive tissue biopsy.

Conventional imaging methods provide limited information on the

prognostic factors of liver tumors, such as genetic mutations, molecular

markers, and potential treatment response. This information gap

delays personalized treatment planning and prognostication.

Rapid advancements in imaging and post-processing

techniques have revolutionized high-throughput image analysis,

enabling a more precise and comprehensive evaluation of liver

diseases. Artificial intelligence (AI) and radiomics have emerged as

promising methods with the potential to revolutionize liver lesion

characterization. AI and radiomics can analyze medical images at a

high level of detail, identifying subtle patterns that correlate with

specific tumor types, stages, and biological characteristics. These

methods are fast, affordable and readily available. AI and radiomics

can do simple tasks and handle a huge amount of data with the

same accuracy, meaning that missing manual steps, fatigue, or data

overload won’t affect the findings.

We provide an outline of radiomics and AI contributions to

diagnosis and staging, treatment response assessment, and

prognosis prediction in liver malignancies in this review. We

describe the progress and potential of AI in the liver oncology
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imaging, focusing specifically on radiomic and deep-

learning techniques.
Radiomics and artificial intelligence

Radiomics, a framework that complements conventional

radiological interpretation, has emerged as a powerful tool for

extracting and quantifying texture characteristics derived from

tumor heterogeneity (3–6) (Figure 1). Radiomics employs a wide

range of method, each designed to capture specific aspects of tissue

architecture and texture. These features provide a detailed

representation of tumor heterogeneity, enabling researchers to

study and compare tumor characteristics across different patients.

The standardization of radiomics features ensures the

reproducibility and generalizability of radiomics studies, fostering

collaboration and wider adoption of this technique. Development of

openly available imaging datasets further creates opportunities to

test and benchmark radiomics algorithms and facilitate the

translation of radiomics findings into the clinical practice.

Radiomics features extracted from large datasets enable the

development of advanced statistical models, including machine

learning and artificial intelligence algorithms. These models can

enhance various aspects of liver imaging assessment, including

tumor origin identification, therapy response prediction, and

prognosis assessment. For instance, radiomics provides valuable

insights into tumor characteristics, such as aggressiveness and

prognosis, which can inform treatment decisions. Another example

includes delta-radiomic models, which allow for longitudinal

assessment of changes in tumor texture to assess tumor response to

treatment. This enables timely adjustments to treatment regimens

and improves overall treatment efficacy. Furthermore, radiomics-

based predictive models can personalize treatment strategies for

individual patients, tailoring treatment to their specific tumor

characteristics and maximizing treatment success.

Harnessing the power of neural networks, AI in medical

imaging extracts intricate patterns from large datasets and can

improve informed predictions. The convolution operation, a

cornerstone of many neural networks, employs diverse kernels to

transform raw data into meaningful representations, enabling

neural networks to learn from and make predictions on complex

datasets. Deep learning, a powerful subfield of AI, utilizes many

interconnected layers that transform information, enabling more

sophisticated information processing. Deep learning’s ability to

automatically learn features and representations from data stands

out as a key strength, eliminating the need for explicit feature

engineering by human experts. This capability makes deep learning

particularly well-suited for various clinical tasks. For instance, deep

learning algorithms can accurately detect and localize objects within

images, enabling the identification of anatomical structures or

abnormalities in medical scans. Other models can be trained to

precisely segment objects in images, allowing for the delineation of

organs and lesions. Segmented organs or lesions can be effectively

classified into distinct categories, aiding in disease diagnosis and
frontiersin.org
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treatment monitoring. Radiomics can be used to identify the origin

of segmented lesions. The integration of radiomics with deep

learning has emerged as a promising strategy for enhancing

classification performance in medical imaging. Deep learning

algorithms possess the ability to complement radiomic features

with kernel-based features and then extract patterns from the high-

dimensional imaging data. This synergistic combination has yielded

noticeable advancements in classification accuracy for a wide range

of medical imaging tasks.

While AI-based approaches offer a diverse toolbox for image

analysis, both radiomics and deep learning share a similar workflow

including collection and standardization of imaging data, image pre-

processing, and segmentation of relevant regions depending on the

task. In liver disease analysis, this involves whole liver segmentation,

segmentation of various structures like lesions, gallbladder, bile ducts,

and vascular components. The whole liver segmentation allows for

evaluation of liver morphology, liver surface, and parenchymal changes

such as fibrosis and cirrhosis. Segmentation and detailed analysis of

individual lesions, including their count, size, heterogeneity, necrosis,

and vascular involvement, can provide valuable insights for staging,

treatment planning, and prognosis (Figure 2).
Frontiers in Oncology 03
Segmentation

Segmentation of the liver or its vasculature through CT

and MRI has importance in diagnosing lesions, planning

radiotherapy, conducting liver vascular surgeries, preparing for

liver transplantation, and analyzing tumor vascularization, among

other applications. The process of manual segmentation is both

time-consuming and susceptible to human errors. Several

researchers have explored the use of deep learning models to

automate this process, aiming to overcome these limitations.

Segmentation studies exhibit remarkable specificity in liver

imaging, compared to other fields. The mainstream segmentation

technology at present is U-Net, a convolutional neural network

(CNN), and its derivatives. The segmentation accuracy for the

entire liver, as assessed on the SLIVER07 dataset, is exceptionally

high, achieving a maximum Dice Similarity Coefficient (DSC; which

is a metric of accuracy of the method) of 0.9827 (7).

Said et al. employed CNNs for HCC segmentation in MRI,

achieving fair to good performance, notably excelling in single-slice

segmentation with mean DSC ranging from 0.442 to 0.778 in 292

patients (8). Another study focused on automating colorectal liver
FIGURE 1

(A, B) 64 y/o M with history of cirrhosis and HCC.Contrast-enhanced T1-weighted MRI shows a heterogeneous tumor (A) with associated texture
heterogeneity map demonstrating tumor habitats (B). The patient had poor outcome with several recurrent lesions after surgical resection
suggestive of poor tumor biology. (C, D) 54 y/o F with history of cirrhosis and HCC. Contrast-enhanced T1-weighted MRI shows a less
heterogeneous tumor (C) with associated texture heterogeneity map showing the tumor habitats (D). The patient good outome after resection with
no recurrence.
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metastasis and liver ablation zone segmentation on CT, with the

Hybrid-WNet model demonstrating high accuracy. Trained on 92

patients, the model achieved a median DSC of 0.73 (9).

Additionally, a feasibility study utilized a deep convolutional

neural network (DCNN) to automate the application of LI-RADS

(Liver Imaging Reporting and data System) algorithm on

multiphasic MRI, showcasing efficient liver and HCC

segmentation. The average DSC for automatically identified

lesions using the DCNN+ random forest classifier employing

radiomic features and thresholding was 0.64 in the validation set

and 0.68 in the test set (10). One paper presented an automatic

algorithm for rapid and accurate liver and lesion segmentation in

CT scans. Achieving a 94.2% volume overlap and 3.7 mm accuracy

for liver surface segmentation, the method demonstrated a short

processing time of 11.4 seconds per slice. Tumor lesion detection

showed 82.6% sensitivity and 87.5% specificity (11). A separate

study used a deep-learning model for HCC segmentation and

classification using gadoxetic acid-enhanced MRI. The 3D U-Net-

based model achieved high performance (average DSC of 0.884) for

HCC segmentation (12). Lastly, a dual-energy CT radiomics pilot

study successfully differentiated between benign and malignant

hepatic lesions, outperforming iodine quantification. This

involved semiautomatic segmentation of both the volume and rim

of individual liver lesions, along with extracting contrast

enhancement, iodine concentrations, and radiomic features from

each image (13).

Deep learning models can perform HCC segmentation with a

high accuracy. This has multiple clinical applications. These models

can handle a huge amount of data with the same accuracy, meaning

that missing manual steps, fatigue, or data overload won’t affect

the findings. Computer-based processing is affordable and

readily availability.
Early detection and accurate
tumor classification

Identifying liver cancers in their early stages, when they are

localized and amenable to curative treatment, is the ultimate goal.
Frontiers in Oncology 04
Ideally, the cancer should be diagnosed when patient is

asymptomatic as the emergence of symptoms often signifies late-

stage, incurable disease in many cases. Moreover, early small

tumors should be characterized correctly to allow for correct

treatment since different tumor pathologies have distinct course

and different treatment approaches. Unfortunately, primary liver

cancers may have nonspecific imaging features in their early stages

due to their smaller size. Equally significant is the early

identification of liver metastases, highlighting the importance

timely and precise detection. At the same time addressing and

preventing false positives, overdetection, overdiagnosis, and

overtreatment is essential (14). As an example, combined HCC

and cholangiocarcinoma (CC) originates from hepatic progenitor

cells and can display both hepatocytic and cholangiocytic

differentiation (15, 16). HCC the most common hepatic

malignancy is histologically derived from the hepatocytes and CC

the second most common hepatic malignancy is derived from the

biliary epithelial cells. Studies have demonstrated that the clinical

features and prognosis of combined HCC-CC markedly differ from

those of intrahepatic CC (IHCC) and HCC (17, 18). Hence, it holds

significant clinical implications to differentiate these tumors

preoperatively accurately.

Radiomics integrated with machine learning algorithms has

promising role in distinguishing diverse focal hepatic lesions. The

features extracted may allow for noninvasive diagnosis and

characterization of liver malignancies and provide vital details

such as microvascular invasion within tumors. AI has also been

extensively employed for classifying different liver lesions. CNNs

specifically designed for image recognition tasks have attracted

considerable attention for liver cancer diagnosis.

Numerous large scale studies utilizing CT or MR imaging have

employed radiomics to distinguish various liver lesions, yielding

areas under ROC curves (AUC) ranging from 0.7 to 0.95 (19–29).

These investigations demonstrated robust performance not only on

the training set but also on testing and validation sets. The scope of

these studies encompassed a wide range of classification tasks and

discriminating lesions, including HCC, hemangioma, cysts,

adenoma, hepatic focal nodular hyperplasia, CC, combined HCC-

CC, inflammatory masses, and metastasis. Clinical variables were

integrated into certain models to enhance their performance (19–

29). A multitude of AI studies has endeavored to predict liver

malignancies, focusing on diverse aspects such as detecting HCC

(30–32), classifying major features of LI-RADS (12, 33, 34), and

discerning classic HCC form other malignant and nonmalignant

liver lesions. AUC values in either the training or validation sets

varied from 0.6 to 0.942 (12, 30–34).

Presence of microvascular invasion (MVI) is identified as an

independent risk factor for the postoperative recurrence of HCC

(35). The definitive assessment for MVI is based on histologic

examination of surgical specimen, which is only available after

resection of tumor. As a result, assessing the MVI status before

surgery will play a crucial role in guiding decisions regarding the

optimal extent of surgical resection or ablation treatment for

individuals with HCC. Several studies using AI or radiomic

features extracted from gadoxetic acid-enhanced MRI, dynamic

contrast enhanced MR, or contrast enhanced CT images tried to
FIGURE 2

The work flow of radiomics and AI.
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predict microvascular invasion in HCC and mass-forming CC (36).

The AUCs ranged from 0.75 to 0.98 with most of the studies

achieving AUCs higher than 0.85 (36–47). Notably, studies focused

on peritumoral areas within the 5 cm to 10 cm range. One study

underscored that patients without MVI experienced significantly

prolonged recurrence-free survival (RFS). Validation sets were

incorporated in all studies (36–47). As mentioned above,

accurately predicting MVI before surgery can significantly

influence surgical planning, including decisions regarding the

extent of resection or the suitability of ablation treatments. Such

high AUCs and predictive capabilities mean that presence of MVI

can be successfully determined with AI and radiomics prior to

surgery allowing for a more personalized surgical approach,

potentially improving postoperative outcomes and recurrence-free

survival for patients with HCC.
Grading, association with molecular
profile, immunophenotype, etc.

HCC histopathological grading has been identified to be closely

associated with the prognosis of the tumor, serving as an indicator

of the tumor’s biological behavior. Extensive research indicates that

both progression-free survival and overall survival are notably lower

in poorly differentiated HCC compared to well-differentiated HCC.

Certain subtypes of HCCs, such as macrotrabecular-massive

subtype, are also correlated with worse prognosis. Pre-operative

knowledge of tumor grading affects treatment plan and surgical

approach, when surgery is indicated. For example, the

recommendation is to opt for an extended resection margin when

conducting liver surgery for poorly differentiated HCC to

minimized the risk of early recurrence. Some data suggest

recommendation against liver transplantation for patients with

HCC that is both poorly differentiated and exceeds 3 cm in size.

Preoperative knowledge of tumor grading is classically achieved by

histologic examination of biopsy specimen. Biopsy however is an

invasive procedure and is not feasible in all patients (due to patient’s

factors and location/size of the tumor). Additionally, given the high

success of imaging-based criteria for noninvasive diagnosis of HCC

(such as LI-RADS criteria), biopsy is not routinely performed in

this population.

Several radiomics models utilizing gadoxetic acid-enhanced

MRI, some augmented by AI, have aimed for HCC subtyping and

grading to overcome these issues. They have achieved AUCs

ranging from 0.6 to 0.912 (48–53). Notably, lower grades were

correlated with longer progression-free survival in one cohort.

Additionally, the radiomics model demonstrated associations with

dysregulated humoral immunity, encompassing B-cell infiltration

and immunoglobulin synthesis, offering valuable insights into the

immune microenvironment of HCC (48–53).

Comprehensive knowledge of the molecular profile and

immunophenotype of liver cancers is also relevant for advancing

precision oncology. The tumor microenvironment and immune

status are integral factors influencing the success of immunotherapies

and locoregional treatments in HCC (54). Gene expression analysis has

revealed distinct immune classes among HCC patients and immune
Frontiers in Oncology 05
profiling of HCC can predict response to immunotherapy (55).

Preliminary works have indicated the potential of radiomics

quantification in immune profiling for HCC. Notably, these works

studied expression of vascular endothelial growth factor (VEGF) (56),

angiopoietin-2 (57), Forkhead Box M1 (FOXM1) (58), and Ki-67 (59,

60). Additionally, the presence of b-catenin mutation (61), intra-

tumoral tertiary lymphoid structures (62), cytokeratin 19 (63, 64),

glypican-3 (GPC3) (65), immunohistochemical cell typemarkers for T-

cells (CD3), macrophages (CD68) and endothelial cells (CD31), PD1

and CTLA4 at mRNA expression level (66), as well as density of CD3+

and CD8+ T cells (67) were studied. All the aforementioned molecules

have relevant task in carcinogenesis. VEGF and Angiopoietin-2

regulate tumor growth by influencing angiogenesis. FOXM1 governs

cell cycle genes, Ki-67 marks proliferation, and b-Catenin mutation

leads to uncontrolled cell growth. Intra-tumoral Tertiary Lymphoid

Structures impact the anti-tumor immune response. Cytokeratin 19

maintains cell structure, while GPC3 serves as a tumor diagnostic

marker. Immune cell markers like CD3, CD68, and CD31 reveal cell

distribution and density, reflecting the local immune response. PD1

and CTLA4mRNA levels influence responses to checkpoint inhibitors.

Each of these immune subtypes plays a critical role in unraveling the

complex immune response within HCC, providing insights for

prognostication and targeted therapeutic interventions. AUCs of

these tasks fell somewhere between 0.76 to 0.95 (56–67). Notably,

when clinical factors were integrated with radiomics signatures,

models’ performance significantly improved. In the MRI studies, the

hepatobiliary phase consistently demonstrated the best performance.

While deep learning models haven’t been as widely applied as

radiomics for this particular task, they undoubtedly hold significant

potential. Xie et al. introduced a non-invasive method for predicting

PD-1 and PD-L1 expression in HCC. Using a cohort of 87 HCC

patients and analyzing 3094 CT images, the Contrastive Learning

Network (CLNet) was proposed. Trained with self-supervised

contrastive learning, CLNet achieved superior performance,

demonstrated an AUC of 86.6 for PD-1 expression and 83.9 for

PD-L1 expression (68) (Table 1).

High AUC values in both radiomics and deep learning

tasks indicate strong predictive performance, meaning these

models are highly effective in identifying molecular profiles,

immunophenotypes and grades of HCC.
Assessment of tumor response

Several locoregional therapeutic strategies have been developed

and implemented over past decades, and a considerable number

of these are currently considered as the standard of care for

liver malignancies (69). These involve a range of percutaneous and

trans-arterial methods designed to induce cell death in tumors. This

can be achieved through percutaneous approach, as seen in

radiofrequency and microwave ablation, or achieved via targeted

trans-catheter trans-arterial administration of embolic agents (known

as trans-arterial bland embolization, TAE), chemotherapeutic

substances (referred to as trans-arterial chemoembolization,

TACE), or radioembolizing agents (as in trans-arterial Yttrium-90

radioembolization, TARE) (70). While typically less invasive
frontiersin.org
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compared to surgical removal and transplantation, these therapies

can lead to complications. Hence, careful patient selection and

thorough evaluation of treatment response are crucial clinical

considerations. Evaluating the response to treatment following

TARE and external beam radiation, particularly in the initial

months post-treatment, poses challenges due to the intrinsic

characteristics and timeline of cytotoxic effects induced by

radiation. Sustained enhancement in the arterial phase and

subsequent washout can be observed in treated lesions for several

months following the treatment, even though a complete response is

ultimately achieved (71). Considering these limitations, it is essential

to explore alternative approaches for evaluating treatment response.

Numerous studies have explored the potential of utilizing

radiomic features extracted from post-treatment CT and MRI in

assessing the treatment response of HCC (72–79). There are limited

studies on other liver tumors (80, 81). Radiomics features were
Frontiers in Oncology 06
extracted from diverse imaging modalities, including MRI and CT

scans, and involved different treatment methods. In some studies key

clinical information, such as albumin levels, AFP levels, and Child-

Pugh score were integrated into predictive models to enhance

accuracy. The studies anticipated diverse outcomes encompassing

early response, early recurrence, aggressive intrasegmental

recurrence, tumor refractoriness, and local tumor progression

across varied locoregional strategies. The AUC values of these

studies ranged from 0.8 to 0.95 (72–81). These studies collectively

underscore the potential of radiomics in tailoring treatment strategies

and prognostic assessments for liver cancer patients, providing a non-

invasive means to predict outcomes and guide personalized

interventions based on comprehensive imaging analyses and

relevant clinical parameters.

The utilization of deep learning to evaluate locoregional

therapeutic responses in HCC is relatively limited in the current
TABLE 1 Summary of HCC grading, molecular profiling, and immunophenotyping.

Author Marker Subjects Modality Model Accuracy training
Accuracy
testing

Accuracy validation

Chen Immunoscore 207 HCC MRI Radiomics/
ML

AUC, accuracy, sensitivity,
specificity = 0.904, 0.787,

93.8%, 74.6%
combined- AUC = 0.926

NA AUC, accuracy, sensitivity,
specificity = 0.899, 0.772, 92.3%,

72.7%
combined- AUC = 0.934

Chen FOXM1 expression 286 HCC CT Radiomics/
ML

AUC = 0.918 AUC = 0.837 NA

Fan VEGF expression 202 HCC MRI Radiomics/
ML

AUC = 0.892
combined- AUC = 0.936

AUC: 0.8/
combined-

AUC = 0.836

NA

Hectors Immunoprofiling
and genomics

48 HCC MRI Radiomics/
ML

Tumor size ≥ 5 cm - HCC
recurrence (OR = 3.01,
p = 0.004, AUC = 0.76).

NA NA

Li Intra-tumoral
tertiary
lymphoid
structures

142 HCC CT Radiomics/
ML

AUC = 0.79 NA AUC = 0.75

Wang cytokeratin
19 expression

227 HCC MRI Radiomics/
ML

AUC = 0.892
combined- AUC, sensitivity,

specificity, C-index = 0.951, 0.818,
0.974, 0.959

NA AUC = 0.73
combined- AUC, sensitivity,

specificity, C-index = 0.822, 0.769,
0.818, 0.846

Wu Ki-67 expression 172 HCC CT Radiomics/
ML

AUC = 0.854
combined- AUC = 0.884

NA AUC: 0.744
combined- AUC = 0.819

Yan Ki67 expression 110 HCC MRI Radiomics/
ML

AUC = 0.833
combined- AUC = 0.901

NA AUC: 0.772
combined- AUC = 0.781

Zeng b-catenin mutation 98 HCC MRI Radiomics/
ML

AUC, accuracy, sensitivity,
specificity = 0.86, 0.75, 1.0, 0.65

combined- AUC = 0.86

NA AUC, accuracy, sensitivity,
specificity = 0.82, 0.73, 0.67, 0.76

combined- AUC = 0.76

Zhang cytokeratin
19 expression

311 HCC MRI Radiomics/
ML

C-index, 0.914 C-index, 0.855 C-index, 0.795

Zhang glypican-
3 expression

137 HCC MRI Radiomics/
ML

AUC, sensitivity, specificity =
0.822, 0.816, 0.706

combined- AUC, sensitivity,
specificity = 0.888, 0.777, 0.912

NA combined- AUC, sensitivity,
specificity = 0.800, 0.58.5, 1.0

Zheng angiopoietin-
2 expression

52 HCC MRI Radiomics/
ML

AUC = 0.8
combined- AUC = 0.933

NA NA

Xie PD-1 and PD-
L1 expression

87 HCC CT AI-DL AUC = 0.866 for PD-1 expression
AUC = 0.839 for PD-

L1 expression

NA NA
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body of research, yet, it’s important to note that the studies

presented are novel, and there’s considerable unexploited

potential in this evolving field. Three studies employed deep

learning to explore the response of TACE in HCC (82–84). In a

study involving 414 patients, hazard ratios for time to progression

(TTP) were 0.32 (training), 0.28 (validation), and 0.55 (test). The

research also indicated improved overall survival (OS) with a

hazard ratio of 0.58 and a median survival of 38.8 months,

compared to 20.9 months (82). Another investigation with 789

patients achieved an 84.3% accuracy, showing AUCs of 0.97, 0.96,

0.95, and 0.96 for complete response (CR), partial response (PR),

stable disease (SD), and progressive disease (PD), respectively. The

deep learning model displayed accuracies of 85.1% and 82.8%

across CR, PR, SD, and PD in two validation sets (83). The deep

learning signature showed strong predictive performance, with a C-

index of 0.717 in the training set and 0.714 in the validation set (84).

One study developed an automatic and non-invasive deep

learning radiomic nomogram (DLRN) to predict hepatic arterial

infusion chemotherapy response in HCC. Utilizing contrast-

enhanced CT images from 458 patients across three hospitals, the

DLRN achieved high AUC values of 0.988 (training), 0.915 (internal

validation), and 0.896 (external validation), outperforming other

models. The DLRN also successfully stratified survival risk, with the

predictive objective response group exhibiting significantly longer

overall survival (26.0 vs. 12.3 months) (85).

The ability of AI and radiomics to predict early treatment

response and recurrence can improve the management of liver

cancer. By identifying patients at risk of aggressive recurrence or

poor response to treatment early on, clinicians can adjust

therapeutic strategies promptly have shown that these methods

have consistently high accuracies.
Prognostication

The prognosis of HCC continues to be unfavorable, even

following curative-intent treatments like liver resection or

transplantation. After liver resection, the early recurrence rate

stands at 50–70%, while following a median post-transplant

period of 13–14 months, the rate is 10–20% (86, 87).

By analyzing detailed features from medical images, radiomics

helps predict recurrence, understand tumor growth, and estimate

progression-free survival. When combined with essential clinical

details, radiomics can become a powerful tool for predicting

aggressive disease and customizing treatments. This approach

offers a non-invasive, precise way to enhance prognostic

assessments, bringing a new level of accuracy to liver cancer care.

Multiple studies - including ten studies on HCC (88–97), four

studies on Mass-forming CC (98–101), and three studies on

colorectal liver metastases (102–104)- utilized various radiomics

approaches to predict outcomes and guide treatment decisions. The

studies involved diverse cohorts, including patients undergoing

liver transplantation, surgical resection, or chemotherapy. The

endpoint outcomes ranged from overall survival (OS), recurrence

free survival (RFS), progression-free survival (PFS), event-free

survival (EFS), early recurrence (ER), 1-year survival and 5-year
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survival, post-hepatectomy liver failure (PHLF), and lymph node

metastasis. The AUCs for predictive models varied, ranging

between 0.70 to 0.98 (88–104). Moreover, the integration of

radiomics with clinical factors consistently improved predictive

performance, demonstrating the potential for personalized risk

assessment. Notably, radiomics models were applied to predict

survival in various contexts, offering valuable insights for

prognosis and treatment planning in HCC and other liver cancers.

Radiomics analysis and the integration of CNNs with CT and

MRI images and clinical data have been developed to predict the

prognosis of HCC patients. Machine learning and CNNs have

exhibited a good accuracy in predicting patient survival following

surgical treatment. In a bicentric study, a deep learning nomogram

based on gadoxetic acid MRI features was developed to predict early

recurrence in 285 HCC patients post-hepatectomy. Extracting deep

learning features using VGGNet-19 from contrast-enhanced MRI

images, the deep learning nomogram, incorporating multiphase

deep learning signatures, performed well on both the training

(AUC: 0.949) and validation sets (AUC: 0.909). Independent

predictors for early recurrence included microvascular invasion,

tumor number, and the deep learning signature (105). Lv et al.

introduced an AI -powered approach for predicting the 3-year

recurrence of HCC using contrast-enhanced CT radiomic profiles.

In a single-center retrospective cohort of 224 HCC patients,

radiomic signatures from arterial and portal venous phases were

utilized to establish three models: radiological model (RM), deep

learning-based radiomics model (DLRM), and clinical & deep

learning-based radiomics model (CDLRM). CDLRM,

incorporating clinical factors and DLR features, demonstrated

superior accuracy (AUC: 0.98 in training, 0.83 in testing)

compared to DLRM and RM (106). In a proof-of-concept study

for HCC patients initially eligible for liver transplant, machine

learning models were developed using pretreatment clinical and

MRI features to predict posttreatment recurrence. The study

included 120 patients, and three machine learning models

(clinical, imaging, combined) predicted recurrence with AUCs

ranging from 0.60 to 0.86 across six timeframes. The imaging

model outperformed the clinical model (mean AUC 0.76 vs. 0.68,

p = 0.03). Kaplan-Meier analysis demonstrated significant

differences in recurrence risk prediction between low and high-

risk groups for all three models (107). A retrospective study,

involving 55 patients with stage 4 colon cancer and hepatic

metastasis, explored the role of MRI-based measures of intra-

tumor heterogeneity in predicting survival. Extracting a

heterogeneity phenotype vector from 94 hepatic lesions, the study

identified 22 texture features associated with patient survival. A

random forest machine learning model, combining clinical

variables with imaging-based features, improved survival

prediction performance, yielding an area under the ROC curve of

0.94 compared to 0.83 with clinical variables alone (108).

By analyzing the complex patterns within imaging data, these

approaches allow for a deeper understanding of tumor biology and

patient-specific disease progression. The predictive capability of

radiomics and AI models, as evidenced by their high accuracy in

various studies, emphasizes the need for ongoing research to further

validate and integrate these technologies into clinical practice.
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Pitfalls and technical limitations

Despite the promising results in radiomics research for liver

cancers, a notable gap persists between numerous numerical data

generated and their practical clinical application. These studies

provide a myriad of quantitative metrics and predictive models,

showcasing radiomics’ potential in augmenting diagnostic and

prognostic evaluations. However, translation of these findings

into routine clinical practice remains uncertain. Challenges,

including protocol variability and interobserver discrepancies,

present significant obstacles in bridging the research-clinical gap.

Noteworthy is the absence of clear guidelines on the integration of

radiomic data into the real-world clinical decision-making. The

intrinsic heterogeneity of liver tumors and the dynamic nature of

cancer progression amplify the intricacies of developing robust and

generalizable radiomic models. Additionally, challenges related to

overfitting, model validation, and potential false correlations in

high-dimensional data emphasize the need for rigorous

methodology standardization. These technical challenges

collectively underscore the substantial work required before

radiomics can claim its role as a dependable and clinically

impactful tool in liver cancer management.

While machine learning has shown remarkable promise in the

radiologic assessment of primary and metastatic liver malignancies,

it is not without its pitfalls. One significant challenge lies in the

quality and quantity of training data. The performance of machine

learning models heavily relies on the availability of diverse and

representative datasets, and issues such as imbalances, biases, or

insufficient samples can lead to suboptimal generalization and

performance. Additionally, the interpretability of machine

learning models in radiology remains a concern. The “black-box”

nature of some sophisticated algorithms makes it challenging for

clinicians to understand the rationale behind specific predictions,

limiting their trust and acceptance. Another notable pitfall is the

potential for overfitting, where a model may perform exceptionally

well on the training data but fails to generalize effectively to new,

unseen cases. Moreover, the dynamic nature of medical imaging

and evolving standards in radiologic practices pose challenges in

keeping machine learning models up-to-date and adaptable to

changes in the field. Addressing these pitfalls is crucial to harness

the full potential of machine learning in improving the accuracy and

efficiency of radiologic assessments for liver malignancies.
Future direction

It’s important to acknowledge the gap between research

advancements in radiomics and AI and their clinical

implementation. This gap mainly exists because the low external

validity of these technologies limits their adoption in routine clinical

practice. The primary challenge for clinical translation is ensuring

the generalizability of AI and radiomics models. There is a need for

further clarification of true role of radiomics and machine learning

tools in clinical applications. This involves external validation of

machine learning models and the assessment of diagnostic

performance for specific diseases using deep learning radiomics.
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External validation, particularly through large multi-institutional

datasets gathered over a longer period, is essential to confirm the

models’ generalizability. To enhance the clinical translation and

applicability of radiomics studies, it is also crucial to address

important issues such as access, cost-effectiveness analysis, and

the promotion of open data practices. Generally, achieving

sufficient clinical performance in training a CNN necessitates a

large amount of training data. In the development of AI imaging

models, the cost of annotation is a significant concern, and the

future is expected to see a focus on acquiring substantial amounts of

high-quality training data while simultaneously minimizing

annotation costs. The ultimate goal is to leverage AI and

radiomics in clinic for the precise classification and detection of

liver tumors and to enable personalized treatment by accurately

predicting treatment responses.
Conclusion

In this review we identified several potentials of AI and

radiomics in clinical decision-making in liver oncology imaging,

including improving the precision of tumor detection,

characterization and classification, enabling the prediction of

treatment response, identifying patient-specific prognostic

indicators for personalized therapy, and possibly reducing the

reliance on invasive procedures like biopsies by non-invasively

determining tumor genetics, immune phenotype and behavior.
Author contributions

MH: Writing – original draft. DR: Writing – original draft. AK:

Writing – original draft. YV:Writing – original draft,Writing – review&

editing. AB: Writing – original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. Publication

costs are covered by Northwestern medicine.
Conflict of interest
The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1362737
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Haghshomar et al. 10.3389/fonc.2024.1362737
References
1. Galun D, Mijac D, Filipovic A, Bogdanovic A, Zivanovic M, Masulovic D.
Precision medicine for hepatocellular carcinoma: Clinical perspective. J Personalized
Med. (2022) 12:149. doi: 10.3390/jpm12020149
2. Johnson P, Zhou Q, Dao DY, Lo YD. Circulating biomarkers in the diagnosis and

management of hepatocellular carcinoma. Nat Rev Gastroenterol hepatology. (2022)
19:670–81. doi: 10.1038/s41575-022-00620-y
3. Tomaszewski MR, Gillies RJ. The biological meaning of radiomic features.

Radiology. (2021) 298:505–16. doi: 10.1148/radiol.2021202553
4. Aerts HJ. The potential of radiomic-based phenotyping in precision medicine: a

review. JAMA Oncol. (2016) 2:1636–42. doi: 10.1001/jamaoncol.2016.2631

5. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they
are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

6. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout RG, Granton
P, et al. Radiomics: extracting more information from medical images using advanced
feature analysis. Eur J cancer. (2012) 48:441–6. doi: 10.1016/j.ejca.2011.11.036

7. Mohagheghi S, Foruzan AH. Developing an explainable deep learning boundary
correction method by incorporating cascaded x-Dim models to improve segmentation
defects in liver CT images. Comput Biol Med. (2022) 140:105106. doi: 10.1016/
j.compbiomed.2021.105106

8. Said D, Carbonell G, Stocker D, Hectors S, Vietti-Violi N, Bane O, et al.
Semiautomated segmentation of hepatocellular carcinoma tumors with MRI using
convolutional neural networks. Eur Radiology. (2023), 1–13. doi: 10.1007/s00330-023-
09613-0

9. Anderson BM, Rigaud B, Lin Y-M, Jones AK, Kang HC, Odisio BC, et al.
Automated segmentation of colorectal liver metastasis and liver ablation on contrast-
enhanced CT images. Front Oncol. (2022) 12:886517. doi: 10.3389/fonc.2022.886517

10. Bousabarah K, Letzen B, Tefera J, Savic L, Schobert I, Schlachter T, et al.
Automated detection and delineation of hepatocellular carcinoma on multiphasic
contrast-enhanced MRI using deep learning. Abdominal Radiology. (2021) 46:216–
25. doi: 10.1007/s00261-020-02604-5

11. Massoptier L, Casciaro S. A new fully automatic and robust algorithm for fast
segmentation of liver tissue and tumors from CT scans. Eur radiology. (2008) 18:1658–
65. doi: 10.1007/s00330-008-0924-y

12. Park J, Bae JS, Kim J-M, Witanto JN, Park SJ, Lee JM. Development of a deep-
learning model for classification of LI-RADS major features by using subtraction
images of MRI: a preliminary study. Abdominal Radiology. (2023), 1–10. doi: 10.1007/
s00261-023-03962-6

13. Homayounieh F, Singh R, Nitiwarangkul C, Lades F, Schmidt B, Sedlmair M,
et al. Semiautomatic segmentation and radiomics for dual-energy CT: a pilot study to
differentiate benign and Malignant hepatic lesions. Am J Roentgenology. (2020)
215:398–405. doi: 10.2214/AJR.19.22164

14. Srivastava S, Koay EJ, Borowsky AD, De Marzo AM, Ghosh S, Wagner PD, et al.
Cancer overdiagnosis: a biological challenge and clinical dilemma. Nat Rev Cancer.
(2019) 19:349–58. doi: 10.1038/s41568-019-0142-8

15. Ogasawara S, Akiba J, Nakayama M, Nakashima O, Torimura T, Yano H.
Epithelial cell adhesion molecule-positive human hepatic neoplastic cells: development
of combined hepatocellular-cholangiocarcinoma in mice. J Gastroenterol Hepatology.
(2015) 30:413–20. doi: 10.1111/jgh.12692

16. Jung DH, Hwang S, Hong SM, Chung YK, Song GW, Lee YJ, et al. Post-resection
prognosis of combined hepatocellular carcinoma-cholangiocarcinoma according to the
2010 WHO classification. World J surgery. (2017) 41:1347–57. doi: 10.1007/s00268-
016-3837-y

17. Lee J-H, Chung GE, Yu SJ, Hwang SY, Kim JS, Kim HY, et al. Long-term
prognosis of combined hepatocellular and cholangiocarcinoma after curative resection
comparison with hepatocellular carcinoma and cholangiocarcinoma. J Clin
gastroenterology. (2011) 45:69–75. doi: 10.1097/MCG.0b013e3181ce5dfa

18. Song P, Midorikawa Y, Nakayama H, Higaki T, Moriguchi M, Aramaki O, et al.
Patients' prognosis of intrahepatic cholangiocarcinoma and combined hepatocellular-
cholangiocarcinoma after resection. Cancer Med. (2019) 8:5862–71. doi: 10.1002/
cam4.2495

19. Zhao X, Liang P, Yong L, Jia Y, Gao J. Radiomics study for differentiating focal
hepatic lesions based on unenhanced CT images. Front Oncol. (2022) 12:650797.
doi: 10.3389/fonc.2022.650797

20. Zhou Y, Zhou G, Zhang J, Xu C, Zhu F, Xu P. DCE-MRI based radiomics
nomogram for preoperatively differentiating combined hepatocellular-
cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma. Eur
Radiology. (2022) 32:5004–15. doi: 10.1007/s00330-022-08548-2

21. Xue B, Wu S, Zhang M, Hong J, Liu B, Xu N, et al. A radiomic-based model of
di fferent contrast-enhanced CT phase for di fferentiate intrahepat ic
cholangiocarcinoma from inflammatory mass with hepatolithiasis. Abdominal
Radiology. (2021) 46:3835–44. doi: 10.1007/s00261-021-03027-6

22. Bae H, Lee H, Kim S, Han K, Rhee H, D-k K, et al. Radiomics analysis of
contrast-enhanced CT for classification of hepatic focal lesions in colorectal cancer
patients: its limitations compared to radiologists. Eur Radiology. (2021) 31:8786–96.
doi: 10.1007/s00330-021-07877-y
Frontiers in Oncology 09
23. Li Z-f, Kang L-q, Liu F-h, Zhao M, Guo S-y, Lu S, et al. Radiomics based on
preoperative rectal cancer MRI to predict the metachronous liver metastasis.
Abdominal Radiology. (2023) 48:833–43. doi: 10.1007/s00261-022-03773-1

24. Mokrane F-Z, Lu L, Vavasseur A, Otal P, Peron J-M, Luk L, et al. Radiomics
machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic
patients with indeterminate liver nodules. Eur radiology. (2020) 30:558–70.
doi: 10.1007/s00330-019-06347-w

25. Yuan Z, Shu Z, Peng J, Wang W, Hou J, Han L, et al. Prediction of postoperative
liver metastasis in pancreatic ductal adenocarcinoma based on multiparametric
magnetic resonance radiomics combined with serological markers: a cohort study of
machine learning. Abdominal Radiology. (2023), 1–14. doi: 10.1007/s00261-023-
04047-0

26. Liu X, Khalvati F, Namdar K, Fischer S, Lewis S, Taouli B, et al. Can machine
learning radiomics provide pre-operative differentiation of combined hepatocellular
cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform
optimal treatment planning? Eur Radiol. (2021) 31:244–55. doi: 10.1007/s00330-020-
07119-7

27. Chen X, Chen Y, Chen H, Zhu J, Huang R, Xie J, et al. Machine learning based on
gadoxetic acid-enhanced MRI for differentiating atypical intrahepatic mass-forming
cholangiocarcinoma from poorly differentiated hepatocellular carcinoma. Abdominal
Radiology. (2023), 1–12. doi: 10.1007/s00261-023-03870-9

28. Taghavi M, Trebeschi S, Simões R, Meek DB, Beckers RC, Lambregts DM, et al.
Machine learning-based analysis of CT radiomics model for prediction of colorectal
metachronous liver metastases. Abdominal Radiology. (2021) 46:249–56. doi: 10.1007/
s00261-020-02624-1

29. Nakai H, Sakamoto R, Kakigi T, Coeur C, Isoda H, Nakamoto Y. Artificial
intelligence-powered software detected more than half of the liver metastases
overlooked by radiologists on contrast-enhanced CT. Eur J Radiology. (2023)
163:110823. doi: 10.1016/j.ejrad.2023.110823

30. Ling Y, Ying S, Xu L, Peng Z, Mao X, Chen Z, et al. Automatic volumetric
diagnosis of hepatocellular carcinoma based on four-phase CT scans with minimum
extra information. Front Oncol. (2022) 12:960178. doi: 10.3389/fonc.2022.960178

31. Oestmann PM, Wang CJ, Savic LJ, Hamm CA, Stark S, Schobert I, et al. Deep
learning–assisted differentiation of pathologically proven atypical and typical
hepatocellular carcinoma (HCC) versus non-HCC on contrast-enhanced MRI of the
liver. Eur radiology. (2021) 31:4981–90. doi: 10.1007/s00330-020-07559-1

32. Kim DW, Lee G, Kim SY, Ahn G, Lee J-G, Lee SS, et al. Deep learning–based
algorithm to detect primary hepatic Malignancy in multiphase CT of patients at high
risk for HCC. Eur Radiology. (2021) 31:7047–57. doi: 10.1007/s00330-021-07803-2

33. Xu Y, Zhou C, He X, Song R, Liu Y, Zhang H, et al. Deep learning–assisted LI-
RADS grading and distinguishing hepatocellular carcinoma (HCC) from non-HCC
based on multiphase CT: a two-center study. Eur Radiology. (2023), 1–10. doi: 10.1007/
s00330-023-09857-w

34. Yamashita R, Mittendorf A, Zhu Z, Fowler KJ, Santillan CS, Sirlin CB, et al. Deep
convolutional neural network applied to the liver imaging reporting and data system
(LI-RADS) version 2014 category classification: a pilot study. Abdominal Radiology.
(2020) 45:24–35. doi: 10.1007/s00261-019-02306-7

35. Wang H, Wu MC, Cong WM. Microvascular invasion predicts a poor prognosis
of solitary hepatocellular carcinoma up to 2 cm based on propensity score matching
analysis. Hepatol Res. (2019) 49:344–54. doi: 10.1111/hepr.13241

36. Zhou Y, Zhou G, Zhang J, Xu C,Wang X, Xu P. Radiomics signature on dynamic
contrast-enhanced MR images: a potential imaging biomarker for prediction of
microvascular invasion in mass-forming intrahepatic cholangiocarcinoma. Eur
Radiology. (2021) 31:6846–55. doi: 10.1007/s00330-021-07793-1

37. Zheng R, Zhang X, Liu B, Zhang Y, Shen H, Xie X, et al. Comparison of non-
radiomics imaging features and radiomics models based on contrast-enhanced
ultrasound and Gd-EOB-DTPA-enhanced MRI for predicting microvascular
invasion in hepatocellular carcinoma within 5 cm. Eur Radiology. (2023), 1–11.
doi: 10.1007/s00330-023-09789-5

38. Xia T-y, Zhou Z-h, Meng X-p, Zha J-h, Yu Q, Wang W-l, et al. Predicting
microvascular invasion in hepatocellular carcinoma using CT-based radiomics model.
Radiology. (2023) 307:e222729. doi: 10.1148/radiol.222729

39. Zhang K, Zhang L, Li W-C, Xie S-S, Cui Y-Z, Lin L-Y, et al. Radiomics
nomogram for the prediction of microvascular invasion of HCC and patients’ benefit
from postoperative adjuvant TACE: a multi-center study. Eur Radiol. (2023), 1–12.
doi: 10.1007/s00330-023-09824-5

40. Chong H-H, Yang L, Sheng R-F, Yu Y-L, Wu D-J, Rao S-X, et al. Multi-scale and
multi-parametric radiomics of gadoxetate disodium–enhanced MRI predicts
microvascular invasion and outcome in patients with solitary hepatocellular
carcinoma≤ 5 cm. Eur Radiology. (2021) 31:4824–38. doi: 10.1007/s00330-020-
07601-2

41. Ma X, Wei J, Gu D, Zhu Y, Feng B, Liang M, et al. Preoperative radiomics
nomogram for microvascular invasion prediction in hepatocellular carcinoma using
contrast-enhanced CT. Eur radiology. (2019) 29:3595–605. doi: 10.1007/s00330-018-
5985-y
frontiersin.org

https://doi.org/10.3390/jpm12020149
https://doi.org/10.1038/s41575-022-00620-y
https://doi.org/10.1148/radiol.2021202553
https://doi.org/10.1001/jamaoncol.2016.2631
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.compbiomed.2021.105106
https://doi.org/10.1016/j.compbiomed.2021.105106
https://doi.org/10.1007/s00330-023-09613-0
https://doi.org/10.1007/s00330-023-09613-0
https://doi.org/10.3389/fonc.2022.886517
https://doi.org/10.1007/s00261-020-02604-5
https://doi.org/10.1007/s00330-008-0924-y
https://doi.org/10.1007/s00261-023-03962-6
https://doi.org/10.1007/s00261-023-03962-6
https://doi.org/10.2214/AJR.19.22164
https://doi.org/10.1038/s41568-019-0142-8
https://doi.org/10.1111/jgh.12692
https://doi.org/10.1007/s00268-016-3837-y
https://doi.org/10.1007/s00268-016-3837-y
https://doi.org/10.1097/MCG.0b013e3181ce5dfa
https://doi.org/10.1002/cam4.2495
https://doi.org/10.1002/cam4.2495
https://doi.org/10.3389/fonc.2022.650797
https://doi.org/10.1007/s00330-022-08548-2
https://doi.org/10.1007/s00261-021-03027-6
https://doi.org/10.1007/s00330-021-07877-y
https://doi.org/10.1007/s00261-022-03773-1
https://doi.org/10.1007/s00330-019-06347-w
https://doi.org/10.1007/s00261-023-04047-0
https://doi.org/10.1007/s00261-023-04047-0
https://doi.org/10.1007/s00330-020-07119-7
https://doi.org/10.1007/s00330-020-07119-7
https://doi.org/10.1007/s00261-023-03870-9
https://doi.org/10.1007/s00261-020-02624-1
https://doi.org/10.1007/s00261-020-02624-1
https://doi.org/10.1016/j.ejrad.2023.110823
https://doi.org/10.3389/fonc.2022.960178
https://doi.org/10.1007/s00330-020-07559-1
https://doi.org/10.1007/s00330-021-07803-2
https://doi.org/10.1007/s00330-023-09857-w
https://doi.org/10.1007/s00330-023-09857-w
https://doi.org/10.1007/s00261-019-02306-7
https://doi.org/10.1111/hepr.13241
https://doi.org/10.1007/s00330-021-07793-1
https://doi.org/10.1007/s00330-023-09789-5
https://doi.org/10.1148/radiol.222729
https://doi.org/10.1007/s00330-023-09824-5
https://doi.org/10.1007/s00330-020-07601-2
https://doi.org/10.1007/s00330-020-07601-2
https://doi.org/10.1007/s00330-018-5985-y
https://doi.org/10.1007/s00330-018-5985-y
https://doi.org/10.3389/fonc.2024.1362737
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Haghshomar et al. 10.3389/fonc.2024.1362737
42. Feng S-T, Jia Y, Liao B, Huang B, Zhou Q, Li X, et al. Preoperative prediction of
microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-
DTPA-enhanced MRI. Eur radiology. (2019) 29:4648–59. doi: 10.1007/s00330-018-
5935-8

43. Chen Y, Xia Y, Tolat PP, Long L, Jiang Z, Huang Z, et al. Comparison of
conventional gadoxetate disodium–enhanced MRI features and radiomics signatures
with machine learning for diagnosing microvascular invasion. Am J Roentgenology.
(2021) 216:1510–20. doi: 10.2214/AJR.20.23255

44. Liu B, Zeng Q, Huang J, Zhang J, Zheng Z, Liao Y, et al. IVIM using
convolutional neural networks predicts microvascular invasion in HCC. Eur
Radiology. (2022) 32:7185–95. doi: 10.1007/s00330-022-08927-9

45. Lewin M, Laurent-Bellue A, Desterke C, Radu A, Feghali JA, Farah J, et al.
Evaluation of perfusion CT and dual-energy CT for predicting microvascular invasion
of hepatocellular carcinoma. Abdominal Radiology. (2022) 47:2115–27. doi: 10.1007/
s00261-022-03511-7

46. Li X, Qi Z, Du H, Geng Z, Li Z, Qin S, et al. Deep convolutional neural network
for preoperative prediction of microvascular invasion and clinical outcomes in patients
with HCCs. Eur Radiology. (2021), 1–12. doi: 10.1007/s00330-021-08198-w

47. Wang T, Li Z, Yu H, Duan C, Feng W, Chang L, et al. Prediction of
microvascular invasion in hepatocellular carcinoma based on preoperative Gd-EOB-
DTPA-enhanced MRI: Comparison of predictive performance among 2D, 2D-
expansion and 3D deep learning models. Front Oncol. (2023) 13:987781.
doi: 10.3389/fonc.2023.987781

48. Han YE, Cho Y, Kim MJ, Park BJ, Sung DJ, Han NY, et al. Hepatocellular
carcinoma pathologic grade prediction using radiomics and machine learning models
of gadoxetic acid-enhanced MRI: a two-center study. Abdominal Radiology. (2023)
48:244–56. doi: 10.1007/s00261-022-03679-y

49. Feng Z, Li H, Liu Q, Duan J, Zhou W, Yu X, et al. CT radiomics to predict
macrotrabecular-massive subtype and immune status in hepatocellular carcinoma.
Radiology. (2022) 307:e221291. doi: 10.1148/radiol.221291

50. Wu M, Tan H, Gao F, Hai J, Ning P, Chen J, et al. Predicting the grade of
hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature.
Eur radiology. (2019) 29:2802–11. doi: 10.1007/s00330-018-5787-2

51. Zhu Y,Weng S, Li Y, Yan C, Ye R, Wen L, et al. A radiomics nomogram based on
contrast-enhanced MRI for preoperative prediction of macrotrabecular-massive
hepatocellular carcinoma. Abdominal Radiology. (2021) 46:3139–48. doi: 10.1007/
s00261-021-02989-x

52. Mao B, Zhang L, Ning P, Ding F, Wu F, Lu G, et al. Preoperative prediction for
pathological grade of hepatocellular carcinoma via machine learning–based radiomics.
Eur Radiology. (2020) 30:6924–32. doi: 10.1007/s00330-020-07056-5

53. Li M, Fan Y, You H, Li C, Luo M, Zhou J, et al. Dual-energy CT deep learning
radiomics to predict macrotrabecular-massive hepatocellular carcinoma. Radiology.
(2023) 308:e230255. doi: 10.1148/radiol.230255

54. Torkian P, Haghshomar M, Farsad K, Wallace S, Golzarian J, Young SJ. Cancer
immunology: impact of radioembolization of hepatocellular carcinoma on immune
response modulation. Am J Roentgenology. (2023) 220:863–72. doi: 10.2214/
AJR.22.28800

55. Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, de Moura
MC, et al. Identification of an immune-specific class of hepatocellular carcinoma, based
on molecular features. Gastroenterology. (2017) 153:812–26. doi: 10.1053/
j.gastro.2017.06.007

56. Fan T, Li S, Li K, Xu J, Zhao S, Li J, et al. A potential prognostic marker for
recognizing VEGF-positive hepatocellular carcinoma based on magnetic resonance
radiomics signature. Front Oncol. (2022) 12:857715. doi: 10.3389/fonc.2022.857715

57. Zheng J, Du P-Z, Yang C, Tao Y-Y, Li L, Li Z-M, et al. DCE-MRI-based
radiomics in predicting angiopoietin-2 expression in hepatocellular carcinoma.
Abdominal Radiology. (2023) 48:3343–52. doi: 10.1007/s00261-023-04007-8

58. Chen X, Tang Y, Wu D, Li R, Lin Z, Zhou X, et al. From imaging to clinical
outcome: dual-region CT radiomics predicting FOXM1 expression and prognosis in
hepatocellular carcinoma. Front Oncol. (2023) 13:1278467. doi: 10.3389/
fonc.2023.1278467

59. Wu C, Chen J, Fan Y, Zhao M, He X, Wei Y, et al. Nomogram based on CT
radiomics features combined with clinical factors to predict Ki-67 expression in
hepatocellular carcinoma. Front Oncol. (2022) 12:943942. doi: 10.3389/
fonc.2022.943942

60. Yan C, Han Z, Chen X, Gao L, Ye R, Li Y. Diffusion-weighted imaging as a
quantitative imaging biomarker for predicting proliferation rate in hepatocellular
carcinoma: developing a radiomics nomogram. J Comput Assisted Tomography.
(2023) 10:1097. doi: 10.1097/RCT.0000000000001448

61. Zeng F, Dai H, Li X, Guo L, Jia N, Yang J, et al. Preoperative radiomics model
using gadobenate dimeglumine-enhanced magnetic resonance imaging for predicting
b-catenin mutation in patients with hepatocellular carcinoma: A retrospective study.
Front Oncol. (2022) 12:916126. doi: 10.3389/fonc.2022.916126

62. Li P, Liang Y, Zeng B, Yang G, Zhu C, Zhao K, et al. Preoperative prediction of
intra-tumoral tertiary lymphoid structures based on CT in hepatocellular cancer. Eur J
Radiology. (2022) 151:110309. doi: 10.1016/j.ejrad.2022.110309

63. Zhang L, Zhou H, Zhang X, Ding Z, Xu J. A radiomics nomogram for predicting
cytokeratin 19–positive hepatocellular carcinoma: a two-center study. Front Oncol.
(2023) 13:1174069. doi: 10.3389/fonc.2023.1174069
Frontiers in Oncology 10
64. Wang W, Gu D, Wei J, Ding Y, Yang L, Zhu K, et al. A radiomics-based
biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid–
enhanced MRI. Eur radiology. (2020) 30:3004–14. doi: 10.1007/s00330-019-06585-y

65. Zhang N, Wu M, Zhou Y, Yu C, Shi D, Wang C, et al. Radiomics nomogram for
prediction of glypican-3 positive hepatocellular carcinoma based on hepatobiliary
phase imaging. Front Oncol. (2023) 13:1209814. doi: 10.3389/fonc.2023.1209814

66. Hectors SJ, Lewis S, Besa C, King MJ, Said D, Putra J, et al. MRI radiomics
features predict immuno-oncological characteristics of hepatocellular carcinoma. Eur
radiology. (2020) 30:3759–69. doi: 10.1007/s00330-020-06675-2

67. Chen S, Feng S, Wei J, Liu F, Li B, Li X, et al. Pretreatment prediction of
immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-
EOB-DTPA-enhanced MRI imaging. Eur Radiology. (2019) 29:4177–87. doi: 10.1007/
s00330-018-5986-x

68. Xie T, Wei Y, Xu L, Li Q, Che F, Xu Q, et al. Self-supervised contrastive learning
using CT images for PD-1/PD-L1 expression prediction in hepatocellular carcinoma.
Front Oncol. (2023) 13:1103521. doi: 10.3389/fonc.2023.1103521

69. Inchingolo R, Posa A, Mariappan M, Spiliopoulos S. Locoregional treatments for
hepatocellular carcinoma: Current evidence and future directions. World J
gastroenterology. (2019) 25:4614. doi: 10.3748/wjg.v25.i32.4614

70. Bruix J, Reig M, ShermanM. Evidence-based diagnosis, staging, and treatment of
patients with hepatocellular carcinoma. Gastroenterology. (2016) 150:835–53.
doi: 10.1053/j.gastro.2015.12.041

71. Mendiratta-Lala M, Masch W, Owen D, Aslam A, Maurino C, Devasia T, et al.
Natural history of hepatocellular carcinoma after stereotactic body radiation therapy.
Abdominal Radiology. (2020) 45:3698–708. doi: 10.1007/s00261-020-02532-4

72. Zhang X, Wang C, Zheng D, Liao Y, Wang X, Huang Z, et al. Radiomics
nomogram based on multi-parametric magnetic resonance imaging for predicting early
recurrence in small hepatocellular carcinoma after radiofrequency ablation. Front
Oncol. (2022) 12:1013770. doi: 10.3389/fonc.2022.1013770

73. Fan XL, Wang YH, Chen YH, Chen BX, Cai JN, Yang JS, et al. Computed
tomography texture analysis combined with preoperative clinical factors serve as a
predictor of early efficacy of transcatheter arterial chemoembolization in hepatocellular
carcinoma. Abdominal Radiology. (2023) 48:2008–18. doi: 10.1007/s00261-023-
03868-3

74. Lv X, Chen M, Kong C, Shu G, Meng M, Ye W, et al. Construction of a novel
radiomics nomogram for the prediction of aggressive intrasegmental recurrence of
HCC after radiofrequency ablation. Eur J Radiology. (2021) 144:109955. doi: 10.1016/
j.ejrad.2021.109955

75. Kong C, Zhao Z, ChenW, Lv X, Shu G, Ye M, et al. Prediction of tumor response
via a pretreatment MRI radiomics-based nomogram in HCC treated with TACE. Eur
radiology. (2021) 31:7500–11. doi: 10.1007/s00330-021-07910-0

76. Sheen H, Kim JS, Lee JK, Choi SY, Baek SY, Kim JY. A radiomics nomogram for
predicting transcatheter arterial chemoembolization refractoriness of hepatocellular
carcinoma without extrahepatic metastasis or macrovascular invasion. Abdominal
Radiology. (2021) 46:2839–49. doi: 10.1007/s00261-020-02884-x

77. Kim J, Choi SJ, Lee S-H, Lee HY, Park H. Predicting survival using pretreatment
CT for patients with hepatocellular carcinoma treated with transarterial
chemoembolization: comparison of models using radiomics. Am J Roentgenology.
(2018), 1026–34. doi: 10.2214/AJR.18.19507

78. Kuang Y, Li R, Jia P, Ye W, Zhou R, Zhu R, et al. MRI-Based Radiomics:
Nomograms predicting the short-term response after transcatheter arterial
chemoembolization (TACE) in hepatocellular carcinoma patients with diameter less
than 5 cm. Abdominal Radiology. (2021) 46:3772–89. doi: 10.1007/s00261-021-02992-2

79. Wang D, Zhang L, Sun Z, Jiang H, Zhang J. A radiomics signature associated
with underlying gene expression pattern for the prediction of prognosis and treatment
response in hepatocellular carcinoma. Eur J Radiology. (2023) 167:111086.
doi: 10.1016/j.ejrad.2023.111086

80. Staal F, Taghavi M, van der Reijd D, Gomez F, Imani F, Klompenhouwer E, et al.
Predicting local tumour progression after ablation for colorectal liver metastases: CT-
based radiomics of the ablation zone. Eur J Radiology. (2021) 141:109773. doi: 10.1016/
j.ejrad.2021.109773

81. Mosconi C, Cucchetti A, Bruno A, Cappelli A, Bargellini I, De Benedittis C, et al.
Radiomics of cholangiocarcinoma on pretreatment CT can identify patients who would
best respond to radioembolisation. Eur Radiology. (2020) 30:4534–44. doi: 10.1007/
s00330-020-06795-9

82. Wang H, Liu Y, Xu N, Sun Y, Fu S, Wu Y, et al. Development and validation of a
deep learning model for survival prognosis of transcatheter arterial chemoembolization
in patients with intermediate-stage hepatocellular carcinoma. Eur J Radiology. (2022)
156:110527. doi: 10.1016/j.ejrad.2022.110527

83. Peng J, Kang S, Ning Z, Deng H, Shen J, Xu Y, et al. Residual convolutional
neural network for predicting response of transarterial chemoembolization in
hepatocellular carcinoma from CT imaging. Eur radiology. (2020) 30:413–24.
doi: 10.1007/s00330-019-06318-1

84. Zhang L, Xia W, Yan Z-P, Sun J-H, Zhong B-Y, Hou Z-H, et al. Deep learning
predicts overall survival of patients with unresectable hepatocellular carcinoma treated
by transarterial chemoembolization plus sorafenib. Front Oncol. (2020) 10:593292.
doi: 10.3389/fonc.2020.593292

85. Xu Z, An C, Shi F, Ren H, Li Y, Chen S, et al. Automatic prediction of hepatic
arterial infusion chemotherapy response in advanced hepatocellular carcinoma with
frontiersin.org

https://doi.org/10.1007/s00330-018-5935-8
https://doi.org/10.1007/s00330-018-5935-8
https://doi.org/10.2214/AJR.20.23255
https://doi.org/10.1007/s00330-022-08927-9
https://doi.org/10.1007/s00261-022-03511-7
https://doi.org/10.1007/s00261-022-03511-7
https://doi.org/10.1007/s00330-021-08198-w
https://doi.org/10.3389/fonc.2023.987781
https://doi.org/10.1007/s00261-022-03679-y
https://doi.org/10.1148/radiol.221291
https://doi.org/10.1007/s00330-018-5787-2
https://doi.org/10.1007/s00261-021-02989-x
https://doi.org/10.1007/s00261-021-02989-x
https://doi.org/10.1007/s00330-020-07056-5
https://doi.org/10.1148/radiol.230255
https://doi.org/10.2214/AJR.22.28800
https://doi.org/10.2214/AJR.22.28800
https://doi.org/10.1053/j.gastro.2017.06.007
https://doi.org/10.1053/j.gastro.2017.06.007
https://doi.org/10.3389/fonc.2022.857715
https://doi.org/10.1007/s00261-023-04007-8
https://doi.org/10.3389/fonc.2023.1278467
https://doi.org/10.3389/fonc.2023.1278467
https://doi.org/10.3389/fonc.2022.943942
https://doi.org/10.3389/fonc.2022.943942
https://doi.org/10.1097/RCT.0000000000001448
https://doi.org/10.3389/fonc.2022.916126
https://doi.org/10.1016/j.ejrad.2022.110309
https://doi.org/10.3389/fonc.2023.1174069
https://doi.org/10.1007/s00330-019-06585-y
https://doi.org/10.3389/fonc.2023.1209814
https://doi.org/10.1007/s00330-020-06675-2
https://doi.org/10.1007/s00330-018-5986-x
https://doi.org/10.1007/s00330-018-5986-x
https://doi.org/10.3389/fonc.2023.1103521
https://doi.org/10.3748/wjg.v25.i32.4614
https://doi.org/10.1053/j.gastro.2015.12.041
https://doi.org/10.1007/s00261-020-02532-4
https://doi.org/10.3389/fonc.2022.1013770
https://doi.org/10.1007/s00261-023-03868-3
https://doi.org/10.1007/s00261-023-03868-3
https://doi.org/10.1016/j.ejrad.2021.109955
https://doi.org/10.1016/j.ejrad.2021.109955
https://doi.org/10.1007/s00330-021-07910-0
https://doi.org/10.1007/s00261-020-02884-x
https://doi.org/10.2214/AJR.18.19507
https://doi.org/10.1007/s00261-021-02992-2
https://doi.org/10.1016/j.ejrad.2023.111086
https://doi.org/10.1016/j.ejrad.2021.109773
https://doi.org/10.1016/j.ejrad.2021.109773
https://doi.org/10.1007/s00330-020-06795-9
https://doi.org/10.1007/s00330-020-06795-9
https://doi.org/10.1016/j.ejrad.2022.110527
https://doi.org/10.1007/s00330-019-06318-1
https://doi.org/10.3389/fonc.2020.593292
https://doi.org/10.3389/fonc.2024.1362737
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Haghshomar et al. 10.3389/fonc.2024.1362737
deep learning radiomic nomogram. Eur Radiology. (2023), 1–14. doi: 10.1007/s00330-
023-09953-x

86. Chan AW, Zhong J, Berhane S, Toyoda H, Cucchetti A, Shi K, et al.
Development of pre and post-operative models to predict early recurrence of
hepatocellular carcinoma after surgical resection. J hepatology. (2018) 69:1284–93.
doi: 10.1016/j.jhep.2018.08.027

87. Portolani N, Coniglio A, Ghidoni S, Giovanelli M, Benetti A, Tiberio GAM, et al.
Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic
and therapeutic implications. Ann surgery. (2006) 243:229. doi: 10.1097/
01.sla.0000197706.21803.a1

88. Wang L, Ma X, Feng B, Wang S, Liang M, Li D, et al. Multi-sequence MR-based
radiomics signature for predicting early recurrence in solitary hepatocellular
carcinoma≤ 5 cm. Front Oncol. (2022) 12:899404. doi: 10.3389/fonc.2022.899404

89. Li C, Wang Q, Zou M, Cai P, Li X, Feng K, et al. A radiomics model based on
preoperative gadoxetic acid–enhanced magnetic resonance imaging for predicting
post-hepatectomy liver failure in patients with hepatocellular carcinoma. Front
Oncol. (2023) 13:1164739. doi: 10.3389/fonc.2023.1164739

90. Wang L, Feng B, Wang S, Hu J, Liang M, Li D, et al. Diagnostic value of whole-
tumor apparent diffusion coefficient map radiomics analysis in predicting early
recurrence of solitary hepatocellular carcinoma≤ 5 cm. Abdominal Radiology. (2022)
47:3290–300. doi: 10.1007/s00261-022-03582-6

91. Yu Y, Fan Y, Wang X, Zhu M, Hu M, Shi C, et al. Gd-EOB-DTPA-enhanced
MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient
prognosis in hepatocellular carcinoma. Eur Radiol. (2022), 1–12. doi: 10.1007/s00330-
021-08250-9
92. Ji G-W, Zhu F-P, Xu Q, Wang K, Wu M-Y, Tang W-W, et al. Radiomic features

at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma: a
multi-institutional study. Radiology . (2020) 294:568–79. doi: 10.1148/
radiol.2020191470

93. Guo D, Gu D, Wang H, Wei J, Wang Z, Hao X, et al. Radiomics analysis enables
recurrence prediction for hepatocellular carcinoma after liver transplantation. Eur J
radiology. (2019) 117:33–40. doi: 10.1016/j.ejrad.2019.05.010

94. Ning P, Gao F, Hai J, Wu M, Chen J, Zhu S, et al. Application of CT radiomics in
prediction of early recurrence in hepatocellular carcinoma. Abdominal Radiology.
(2020) 45:64–72. doi: 10.1007/s00261-019-02198-7

95. Wang X-H, Long L-H, Cui Y, Jia AY, Zhu X-G, Wang H-Z, et al. MRI-based
radiomics model for preoperative prediction of 5-year survival in patients with
hepatocellular carcinoma. Br J cancer. (2020) 122:978–85. doi: 10.1038/s41416-019-
0706-0

96. Zhou Y, He L, Huang Y, Chen S, Wu P, Ye W, et al. CT-based radiomics
signature: a potential biomarker for preoperative prediction of early recurrence in
hepatocellular carcinoma. Abdominal radiology. (2017) 42:1695–704. doi: 10.1007/
s00261-017-1072-0

97. Zhang L, Hu J, Hou J, Jiang X, Guo L, Tian L. Radiomics-based model using
gadoxetic acid disodium-enhanced MR images: associations with recurrence-free
Frontiers in Oncology 11
survival of patients with hepatocellular carcinoma treated by surgical resection.
Abdominal Radiology. (2021) 46:3845–54. doi: 10.1007/s00261-021-03034-7

98. Park HJ, Park B, Park SY, Choi SH, Rhee H, Park JH, et al. Preoperative
prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma
based on clinical, radiologic, and radiomics features. Eur radiology. (2021) 31:8638–48.
doi: 10.1007/s00330-021-07926-6

99. Ji G-W, Zhu F-P, Zhang Y-D, Liu X-S, Wu F-Y, Wang K, et al. A radiomics
approach to predict lymph node metastasis and clinical outcome of intrahepatic
cholangiocarcinoma. Eur radiology. (2019) 29:3725–35. doi: 10.1007/s00330-019-
06142-7

100. Silva M, Maddalo M, Leoni E, Giuliotti S, Milanese G, Ghetti C, et al. Integrated
prognostication of intrahepatic cholangiocarcinoma by contrast-enhanced computed
tomography: the adjunct yield of radiomics. Abdominal Radiology. (2021) 46:4689–700.
doi: 10.1007/s00261-021-03183-9

101. Chu H, Liu Z, Liang W, Zhou Q, Zhang Y, Lei K, et al. Radiomics using CT
images for preoperative prediction of futile resection in intrahepatic
cholangiocarcinoma. Eur Radiology. (2021) 31:2368–76. doi: 10.1007/s00330-020-
07250-5

102. Wei S, Han Y, Zeng H, Ye S, Cheng J, Chai F, et al. Radiomics diagnosed
histopathological growth pattern in prediction of response and 1-year progression free
survival for colorectal liver metastases patients treated with bevacizumab containing
chemotherapy. Eur J Radiology. (2021) 142:109863. doi: 10.1016/j.ejrad.2021.109863

103. Muehlberg A, Holch JW, Heinemann V, Huber T, Moltz J, Maurus S, et al. The
relevance of CT-based geometric and radiomics analysis of whole liver tumor burden to
predict survival of patients with metastatic colorectal cancer. Eur radiology. (2021)
31:834–46. doi: 10.1007/s00330-020-07192-y

104. Rahmim A, Bak-Fredslund KP, Ashrafinia S, Lu L, Schmidtlein CR,
Subramaniam RM, et al. Prognostic modeling for patients with colorectal liver
metastases incorporating FDG PET radiomic features. Eur J radiology. (2019)
113:101–9. doi: 10.1016/j.ejrad.2019.02.006

105. Yan M, Zhang X, Zhang B, Geng Z, Xie C, Yang W, et al. Deep learning
nomogram based on Gd-EOB-DTPA MRI for predicting early recurrence in
hepatocellular carcinoma after hepatectomy. Eur Radiology. (2023), 1–13.
doi: 10.1007/s00330-023-09419-0

106. Lv C, He N, Yang JJ, Xiao JJ, Zhang Y, Du J, et al. Prediction of 3-year
recurrence rate of hepatocellular carcinoma after resection based on contrast-enhanced
CT: A single-centre study. Br J Radiol. (2023) 96:20220702. doi: 10.1259/bjr.20220702

107. Iseke S, Zeevi T, Kucukkaya AS, Raju R, Gross M, Haider SP, et al. Machine
learning models for prediction of posttreatment recurrence in early-stage
hepatocellular carcinoma using pretreatment clinical and MRI features: a proof-of-
concept study. AJR Am J roentgenology. (2023) 220:245. doi: 10.2214/AJR.22.28077

108. Daye D, Tabari A, Kim H, Chang K, Kamran SC, Hong TS, et al. Quantitative
tumor heterogeneity MRI profiling improves machine learning–based prognostication
in patients with metastatic colon cancer. Eur Radiology. (2021) 31:5759–67.
doi: 10.1007/s00330-020-07673-0
frontiersin.org

https://doi.org/10.1007/s00330-023-09953-x
https://doi.org/10.1007/s00330-023-09953-x
https://doi.org/10.1016/j.jhep.2018.08.027
https://doi.org/10.1097/01.sla.0000197706.21803.a1
https://doi.org/10.1097/01.sla.0000197706.21803.a1
https://doi.org/10.3389/fonc.2022.899404
https://doi.org/10.3389/fonc.2023.1164739
https://doi.org/10.1007/s00261-022-03582-6
https://doi.org/10.1007/s00330-021-08250-9
https://doi.org/10.1007/s00330-021-08250-9
https://doi.org/10.1148/radiol.2020191470
https://doi.org/10.1148/radiol.2020191470
https://doi.org/10.1016/j.ejrad.2019.05.010
https://doi.org/10.1007/s00261-019-02198-7
https://doi.org/10.1038/s41416-019-0706-0
https://doi.org/10.1038/s41416-019-0706-0
https://doi.org/10.1007/s00261-017-1072-0
https://doi.org/10.1007/s00261-017-1072-0
https://doi.org/10.1007/s00261-021-03034-7
https://doi.org/10.1007/s00330-021-07926-6
https://doi.org/10.1007/s00330-019-06142-7
https://doi.org/10.1007/s00330-019-06142-7
https://doi.org/10.1007/s00261-021-03183-9
https://doi.org/10.1007/s00330-020-07250-5
https://doi.org/10.1007/s00330-020-07250-5
https://doi.org/10.1016/j.ejrad.2021.109863
https://doi.org/10.1007/s00330-020-07192-y
https://doi.org/10.1016/j.ejrad.2019.02.006
https://doi.org/10.1007/s00330-023-09419-0
https://doi.org/10.1259/bjr.20220702
https://doi.org/10.2214/AJR.22.28077
https://doi.org/10.1007/s00330-020-07673-0
https://doi.org/10.3389/fonc.2024.1362737
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies
	Introduction
	Radiomics and artificial intelligence
	Segmentation
	Early detection and accurate tumor classification
	Grading, association with molecular profile, immunophenotype, etc.
	Assessment of tumor response
	Prognostication
	Pitfalls and technical limitations
	Future direction
	Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


