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Background: Breast cancer is the leading cause of cancer-related fatalities

among women worldwide. Conventional screening and risk prediction models

primarily rely on demographic and patient clinical history to devise policies and

estimate likelihood. However, recent advancements in artificial intelligence (AI)

techniques, particularly deep learning (DL), have shown promise in the

development of personalized risk models. These models leverage individual

patient information obtained from medical imaging and associated reports. In

this systematic review, we thoroughly investigated the existing literature on the

application of DL to digital mammography, radiomics, genomics, and clinical

information for breast cancer risk assessment. We critically analyzed these

studies and discussed their findings, highlighting the promising prospects of DL

techniques for breast cancer risk prediction. Additionally, we explored ongoing

research initiatives and potential future applications of AI-driven approaches to

further improve breast cancer risk prediction, thereby facilitating more effective

screening and personalized risk management strategies.

Objective and methods: This study presents a comprehensive overview of

imaging and non-imaging features used in breast cancer risk prediction using

traditional and AI models. The features reviewed in this study included imaging,

radiomics, genomics, and clinical features. Furthermore, this survey

systematically presented DL methods developed for breast cancer risk

prediction, aiming to be useful for both beginners and advanced-

level researchers.

Results: A total of 600 articles were identified, 20 of which met the set criteria

and were selected. Parallel benchmarking of DL models, along with natural

language processing (NLP) applied to imaging and non-imaging features, could

allow clinicians and researchers to gain greater awareness as they consider the

clinical deployment or development of new models. This review provides a

comprehensive guide for understanding the current status of breast cancer risk

assessment using AI.
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Conclusion: This study offers investigators a different perspective on the use of AI

for breast cancer risk prediction, incorporating numerous imaging and non-

imaging features.
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1 Introduction

Breast cancer is the most prevalent cancer in women. In 2020,

approximately 2,300,000 new cases were identified worldwide,

leading to approximately 688,000 fatalities (1, 2). Projections for

2023 indicate that the United States alone will witness 1,958,310 new

cancer cases and 609,820 cancer-related deaths (3). Cancer incidence

varies across countries, regions, ethnicities, and lifestyles. Traditional

risk prediction models use statistical approaches combined with

patient demographic information to predict the risk, recurrence,

and survivability of breast cancer (BC). While modest in

performance, these techniques often suffer from racial bias (4, 5).

Recently, AI has shown promising outcomes in BC risk prediction

(6), prognosis (7), recurrence (8, 9), and survival prediction (10),

outperforming the traditional models (11). With improved

prognoses, patients may have extended survival times (12).

Precise assessment of an individual woman’s risk of breast

cancer is essential for customizing screening and preventive

measures according to the specific risk levels. Acknowledging the

importance of early breast cancer detection and risk categorization,

several models, including Gail, BCSC, Rosner–Colditz, and Tyrer–

Cuzick, have been developed to predict breast cancer risk (13).

A crucial element of comprehensive breast cancer screening

initiatives is evaluating the risk of breast cancer. This assessment

helps to identify individuals who could benefit from early and

supplementary screening methods, genetic testing, or preventive

therapies. It also aids the general population in making informed

decisions regarding screening (14–16). Various risk prediction

models have been devised to estimate the likelihood of breast

cancer occurrence over a specific timeframe in generally healthy

women or the probability of having a BRCA1 or BRCA2 mutation

(17). These models vary in terms of the specific risk factors

considered and their respective weights. Moreover, their

performance may differ based on population characteristics since

each was developed using specific inclusion criteria. Ongoing

research indicates that both traditional risk factors and

mammographic images offer complementary information, and AI

models based on DL have the potential to enhance existing

epidemiological models (18).

In previous reviews within this field, Acciavatti et al. (19)

conducted a comprehensive overview of the usage of DL

techniques in different imaging modalities, ranging from
02
tomography and mammography to MRI and ultrasound. Their

review covered a wide range of risk modeling techniques currently

employed in practice. Similarly, investigators (20) have focused on

the use of DL techniques, specifically mammography, for breast

density assessment and risk analysis. Recently, the authors (21)

conducted a narrative review focusing specifically on convolutional

neural network (CNN) applications in digital mammography.

Furthermore, the authors examined the patterns in scale,

structure, risk elements, and medical factors that could potentially

affect the effectiveness of CNNs in evaluating the risk of breast

cancer. Collectively, these reviews provide valuable insights into the

diverse landscape of DL methods and their applications in medical

imaging and risk assessment of breast cancer. However, the

aforementioned researchers limited their work to imaging or non-

imaging modalities and focused on individual imaging modalities.

Therefore, in this systematic review, we comprehensively

analyzed both AI-based imaging and non-imaging risk prediction

models that contribute to breast cancer risk prediction. We also

discuss how state-of-the-art (SOTA) NLP-based techniques can be

applied to breast cancer risk prediction.

The rest of the paper is outlined as follows: Section 2 describes

the methodology for selecting papers; Section 3 presents the results

of imaging and non-imaging features used in risk prediction,

conventional and AI-based risk prediction models, and AI in

breast cancer risk assessment (see Figure 1). A detailed discussion

of the previous methods and their limitations is provided in Section

4, and the conclusion is presented in Section 5.
2 Methods

2.1 Search strategy

For this systematic review, articles focusing on AI usage in breast

cancer risk prediction were selected from databases such as PubMed,

ScienceDirect (Elsevier), Springer, Nature, and IEEE. We included all

studies on AI in breast cancer risk prediction up to August 2023, and

all selected studies were conducted in English. Our search terms were

derived from the key concepts in the review questions, and we

followed a detailed plan for the inclusion and exclusion of studies.

The keywords for paper selection were: “Deep Learning” AND

“Breast Cancer,” “Risk Prediction” AND “Radiological Reports,”
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“Machine Learning” AND “Risk Assessment,” and “Breast Cancer”

AND “Digital Mammography.” These terms were chosen to

encompass the scope of this survey. The first, second, and third

searches yielded 300, 190, and 110 articles, respectively. The papers

were shortlisted based on their titles, abstracts, and text. We reviewed

the first 300 articles on machine learning (ML) for breast cancer (BC)

risk prediction, focusing on those used for risk prediction. The best

methods for each study were summarized and listed. This study

followed the PRISMA checklist/flowchart method as highlighted in

the PRISMA diagram (see Figure 2).
2.2 Inclusion criteria

The inclusion criteria for this systematic review were as follows:

(1) published peer-review studies; (2) research related to short-term
Frontiers in Oncology 03
and long-term breast cancer risk prediction; (3) research investigating

the use of ML algorithms in breast cancer risk assessment; (4)

research related to SOTA DL architectures for risk prediction

purposes; (5) algorithms that used internal or external validation

for reporting the results; and (6) studies published only in English.
2.3 Exclusion criteria

The exclusion criteria were as follows: (1) studies that used ML

or DL for prognostic purposes; (2) studies related to BC recurrence

or survival prediction; (3) literature reviews; (4) studies not related

to human (women) populations; (5) case studies; and (6)

editorial reports.
3 Results

3.1 Imaging and non-imaging features used
in risk prediction

In this section, we describe various imaging and non-imaging

features utilized for breast cancer risk prediction. These include

features extracted from different imaging modalities, as well as non-

imaging features, such as radiomics, genomics, and clinical features.

3.1.1 Imaging features in risk prediction
Risk assessment methods for breast cancer incorporate various

imaging features and clinical factors to estimate individualized

cancer risk and recurrence. The key imaging features include

the following:

Mammographic Density: This measures the proportion of

fibroglandular tissue on mammograms, indicating saturation of

the display signal (22, 23). Higher mammographic density is

associated with increased breast cancer risk and reduced

mammography recall effectiveness (13, 24).

Mammographic Texture: This refers to the variation in pixel

intensity in mammograms, which assesses the spatial arrangement

of the breast tissue. Techniques such as fractal dimension, gray-level

co-occurrence matrix, and local binary patterns are used to measure

mammographic texture. Combining these features with

mammographic density can enhance risk prediction (25, 26).

Mammographic Calcifications: Bright areas on mammograms

indicate breast cancer. Specific types, such as pleomorphic or linear-

branching calcifications, are associated with a higher risk. The authors

also suggested the presence of BRCA1 or BRCA2 mutations (24).

Breast MRI Features: Breast MRI is superior to mammography,

especially for women with dense breasts or those at high risk for

mutations. It provides detailed information on lesion morphology,

enhancement patterns, kinetics, and tissue volume. Furthermore,

studies show that MRI features can also be predictive of breast

cancer risk (24, 27, 28).

3.1.2 Radiomics features in risk prediction
Radiomics is an economical and noninvasive method that

utilizes quantitative image attributes from various imaging
FIGURE 2

PRISMA Chart showing search methodology.
FIGURE 1

Overview of the features, traditional as well as AI-based models for
breast cancer prediction.
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modalities such as mammography, ultrasound, MRI, and PET to

understand breast cancer traits (29–31). These radiomics features

reflect tumor heterogeneity and microenvironment, providing

insights into breast cancer risk and outcomes (31, 32). Key

radiomics features include the following:

Multi-scale Gaussian Features: These analyze texture

resemblances at different scales in mammograms, aiding in

enhancement of breast cancer risk prediction (30).

Ultrasound-Based Features: Focusing on echogenicity, shape,

and other ultrasound characteristics, these features help

differentiate between benign and malignant lesions and predict

disease-free survival in invasive breast cancer (31).

MRI-Based Features: These features consider MRI lesion

characteristics and breast tissue, assisting in predicting

molecular subtypes, recurrence risk, lymph node status, and

breast cancer risk (28, 32).

3.1.3 Genomics features in risk prediction
Genomics plays a crucial role in assessing the risk of breast

cancer by examining genetic mutations, gene expression, protein

activity, and epigenetic changes. Examples of genomic features in

breast cancer risk estimation include the following:

Genetic Mutations: Mutations in BRCA1 and BRCA2

significantly increased breast cancer risk (33). Other genes, such

as PALB2 and CHEK2, also increase this risk (34). Genomic tests

can detect these mutations and estimate their likelihood of carrying

them based on family history (34).

Gene Expression: Gene expression levels provide insights into

tumor characteristics, such as hormone receptor status, invasiveness,

and metastatic potential. Gene expression profiles help to classify

breast tumors into subtypes, each with distinct outcomes (35).

Protein Expression: Specific proteins such as EIF4G and

X4EBP1-pT70 can predict patient survival by influencing critical

pathways (36).

Epigenetic Modifications: Changes in DNA methylation and

histones play a role in gene regulation and can predict breast cancer

recurrence and survival (37).

3.1.4 Clinical features in risk prediction
Non-imaging risk factors unrelated to breast tissue appearance

on mammograms include the following:

Family History: A family history of ovarian and breast cancer,

especially among first-degree relatives of a young age, indicates an

increased risk. This suggests the inheritance of gene mutations, such

as BRCA1 or BRCA2 (13).

Genetic Factors: Pathogenic variants in genes such as BRCA1

and BRCA2, or polygenic risk scores derived from common genetic

variants, influence breast cancer development by affecting various

cellular pathways (34).

Lifestyle and Reproductive Factors: Factors such as parity, age at

menarche, breastfeeding, hormone replacement therapy,

menopausal status, body mass index (BMI), alcohol consumption,

dietary choices, and physical activity can affect hormone exposure,

inflammation, oxidative stress, epigenetic changes, and microbiome

composition, all contributing to breast cancer risk (38).
Frontiers in Oncology 04
Ongoing research continues to explore additional features and

integrate imaging characteristics with other risk factors, such as

family history, age, genetic mutations, lifestyle, and reproductive

history, for comprehensive and tailored risk assessment (13, 24).
3.2 Risk prediction models

3.2.1 Traditional risk prediction models
Numerous breast cancer risk analysis techniques utilize a

variety of genetic and non-genetic characteristics to estimate the

individualized risk of developing breast cancer in women. Various

breast cancer risk assessment models cater to different clinical

scenarios and populations. The Breast Cancer Risk Assessment

Tool (BCRAT), or modified Gail model, evaluates short-term and

long-term breast cancer risk using factors such as race, age, and

reproductive history, but has limitations like age and cancer history

restrictions (13). The Breast Cancer Surveillance Consortium

(BCSC) model incorporates breast density as a risk factor but

lacks genetic information (24). The Rosner–Colditz model

accounts for factors including age, BMI, and family history for 5-

year and lifetime risk estimations (24). The Tyrer–Cuzick model

(IBIS) predicts long-term risk with a broader range of factors, but

requires more data (24, 39). The Claus model relies solely on family

history of lifetime risk (24). The BRCAPRO model combines

personal and family histories to assess BRCA mutations and

cancer risk (24). The BOADICEA model includes a wide array of

factors, such as genetic test results, to evaluate BRCAmutations and

cancer risk (24, 39). The Myriad model, specifically for BRCA

mutations, does not provide risk estimates for other cancer types

(24). Each model is suited to different scenarios and populations but

has its own limitations. For instance, the BCRAT is often used to

determine chemoprevention eligibility but has age and history

restrictions. Meanwhile, the BCSC model is more precise for

women with dense breasts but lacks genetic input. The IBIS

model is comprehensive but data-intensive, the Claus model is

straightforward but overlooks non-genetic factors, and the

BRCAPRO and BOADICEA models are beneficial for genetic

counseling but may not be accurate for individuals without a

strong family history. The Myriad method, while focusing on

BRCA mutations, omits estimates of breast and ovarian cancer risk.

3.2.2 AI-based risk prediction models
AI has revolutionalized breast cancer risk analysis by enhancing

screening and diagnostic accuracy. It interprets mammographic

images to identify risk-related features, such as breast density, mass

characteristics, texture, and location. Additionally, AI can

incorporate factors such as age, family history, and genetics to

provide personalized risk scores, showing significant promise for

breast cancer screening (40–42).

Data-driven techniques, notably DL and CNNs, are commonly

used in AI. CNNs, a subset of DL, handle image-based tasks such as

detection, segmentation, and classification, and are capable of

predicting breast cancer risk from mammograms alone or in

conjunction with additional factors (43–46).
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However, the successful integration of AI into clinical

workflows and clear communication between patients and

providers is crucial for its proper utilization. Although AI offers

exciting prospects for breast cancer prevention and early detection,

addressing technical, ethical, and practical challenges through

further research is key to its broader clinical adoption.
3.3 AI in breast cancer risk assessment

This section is divided into three subsections: imaging, non-

imaging, and imaging and non-imaging studies. In this section, we

thoroughly reviewed a body of research dedicated to investigating

breast cancer risk prediction by employing state-of-the-art (SOTA)

DL techniques. An overview of the risk-prediction workflow is

presented in Figure 3. A general overview of the architectures used

in these studies is shown in Figure 4. This comprehensive

examination covers diverse studies, each of which provides

valuable insights and advances in the area. To facilitate easy

reference and access to the details of these studies, we present a

summary of their major characteristics and findings in Tables 1–3.

These tables serve as valuable assets for understanding the breadth

and depth of investigation of breast cancer risk assessment,

highlighting the application of SOTA DL techniques.

3.3.1 Imaging studies
In a study conducted by Tan et al. (50) analyzed breast cancer

risk in women with normal mammograms. They utilized

mammograms and clinical factors, such as the patient’s age,

family history of cancer, and

breast density in a database of 994 women. Among them, 283

patients developed cancer, 349 underwent additional tests, and 362

remained normal. Ten features selected from 183 possibilities were

used to train the predictive model. This model, which assigned a

score to each case indicating the likelihood of cancer, achieved an

AUC score of 0.725 for classifying the positive and negative cases.
Frontiers in Oncology 05
The model effectively distinguished between cases with and without

cancer, indicating its potential to predict breast cancer risk in

women with normal mammograms, using features from

both breasts.

In a study by Li et al. (51), DL using CNNs was assessed for

breast cancer risk prediction. They used full-field digital

mammography (FFDMs), including datasets of 106 and 150

FFDMs from high-risk and 328 FFDMs from low-risk patients,

respectively. This study compared DL to computerized texture

analysis (RTA) to distinguish between high- and low-risk women.

DL and RTA performed similarly for BRCA1/2 carriers, but DL

outperformed RTA in one-sided breast cancer cases. The fusion

classifiers achieved the best AUC of 0.86, suggesting that DL

effectively derived features from FFDMs, rivaling or surpassing

conventional texture analysis.

Ha et al. (44) developed a new pixel-wise breast cancer risk

model using CNNs and mammograms. The study used 420

mammograms from high-risk patients and 1054 from low-risk

patients. The CNN-based risk prediction model achieved an AUC

of 0.72, proving it to be more effective than breast density in

predicting breast cancer risk. This method shows promise for

stratifying breast cancer risk without relying on the breast density.

Saha et al. (53) conducted a case–control study involving 133

high-risk women, 46 of whom developed breast cancer within two

years, and 87 were used as controls. MRI scans were performed at 3

T or 5 T, using various sequences. A multivariate model based on

automated background parenchymal enhancement (BPE) features

achieved an AUC of 0.70. These algorithmically extracted imaging

features retained their independent predictive value for cancer

development, indicating the potential of BPE measurements for

improved risk stratification in high-risk women undergoing

MRI screening.

Arefan et al. (47) aimed to predict short-term breast cancer risk

using DL methods based on normal screening digital

mammograms. They used a dataset of 452 mammogram images,

including 226 CC and 226 MLO view images. Two DL approaches,
FIGURE 3

The general overview of breast cancer risk prediction workflow.
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GoogLeNet-LDA and end-to-end GoogLeNet, are compared. The

GoogLeNet-LDA method achieved the highest AUC of 0.73 for the

CC view and 0.72 for the MLO + CC views, demonstrating superior

performance in terms of percentage breast density. These findings

suggest the effectiveness of DL in improving breast cancer risk

assessment based on mammogram images.

In a retrospective study by Damiani et al. (54), a DL algorithm

for breast cancer risk prediction using digital mammograms was

assessed using the OPTIMAM Mammography Image Database.

The study used mammograms from 2,740 patients to achieve an

overall AUC of 0.68 for 3-year risk prediction. The model showed

consistent performance for interval and screen-detected cancers,

was well-calibrated, and was effective in detecting invasive cancer

and DCIS. It demonstrated a higher performance in advanced

cancer risk prediction, highlighting its potential in early

detection strategies.

3.3.2 Non-imaging studies
Sun et al. (49) proposed a new method called Multi-modal Deep

Neural Network by integrating Multidimensional Data

(MDNNMD) for predicting breast cancer prognosis. They used a
Frontiers in Oncology 06
dataset of 1,980 valid breast cancer patients from the METABRIC

(65) trial, consisting of multimodal data, such as clinical

information, gene expression profiles, and CNA profiles. The

novel MDNNMD model, which is unique in its design and

combination of multidimensional data, achieved an AUC of

0.845. This method outperforms prognosis models using one-

dimensional data and other available methods.

Ferroni et al. (55) demonstrated the use of an ML-based decision

support system (DSS) and random optimization (RO) to extract

predictive insights from routine demographic, clinical, and

biochemical data in breast cancer cases. The DSS, trained on 318

patients, demonstrated promise when evaluated on a testing cohort of

136 patients, achieving a C-index of 0.84 for progression-free survival

and an accuracy of 86%. It effectively categorized patients into low- and

high-risk groups for disease progression, with a hazard ratio (HR) of

10.9 (p ¡ 0.0001). Integrating ML and RO techniques into electronic

health record (EHR) data could potentially transform personalized

medicine for individual cancer patients.

Ming et al. (56) compared ML models to established breast cancer

risk prediction tools (BCRAT and BOADICEA). Using two datasets of

samples, 1,143 and 2,481, from US and Swiss breast cancer patients,
TABLE 1 An overview of the ML-based breast cancer risk prediction models using imaging data.

Reference Dataset Size Dataset Model Result Prediction

(50) 944 Private SFFS/SVM AUC = 0.725 Short-Term

(51) 456 Private AlexNet/DCNN AUC = 0.86 Low/High Risk Prediction

(52) 1474 Private CNN ACC = 0.72 Low/High Risk Prediction

(53) 133 Private MLR AUC = 0.70 Short-Term

(47) 452 Private GoogleNet-LDA AUC = 0.73 Short-Term

(54) 2740 OMI-DB ResNet-18/Transformer AUC = 0.72 Short-Term
B C

A

FIGURE 4

General overview of workflow used in studies on breast cancer risk prediction. (A) Proposed model for short-term breast cancer risk prediction. It
consists of an end-to-end prediction model using a fine-tuned GoogleNet architecture, which is also used as a deep feature extractor (47).
(B) General overview of breast cancer risk prediction using multimodal data (48). (C) Overall architecture for breast cancer risk prediction. The
proposed framework consists of three different models corresponding to each data type and fuses the prediction scores of each model (49).
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respectively, the ML-based models showed significantly higher

predictive accuracy, reaching 88.28% with ML-Adaptive Boosting

and 88.89% with ML-Random Forest for the U.S. population dataset,

compared to 62.40% with BCRAT. For the Swiss clinic dataset, ML-

Adaptive Boosting achieved 90.17% accuracy, ML-Markov Chain

Monte Carlo Generalized Linear Mixed Models 89.32%, while

BOADICEA scored 59.31%. These ML algorithms improve the

categorization of individuals with and without breast cancer, offering

high-precision predictions in personalized medicine.

In a study by Stark et al. (57) ML models were developed to

predict five-year breast cancer risk using personal health data. The

PLCO dataset (66) consisting of 64,739 women was used. These ML

models outperformed the traditional BCRAT based on the Gail

model, with the highest AUC of 0.73. Incorporating personal health

data can significantly improve the 5-year breast cancer risk

prediction accuracy, showing potential as a cost-effective,

noninvasive tool for risk assessment.

The study conducted by Behravan et al. (58) aimed to predict

breast cancer risk using an ML method that integrates demographic

risk factors and interacting genetic variants (SNPs). The KBCP

dataset (67), which included demographic risk factors and

genotyped data from 250 controls and 445 cases, was used. The

approach achieved high prediction accuracy, with tests revealing

that combining genetic and Group 1 features resulted in a mean

average precision (mAP) of 77.78, surpassing models using only

Group 1 features or interacting SNPs. Gene interaction maps

provide insights into crucial biological entities related to breast

cancer, highlighting the importance of demographic risk factors

over genetic variants in predicting breast cancer risk.
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An attention-based multimodal DL model was developed (48),

which integrates data from copy number alterations and clinical

and gene expression sources. A dataset of 1,980 valid breast cancer

patients from the METABRIC (65) trial was used. This model

utilizes attention mechanisms to analyze mammography images

and incorporates patient data to enhance prediction accuracy. The

proposed model displays promising results, offering significant

potential for improving breast cancer detection and diagnosis.

3.3.3 Imaging and non-imaging studies
Investigators of these findings by Portnoi et al. (59) aimed to

establish a DL method using breast MR images to predict the 5-year

risk of breast cancer in high-risk women undergoing screening

examinations. A dataset of 1,656 MRI examinations from 1,183

unique patients was used for training, whereas 1,623 examinations

from 1,164 unique patients were used for model evaluation. The DL

model outperformed the conventional risk factor models, achieving

an average AUC of 0.638, compared to 0.558 for the risk factor

logistic regression (RF-LR) model and 0.493 for the Tyrer-Cuzick

(TC) model. The DL model also showed improved individual risk

discrimination, suggesting the capability of image-based risk

assessment tools for further personalized care.

Ming et al. (60) compared the clinical utility of ML techniques to

the BOADICEAmodel for breast cancer risk prediction and screening.

Using data from 112,587 individuals in 2,481 families, ML techniques

demonstrated a higher predictive accuracy (0.843 ≤ AU-ROC ≤ 0.889)

than BOADICEA (AU-ROC = 0.639) and led to the reclassification of

35.3% of women into different risk categories. The most significant

reclassification (20.8%) affected women classified as ‘near population’
TABLE 3 An overview of the ML-based breast cancer risk prediction models using imaging and non-imaging data.

Reference Dataset Size Dataset Model Result Prediction

(59) 1,656 Private ImageNet/ResNet-18 AUC = 0.638 Short-Term

(60) 112,587 Private AdaBoost AU-ROC = 0.889 Long-Term

(43) 2,283 Private Inception-ResNet-v2 AUC = 0.65 Short-Term

(6) 262,318 Private ResNet-18/Transformer AUC = 0.76 Short-Term

(61) 5,978 Private ENLR AUC = 0.75 Short-Term

(62) 8,604 Private ProfoundAi Risk AUC = 0.74 Short/Long Term

(63) 23,467 Private CNN/LR AUC = 0.845 Short/Long Term

(64) 171,168 Private ResNet-18 (ImageNet) AUC = 0.80 Short/Long Term
TABLE 2 An overview of the ML-based breast cancer risk prediction models using non-imaging data.

Reference Dataset Size Dataset Model Result Prediction

(49) 1980 METABRIC DNN-SVM/RF/LR AUC = 0.845 Short/Long Term

(55) 454 Private SVM-RO-DSS ACC = 0.86 Short-Term

(56) 3624 Private AdaBoost ACC = 0.90 Short/Long Term

(57) 64,739 PLCO LR AUC = 0.613 Short-Term

(58) 695 KBCP XGB mAP = 77.78 Low/High Risk Prediction

(48) 1980 METABRIC/TCGA-BRCA GA-CNN AUC = 0.95 Short/Long Term
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risk by the BOADICEA. This reclassification had the most substantial

impact on screening practices for women under 50 years of age,

emphasizing its importance in clinical decisions regarding screening

initiation. This study suggests that the ML-based reclassification of

breast cancer risk could significantly influence screening practices,

particularly in younger women.

In a study carried out by Dembrower et al. (43), researchers

aimed to develop a risk score using a deep neural network (DL) to

estimate future breast cancer risk and compared its performance

with density-based models. They conducted a retrospective analysis

of 2,283 women, 278 of whom were later diagnosed with breast

cancer. The DL risk score, derived from digital mammograms,

outperformed density-based models. Its accuracy (AUC: 0.65)

surpassed the dense area (AUC: 0.60) and percentage density

(AUC: 0.57), with a lower false-negative rate (31%) compared to

the dense area (36%) and percentage density (39%). This suggests

the superior predictive capability of DL over density-based models,

particularly for more aggressive cancer cases.

Yala et al. (6) aimed to enhance breast cancer risk models for

focused screening using DL. A dataset consisting of 210,819, 25,644,

and 25,885 examinations from 56,786, 7,020, and 705 patients,

respectively, obtained from the Massachusetts General Hospital

(MGH). The Mirai model, developed to predict risk over time and

address missing data, was trained on a large dataset, and tested across

different populations, achieving high C-indices of 0.76, 0.81, and 0.79

for test sets from various hospitals. Compared to existing models, Mirai

significantly outperformed the existing models by providing more

accurate 5-year ROC AUCs and better identification of high-risk

patients across datasets, including 41.5% on the MGH test set. This

demonstrates Mirai’s potential to improve breast cancer risk prediction

and the clinical workflow.

A novel short-term breast cancer risk model using digital breast

tomosynthesis (DBT) images was developed and validated by

Eriksson et al. (61). This model, incorporating imaging features

and age, predicts future late-stage and interval breast cancer

following negative screening examinations. Involving 805 incident

breast cancer cases and 5,173 healthy women who underwent DBT

screening, the model displayed strong performance with a

discrimination score of 0.82 and effective calibration. According

to U.S. Preventive Service Task Force guidelines, 14% of women

were identified as high risk, with a 19.6-fold increased risk. In this

high-risk group, the model successfully detected 76% of stage II and

III cancers and 59% of stage 0 cancers, indicating its potential for

earlier detection and improved prognosis. This image-based risk

prediction method can aid radiologists in selecting women for

clinical care, thereby enhancing breast cancer screening outcomes.

A study conducted by Eriksson et al. (62) compared AI-based

short-term breast cancer risk methods using mammograms with

traditional lifestyle/familial-based risk methods. Analyzing data from

8,604 women aged 40 to 74 years, the image-based model, which

utilized mammographic characteristics and age, outperformed the

lifestyle/familial-based model. They achieved higher age-adjusted

AUC (aAUC) values for breast cancer prediction over a 10-year

period. Impressively, 20% of all women with breast cancer were

identified as high-risk using the image-based method compared to

7.1% using the traditional approach. These results indicate the potential
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value of the image-based risk model for selecting women who may

benefit from additional screening and risk-reduction strategies.

Michel et al. (63) assessed the combination of a CNN-based

mammographic evaluation with clinical factors for breast cancer

risk prediction in 23,467 women undergoing screening

mammography. The hybrid model did not substantially enhance

risk estimation compared with the clinical factors alone (BCSC

model) for the overall cohort (AUC of 0.654 vs. 0.624, p = 0.063).

However, the hybrid model in subgroup analyses showed better

performance for non-Hispanic Blacks (AUC 0.845 vs. 0.589, p =

0.026) and Hispanics (AUC 0.650 vs. 0.595, p = 0.049). Further

validation in a larger cohort is required to explore the potential of

the CNNmodel combined with clinical factors for breast cancer risk

assessment in diverse women undergoing screening.

The study carried out by Wang et al. (64) presents the Multi-Time

Point Breast Cancer Risk Model (MTP-BCR), an advanced DL risk

assessment tool. A large-scale in-house dataset consisting of 171,168

screening mammograms of 9,133 women was used. MTP-BCR utilizes

longitudinal mammography data to identify subtle changes in the breast

tissue associated with potential future malignancy. With a large dataset

of screening mammograms, this model significantly improved long-

term (10-year) risk estimation, achieving an AUC of 0.80,

outperforming traditional and contemporary methods. It provides

unilateral breast-level prognostication, with AUCs of 0.81, 5-year risk

and 0.77 for 10-year risk assessments, respectively. The heatmaps of the

model aid clinicians in understanding the transition from normal tissue

to cancerous progression, enhancing the interpretability of breast cancer

risk analysis. This innovative DL approach has the potential to enhance

personalized screening and preventive strategies for breast cancer.
4 Discussion

The Discussion section of the study emphasizes the ability of AI-

based risk assessment models in breast cancer screening, particularly

for intermediary and high-risk women who may obtain some

advantages from supplementary follow-up. Accurate breast cancer

risk analysis plays a crucial role in thorough screening programs,

helping identify individuals who require immediate intervention,

preventive therapies, and genetic testing, while providing easy, safe,

and timely healthcare facilities to the general public.

Traditional clinical algorithms like Gail/BCRAT, BCSC, and

Tyrer–Cuzick exhibit varying performances, with AUC values

ranging from 0.57 to 0.82 (24). Recent studies have indicated that

AI-based models that integrate conventional risk factors with

mammographic images can significantly enhance the performance

of existing epidemiology-based models. AI techniques applied to

datasets from diverse medical centers have reported C-index values

in the range of 0.75–0.84 (68), demonstrating promising potential

for improved risk assessment.

Different criteria were used to assess model performance, with

calibration and discriminatory accuracy being the most common

criteria (69). Discriminatory accuracy is often measured using a

Concordance Index (C-index). However, it has been observed that

only a few studies have employed these metrics, which are

appropriate for breast cancer risk assessments.
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Given the large number of women receiving annual

mammograms in the US, AI offers potential solutions for

individualized breast cancer risk assessment and personalized

screening schedules. Combining AI models with traditional risk

factors can enhance risk analysis, optimize screening strategies, and

improve patient outcomes in breast cancer management.

Current breast cancer screening primarily relies on non-

imaging risk factors such as family history, demographics, and

genetics (24). However, the growing inclusion of mammographic

breast density in clinical risk models and the excellence of AI,

particularly CNNs, in image analysis, including mammograms, can

complement traditional risk factors, such as genetics and hormone

status. Recent large-scale studies report promising AI results, with

C-index values ranging from 0.75 to 0.84 (68), approaching the

performance of established clinical risk models with AUC values

between 0.57 and 0.82 (24). Despite this progress, AI-based risk

assessments have room for further development.

The 2022 validation investigation by Yala et al. (68) represents a

significant study, yet it has limitations. The generalizability of the

model can be limited due to homogeneity in patient populations,

clinical protocols, and data from a single institute. Additionally,

using mammograms from a single vendor may not account for

differences in imaging acquisition from other vendors, necessitating

the validation of diverse imaging sources. Retraining the model with

combined datasets from multiple sources can enhance performance

and generalizability.

In 2023, various studies explored AI-based risk analyses for breast

cancer. Eriksson et al. (62) compared AI-based risk models with

traditional ones, highlighting AI’s potential for long-term risk

analysis. Kayikci et al. (48) introduced an attention-based

multimodal AI model, while Michel et al. (63) combined CNN-based

mammography analysis with clinical factors for promising risk

prediction. Damiani et al. (54) evaluated an AI algorithm based on

digital mammograms, demonstrating strong predictive capabilities

post-negative screenings. Wang et al. (64) introduced the Multi-Time

Point Breast Cancer RiskModel, significantly improving long-term risk

prediction. These findings emphasize the potential of advanced AI in

breast cancer risk assessment and early detection, although further

validation in diverse cohorts is vital for its clinical implementation.

There are several limitations in these studies, along with their

potential, such as limited data, lack of explainability of methods, and

less attention to the ethical aspects of data usage and data

privacy considerations.
Fron
Data: The most common constraints in these studies included

the use of homogeneous, unimodal, and single-vendor data.

Many studies have relied on data from a single institution.

Additionally, these studies often utilized a single modality,

such as imaging (mammography or breast MRI), genomics,

demographic, or clinical data. It has also been observed that

imaging data often originate from a single vendor.

Short-term risk: Short-term risk assessments do not reflect the

long-term risk of breast cancer. This can limit women’s intention

to take preventive measures such as chemoprevention or

prophylactic surgery. Short-term risk does not encompass all
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factors such as genetic or environmental factors (BRCA

mutations, lifestyle, and hormonal factors), which can

influence breast cancer risk. Women with rare risk profiles

require personalized care because complex risk profiles are not

adequately assessed by short-term risk prediction models.

Explainability: The explainability and interpretability of breast

cancer risk prediction methods are among the most under-

explored research aspects. Currently, the focus of AI models

is on improving accuracy rather than making models

explainable. Better explainable models are essential, as they

help enhance trust in using AI for breast cancer risk

prediction and ultimately improve patient care.

Ethical Consideration and Data Privacy: AI-driven breast

cancer risk prediction presents both moral and ethical

challenges. Previous studies of breast cancer risk prediction

studies have focused less on the responsible use of data. It is

crucial to ensure that patient data is used responsibly and for

the public good. Studies suggest that patients are willing to

consent to the use of their data in AI-based breast cancer risk

research if they are used confidentially and responsibly with

effective governance (70).
Addressing these limitations involves employing multimodal,

multi-institutional, heterogeneous data, and providing model

explainability. This approach improves the generalizability and

performance of models for risk prediction. Moreover, data

privacy and ethical considerations should be considered when

designing the models, which will ultimately build patient trust in

using state-of-the-art AI for breast cancer risk assessment.
5 Conclusion

Integrating AI methods, especially DL and CNNs, into breast

cancer risk assessment using digital mammography shows great

promise for developing personalized risk models. By analyzing

individual patient information and medical imaging, these AI-driven

approaches have the potential to significantly enhance the accuracy and

effectiveness of breast cancer risk prediction. The existing literature

demonstrates encouraging results; however, more research and

validation are necessary to establish the clinical utility and reliability

of these models. As ongoing studies and future applications continue to

evolve, the implementation of DL techniques in breast cancer risk

modeling could revolutionize screening strategies and facilitate tailored

risk management in women worldwide. Given the substantial impact

of breast cancer on women’s health, harnessing the power of AI in risk

assessment represents a crucial step toward early detection and

improved patient outcomes.
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