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Organotropism has been known since 1889, yet this vital component of

metastasis has predominantly stayed elusive. This mini-review gives an

overview of the current understanding of the underlying mechanisms of

organotropism and metastases development by focusing on the formation of

the pre-metastatic niche, immune defenses against metastases, and genomic

alterations associated with organotropism. The particular case of brain

metastases is also addressed, as well as the impact of organotropism in cancer

therapy. The limited comprehension of the factors behind organotropism

underscores the necessity for efficient strategies and treatments to

manage metastases.
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Introduction

Metastasis is the process by which cancer cells leave their primary site of tumorigenesis

and colonize distant sites. Unlike primary tumors, which can be potentially treated with

local therapies, metastasis is a systemic disease and remains the leading cause of morbidity

and mortality among cancer patients (1). Yet, the process of metastasis is highly inefficient.

Tumors can release millions of cells daily, and certain tumors initiate the dissemination of

cells at an early stage in their development (2). Establishing colonization post-extravasation

constitutes the major bottleneck in the metastatic progression, with fewer than 0.02% of

cells succeeding in generating macroscopic metastases (2, 3).

Different cancer types exhibit organ-specific patterns of metastasis: gastric, gallbladder,

pancreatic, and colorectal cancers frequently form established liver metastases before

spreading to secondary sites like the lungs. Breast cancers commonly metastasize to the

lung, bone, brain, and liver, while prostate cancer primarily metastasizes to bone (4, 5).

Blood flow patterns influence the dispersion of circulating tumor cells (CTCs) in the body.

The liver and lungs are often the first organs CTCs encounter, justifying why these organs
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are common locations for metastasis in various types of cancer.

Liver and bone marrow sinusoids gaps promote the extravasation of

CTCs and play a role in the increased prevalence of liver and bone

metastases (2). Nevertheless, anatomical characteristics can only

provide a partial explanation for organotropism. So, how do we

explain the nonrandom pattern of cancer metastasis? Research to

solve this topic has been divided into two main areas: molecular and

cellular factors that influence organotropism (how it happens), and

genetic differences in cancer cells that determine organotropism

patterns (why it happens). There is however a gap in the

understanding of the connection between the two areas. We hope

that by providing a summary of both perspectives, this mini-review

will motivate efforts to close this gap.
Surviving bloodstream migration and
conditioning the pre-metastatic niche

Before reaching a metastatic niche, CTCs need to survive during

migration through the bloodstream. Tumor cells can circulate in the

bloodstream either through individual cell dissemination or, more

favorably, through collective migration. When tumor cells spread in

clusters, distinct variations in function, morphology, and gene

expression emerge among the cells. Outer cells, involved in

interactions with the surrounding environment, display a notable

degree of plasticity and mesenchymal characteristics, while inner

cells maintain epithelial traits (6). Tumor cell clusters associate with

platelets through selectins to evade harm caused by exposure to

hemodynamic shear forces (7, 8). Regardless of their eventual

metastatic destination, all CTCs must endure migration through

the bloodstream. The characteristics necessary to survive

bloodstream migration are probably unrelated to organotropic

metastatic patterns. Yet, the molecular signals emanating from

CTCs and the primary tumor, such as tumor derived factors and

tumor derived exosomes, can influence distinct organs and tissues

in different ways, resulting in fluctuations in the success rate of

metastasis across various locations.

The pre-metastatic niche (PMN), a concept devised by Kaplan

and colleagues in 2005, corresponds to a tissue microenvironment

that provides support and the necessary conditions for the survival

and proliferation of tumor cells (9). In contrast to the previous idea

that distant organs were passively receptive to metastatic cells,

numerous studies have suggested the existence of a tumor

secretome, which produces factors, including hormones,

chemokines, growth factors, and extracellular vesicles (EVs) that

are secreted into the circulation, leading to the preconditioning of

the future metastatic site (10–12). The PMN displays organ

specificity but holds shared features within metastatic niches.

PMNs are characterized by the induction of immunosuppression

to avoid detecting metastasizing cells by tissue-resident T cells and

natural killer (NK) cells and the promotion of inflammation with

cytokines that regulate tumor growth. Other common features are

the stimulation of angiogenesis and vascular permeability to

enhance the infiltration of the tissue stroma by CTCs, the

recruiting of bone marrow-derived cells (BMDC) and other non-
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resident cells that release factors that attract CTCs, and the

remodeling of the extracellular matrix (ECM) to facilitate the

adhesion of CTCs and BMDCs (9, 13).

These PMN pro-metastatic alterations are carried out by local

stromal cells activated by tumor-derived signals, such as cancer-

associated fibroblasts (CAFs). These can be found both within the

primary tumor microenvironment and the PMN, known for

providing mechanical support for tumor cells and playing crucial

roles throughout the metastatic cascade (14). CAFs and their EVs

also promote the formation of the PMN, through the secretion of

chemokines, cytokines and ECM components, metabolic

remodeling, immunosuppression and angiogenesis, thereby

creating a favorable microenvironment at the future metastatic

site (15). These effects appear to be organ specific, as show in a

murine model of salivary adenoid cystic carcinoma, where primary

tumor CAF EVs were specifically uptaken by lung fibroblasts,

inducing the formation of a PMN and promoting the formation

of lung metastases (16).

Conditions that allow the survival of a metastasizing cell when

arriving at a particular PMN might not be ideal to promote

proliferation. So, they might enter a phase of proliferative

quiescence known as protective dormancy. Tumor cells can

remain as dormant single cells or in micrometastatic clusters, in

some cases for up to decades (17). Induction of dormancy is

encouraged by growth-inhibitory signals present in the PMN,

such as transforming growth factor-beta (18). Crucial intercellular

interactions contribute significantly to the promotion of emergence

from dormancy. Interactions that could potentially trigger

emergence from dormancy include the activation of Wnt and

Notch signaling, integrin-mediated cell signaling, and cell-

adhesion interactions through the L1 cell adhesion molecule

(19, 20).
Immune defenses against metastases

The idea of an intricate interaction between tumors and

immune cells traces back to the initial observation of Rudolf

Virchow that leukocytes could infiltrate tumors (21). William

Coley, noticing that a patient with an inoperable sarcoma was

cured after an infection, proposed that the immune system had an

anti-tumor role (22). Each organ owns a range of mechanisms for

immune surveillance that constitute a primary defense against

tumor cells. These mechanisms are organ-specific and influence

the rate of success of metastatic cells (23).

Tumor cells produce antigens, known as tumor-associated

antigens, which ideally should be recognized by the immune

system. Like all other nucleated cells, tumor cells, present their

antigens to Cluster of Differentiation 8 positive (CD8+) T

lymphocytes via Major Histocompatibility Complex class I

(MHC-I) molecules. Professional antigen presenting cells (APCs),

like dendritic cells (DCs), capture tumor-associated antigens. DCs

become activated, migrate to secondary lymphoid organs and

present tumor-associated antigens on MHC-I and MHC-II

molecules to CD8+ and CD4+ T cells, respectively. If T cells are
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sufficiently activated by DCs, they migrate to the tumor tissue and

initiate cancer cell death upon recognizing their target antigen (22).

Various preclinical and clinical findings substantiate the theory

that the immune system regulates certain tumors. For instance,

mice deficient in B and T cells exhibit a higher occurrence and

accelerated growth of induced tumors (24, 25). Correlational studies

have demonstrated a link between T cell tumor infiltration and

patient survival across various cancer types, such as breast, ovarian,

and colorectal cancers (26–28). Clinical and experimental

observations suggest that the adaptive immune system inhibits

metastasis formation. For example, the depletion of CD8+ T cells

resulted in increased lung and reproductive tract metastases in a

melanoma mouse model (29). Effective immune surveillance has

the potential to eliminate tumor cells. However, immune responses

against cancer are often compromised in individuals with cancer.

Commonly, tumor cells downregulate MHC-I molecules to evade

antigen presentation. Also, tumor cells upregulate the expression of

immune checkpoints such as programmed death-ligand 1 (PD-L1),

that usually block immune responses against self-antigens.

Furthermore, tumor-derived factors are known to interfere with

the maturation of DCs, inducing immature phenotypes that are less

prone to activate T cell anti-tumor responses (22, 30).

Besides DCs, other innate immunity cells can influence

metastatic functions. Lack of NK cells increases the risk of

metastases in mice (31). Furthermore, the presence of metastasis

was negatively correlated with the number of circulating or tumor-

infiltrating NK cells in several solid tumors, including colorectal and

gastric cancer (32, 33). Neutrophils and macrophages can promote

cancer cell death through processes such as the release of cytokines,

the generation of reactive oxygen species, and phagocytosis. These

immune cells can also contribute indirectly by facilitating the

recruitment of T cells into the tumor by producing chemokines

(34). But these cells can also be regulated by tumor-derived signals

and contribute to tumor and metastasis growth by promoting

inflamma t i on , ECM remode l i ng , ang i ogene s i s and

immunosuppression (35, 36). These tumor-regulated cells can

mediate organotropism patterns. In breast cancer, G-CSF

expanded neutrophils facilitated lung metastasis by suppressing

NK cell anti-tumor activity (37). Patients with early stage breast

cancer that had serum neutrophil extracellular traps (NETs) were

more likely to develop liver metastasis (38). In pancreatic cancer,

liver resident macrophages were shown to uptake tumor derived

exosomes. This led them to secrete transforming growth factor beta

(TGF-b) which upregulated fibronectin production by hepatic

stellate cells, promoting liver metastasis formation (39).

External factors that influence immune cell populations at a

given tissue can also affect metastasis formation at that location. An

in vivo murine model study recently showed that an anaerobic

bacteria, Fusobacterium nucleatum, can promote liver metastasis in

colorectal cancer by reshaping the hepatic metastatic immune

microenvironment. F. nucleatum-treated mice exhibited elevated

peripheral and hepatic myeloid-derived suppressor cell infiltration

but decreased NK cells, as well as CD3+, CD4+, and CD8+ T cells in

the liver as compared to control mice (40). Accordingly, another
Frontiers in Oncology 03
study has also demonstrated that this microorganism can be

detected in liver metastases and that F. nucleatum positive

colorectal liver metastases are associated with reduced T-cell

density (41).
The particular case of
brain metastases

The occurrence of organotropism in the brain is a complex

phenomenon governed by interactions between metastatic cancer

cells and the microenvironment of brain tumors. The prognosis is

generally unfavorable for brain metastases, regardless of their

primary tumor origin. Melanoma, breast, and lung cancers

exhibit higher rates of brain metastases when compared to other

cancer types (42). Nevertheless, the reasons why certain cancers

metastasize to the brain more frequently than others remain

somewhat unclear. Cancer cells face significant challenges in

infiltrating the brain due to the formidable blood-brain barrier

characterized by tightly interconnected endothelial cells (42).

Nevertheless, many patients present with metastases in the brain

but not the liver (5). Specific tumor cells possess a distinct array of

mechanisms enabling them to breach the blood-brain barrier,

selectively establishing themselves in the brain.

Several studies indicate that the brain-specific affinity exhibited

by particular cancer types is determined by a synergistic blend of

capabilities within specific genetic subtypes of primary tumors or

their subclones. These capabilities include detachment,

dissemination, and the ability to penetrate the blood-brain barrier

(42). Moreover, brain metastasis tumor cells showed low levels of

oxidative stress related genes in their transcriptome, suggesting an

adaptation to the brain metabolic environment (43). Additionally,

brain metastases can present mutations that are not found in the

primary tumor, lymph nodes, or even other metastases of the same

patient (44). Notably, numerous mutations of this nature represent

clinically actionable targets such as Human Epidermal growth

factor Receptor 2 (ERBB2), proto-oncogene B-Raf (BRAF),

Master Regulator of Cell Cycle Entry and Proliferative

Metabolism (MYC), and Breast Cancer gene 2 (BRCA2),

potentially paving the way for targeted therapeutic approaches.
Genomic alterations associated with
metastasis organotropism

Genomic alterations that may influence organotropic behaviors

of metastatic cancer cells can be acquired either during primary

tumor development or during metastasis cell spread and

colonization of distant organs (45). Large-scale sequencing studies

have tried to identify genomic alterations associated with metastases

by comparing the genomic sequences of cohorts of metastases

versus cohorts of primary tumors, including multiple cancer types

(46–48) or cancer type-specific studies (49, 50). A paired
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comparison of metastases genomes with their matching primary

tumor genomes has shown that most cancer-driver gene mutations

have already occurred in the primary tumor (51–53). Genomic

alterations associated with metastasis are hard to detect, probably

because they may differ according to the cancer type and specific

metastasis location (45). Besides the previously referred brain

metastases-specific mutations (44), analyses of metastatic breast

cancer samples according to metastasis site have identified

significant associations of some mutated driver genes with specific

metastasis locations (54, 55). Recently, a study comparatively

analyzed the genomic sequences of both primary tumor and

metastases samples of a large pan-cancer cohort of more than

25,000 patients, most of whom have metastatic disease (56). The

large sample size allowed the identification of more than 50

genomic alterations associated with metastasis to specific target

organs within sub-cohorts of individual cancer types.

Besides genomic alterations, gene expression signatures

associated with specific metastases target organs have been

identified (57–59). Some of these signatures influence the

intercellular communication between tumor cells and stromal/

immune cells in the target organ. In contrast, others allow the

metabolic adaptation of metastatic cells to the target organ. It

remains unclear how the organotropic patterns associated with

genomic alterations are related to gene expression changes that

facilitate metastases at specific locations. It may also be true that

some of these gene expression signatures are characteristic of the

original primary tumor cell types, even before the alterations

induced by tumorigenesis.
Organotropism and therapeutics for
metastatic cancers

With the current therapeutic options, advanced metastatic

disease is, with few exceptions, incurable (22). Understanding the

mechanisms that contribute to metastasis organotropism patterns

may suggest new treatment strategies to specifically block metastasis

formation. Edelfosine, an ether lipid with anti-tumor activity, was

shown to inhibit lung and brain metastasis in mice experiments.

This lipid reorganizes membrane lipid rafts inhibiting adhesion to

type I collagen and laminin 1 substrates (60). The adaptation of

tumor cells to a new environmental niche includes metabolic

reprogramming. By doing so, tumor cells will gain access to the

available metabolites favoring its survival. As a result, directing

therapeutic efforts towards the tissue specific metabolism of

metastases could prove to be an effective approach for treating

metastatic cancer (61, 62). Cancer cells with phosphatidylinositol-5-

phosphate 4-kinase type 2 gamma (Pip4k2c) loss increased liver

metastasis potential because they became hypersensitized to insulin,

an abundant st imulus in this organ (63). Therefore ,

pharmacologically blocking insulin signaling can reset the

advantage of these cells in liver colonization.
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Immunotherapy is a treatment option for some metastatic

tumors, improving patients prognosis (64). Immune checkpoint

inhibitors (ICIs), such as anti-CTLA-4, anti-PD-L1 and anti-PD-1

are among the most successful immunotherapies. ICIs work as

negative regulators of T cells, playing a crucial role in preventing

tumor cells suppression of T cell activation (65). Effective

immunotherapies for metastases must consider factors such as the

location and type of tumor since these influence local immune cell

populations. For instance, emerging data from anti-PD-1 clinical

trials suggest that immune checkpoint inhibition offers greater

benefits for patients with lung metastases compared to those with

liver metastases (66). Within patients with liver metastasis receiving

ICIs, prognosis varies according to the origin of the primary tumor.

Urinary system tumors had the worst prognosis, while the efficacy of

ICIs was less affected in digestive system tumors with liver metastasis

(67). Within the immunotherapy arsenal, chimeric antigen receptor

(CAR) T cell therapy has already proven to successfully treat

hematopoietic malignancies. Nevertheless, this success has proven

challenging to replicate in solid tumors, mainly due to the lack of

tumor-associated antigen targets and an immunosuppressive tumor

microenvironment (68). Metastases may exhibit differences from

their primary tumors in terms of mutational and immune profiles.

Also, the immune landscape across metastases originating from the

same primary tumor may not be uniform within the same patient

leading to potential paradoxical responses to therapy (69). Success of

all immunotherapies depends on the cooperative activity of resident

immune cells at the metastatic site. As previously discussed, cancer

cells recruit and reprogram several innate immunity cell types to

hamper proper anti-metastatic immune responses. To counteract

this, inducing trained immunity (TI) has been proposed as a valid

coadjuvant therapeutic approach. TI refers to an enhanced functional

state of innate immunity cells resulting from exposure to microbial

stimuli recognized by pattern recognition receptors such as dectin-1

or NOD2. TI is reached through long-lasting epigenetic

reprogramming at the level of histone methylation and acetylation.

The TI enhanced state favors anti-tumor immune responses and

appears to be more insensitive to tumor-derived signals (70).
Conclusion

The nonrandom metastasis patterns result from a cross-talk

between cancer cells and distant organs. The primary tumor

selectively and actively modifies organs of future metastasis before

metastatic spread, potentially allowing the opportunity to halt the

process. Understanding organotropic metastasis is a path for the

development of novel treatment strategies. For that we need to close

the gap between the causes of metastasis organotropism and the

cellular and molecular mechanisms underlying it (Figure 1). In this

review we present a brief summary of the mechanisms that explain

how organotropism patterns arise and of genomic alterations

associated with these patterns. The latter may be the ultimate
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cause of organotropic patterns. However, the genomic alterations

with known associations with organotropism patterns are relatively

scarce. This can be due to technical difficulties in demonstrating

these associations. Alternatively, other causes of organotropism,

such as anatomical factors and other properties of primary tumor

cell types (Figure 1), may have a higher influence in the generation

of organotropism patterns. On the other hand, there is a broader

understanding of cellular and molecular mechanisms involved in

metastasis organotropism. This knowledge can support the

development of new therapies against metastatic disease.
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FIGURE 1

Relationship between the causes (Why it happens) and the cellular and molecular mechanisms of metastasis organotropism (How it happens).
Anatomic relations between primary tumor and metastasis locations partially explain organotropism patterns through a facilitated accessibility of
circulating tumor cells (CTCs) to particular metastatic locations. Properties of the primary tumor cell type, even before changes induced by
tumorigenesis, can already explain a better metabolic adaptation or intercellular communication at the preferred metastatic niches. Finally, genomic
alterations, such as mutations and copy number variations, can occur in the initial primary tumor development, subsequently in specific subclones of
the primary tumor or are only acquired during tumor cell dissemination or metastasis colonization. These genomic alterations can modify cancer
cell properties and favor specific metastatic locations through the secretion of tumor-derived signals or extracellular vesicles that can recruit and
reprogram immune and stromal cells at the metastatic site, even before the arrival of CTCs. These reprogrammed cells can be, for example, bone
marrow derived cells, cancer associated fibroblasts, dendritic cells, neutrophils or macrophages. They become pro-metastatic and induce processes
like extracellular matrix (ECM) remodeling, immunosuppression, inflammation and angiogenesis. These processes facilitate the arrival and survival of
CTCs at the metastatic niche.
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