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University, Zhengzhou, Henan, China
Liquid biopsy, a novel detection method, has recently become an active research

area in clinical cancer owing to its unique advantages. Studies on circulating free

DNA, circulating tumor cells, and exosomes obtained by liquid biopsy have

shown great advances and they have entered clinical practice as new cancer

biomarkers. The metabolism of the body is dynamic as cancer originates and

progresses. Metabolic abnormalities caused by cancer can be detected in the

blood, sputum, urine, and other biological fluids via systemic or local circulation.

A considerable number of recent studies have focused on the roles of metabolic

molecules in cancer. The purpose of this review is to provide an overview of

metabolic markers from various biological fluids in the latest clinical studies,

which may contribute to cancer screening and diagnosis, differentiation of

cancer typing, grading and staging, and prediction of therapeutic response

and prognosis.
KEYWORDS
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1 Introduction

The occurrence and development of cancer is an ever-evolving process that challenges tissue

biopsy as the current gold standard for cancer diagnosis (1, 2). Compared to tissue biopsy, liquid

biopsy has the advantages of non-invasiveness, high sensitivity, and repeatable sampling, which

makes it a promising approach to overcome cancer heterogeneity and realize dynamic

monitoring of cancer (3, 4). The exploration of circulating free DNA (5), circulating tumor

cells (6), and exosomes (7) is moving from basic research to clinical applications. The initial

success of liquid biopsy has also accelerated extensive research into various forms of potential
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biomarkers (3, 8), such as metabolites, tumor-educated platelets,

immune cell components, and proteins.

Metabolic competition poses new challenges for the growth and

survival of cancer cells. For one thing, cancer cells have to alter their

metabolic fluxes to gain a competitive advantage in the tumor

microenvironment (TME) and meet their biosynthetic and

energetic requirements. For another, the abnormal accumulation of

metabolites in the TME makes it necessary for cancer cells to

metabolically adapt to protect themselves from harm. As a result,

there is a growing appreciation for alterations in metabolites and their

metabolic pathways in cancer. Metabolomics is the scientific

discipline that studies the dynamics of metabolites and their

mechanisms in organisms under physiological and pathological

conditions (9). As a favorable complement to genomics,

transcriptomics, and proteomics, the initial value of metabolomics

is as a tool for identifying disease biomarkers, as changes in

metabolites are regulated by upstream signaling molecules (10).

Concurrently, changes in the “quality” and “quantity” of metabolic

molecules will in turn affect the replication and expression of genes.

Certain metabolites tend to change earlier than genes and proteins,

which can reflect fluctuations in the body state in a more timely and

effective manner (11). In a sense, metabolomics is also making itself

noticed as a “commander.”Metabolomics can be classified into non-

targeted and targeted metabolomics based on the study’s purpose.

The former can provide a wide range of differential metabolite

profiles, whereas the latter focuses on the absolute quantification of

a specific set of metabolites (11). The two most frequently used

analytical techniques in metabolomics are nuclear magnetic
Frontiers in Oncology 02
resonance (NMR) and mass spectrometry (MS) (12, 13). Combined

MS technologies, such as liquid chromatography-mass spectrometry

(LC-MS) and gas chromatography-mass spectrometry (GC-MS), are

increasingly used (11, 13).

The clinical applications of metabolomics have been largely

restricted to metabolic imaging (14, 15). However, the recent

emergence of liquid biopsy has sparked interest in the potential

role of circulating metabolic molecules, opening new avenues for

cancer biomarker discovery (Figure 1). There is an ongoing search

for biomarkers in circulating body fluids, mostly from blood and

urine, using metabolomics. Owing to the pathophysiological

characteristics of different cancers, options for biological sample

types are increasingly diverse. A small number of studies have

focused on metabolites from other biological samples such as

sputum, cerebrospinal fluid and pleural effusion. Herein, we

summarize the latest metabolic findings based on liquid biopsy in

cancer population studies, intending to identify potential metabolic

markers that could aid in clinical cancer diagnosis, classification,

and treatment. Finally, we discuss the current limitations and future

directions in the field of liquid biopsy-based cancer metabolomic

biomarker research.
2 Metabolomic biomarkers for cancer
screening and diagnosis

The early clinical symptoms of cancer are hidden, and most

patients are in the middle and advanced stages once diagnosed,
FIGURE 1

Workflow of metabolomics-based liquid biopsy in cancer. After collecting samples from various biofluids, metabolites can be detected by NMR and/
or MS. Differential metabolites are then obtained through metabolomic data analysis, which can be used as biomarkers for accurate cancer diagnosis
and classification as well as prognosis prediction. NMR, nuclear magnetic resonance; MS, mass spectrometry.
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resulting in the loss of opportunities for radical surgery. Therefore,

the key to prolonging the survival of patients with cancer is to

identify high-risk groups and achieve an early diagnosis. In the

search for potential metabolic markers, numerous metabolomic

studies have recently compared the metabolic differences in

biofluids between patients with cancer and healthy individuals or

patients with benign lesions. In this section, we screen differential

metabolites mentioned in at least three previous studies (Table 1)

and outline how these metabolites change in patients with cancer.
Frontiers in Oncology 03
2.1 Glucose metabolism

2.1.1 Glucose
Glucose is a vital nutrient that tumor cells compete whose

uptake depends largely on glucose transporters (GLUTs) on the cell

membranes. There are four classical GLUTs in the human body,

among which GLUT1 and GLUT3 have high glucose affinities and

are upregulated in multiple tumor types (80). Significant differences

in circulating glucose levels between cancer-free controls and
TABLE 1 Summary of biofluid metabolomic biomarkers for screening and early diagnosis in cancer.

Metabolite Sample Diseases Refs

Glucose metabolism

Glucose Serum/plasma ↑: Kidney cancer (16)

↓: Diffuse large B-cell lymphoma (17)

Urine ↓: Prostate cancer (18)

Pyruvate Serum/plasma ↑: Esophageal cancer, non-small cell lung cancer (19, 20)

Urine ↑: Prostate cancer (18)

Lactic acid Serum/plasma ↑: Osteosarcoma (21)

↓: Kidney cancer (16)

Urine ↑: Prostate cancer, renal cell carcinoma (22, 23)

Myoinositol Serum/plasma ↑: Prostate cancer (24)

↓: Kidney cancer, lung cancer (16, 25)

Urine ↑: Renal cell carcinoma, pancreatic cancer (22, 26)

Amino acid metabolism

Glutamic acid Serum/plasma ↑: Hepatocellular carcinoma, osteosarcoma, pancreatic cancer, small cell
lung cancer, kidney cancer, esophageal squamous cell carcinoma

(21, 27–31)

↓: Pancreatic cancer, prostate cancer, colorectal cancer, epithelial
ovarian cancer

(23, 32–34)

Urine ↑: Renal cell carcinoma, (22)

Glutamine Serum/plasma ↑: Esophageal squamous cell carcinoma, prostate cancer, epithelial
ovarian cancer

(23, 31, 33)

↓: Lung cancer, pancreatic cancer, pan-cancer (32, 35, 36)

Leucine Serum/plasma ↓: Kidney cancer, small cell lung cancer (16, 29)

Urine ↑: Prostate cancer (18, 37)

Saliva ↓: Oral squamous cell carcinoma (38)

Isoleucine Serum/plasma ↓: Pancreatic ductal adenocarcinoma (39)

Urine ↑: Prostate cancer, gastric cancer (37, 40)

Valine Urine ↑: Prostate cancer (18)

Saliva ↓: Lung cancer, thyroid cancer (41, 42)

Tryptophan Serum/plasma ↑: Non-small cell lung cancer, colorectal cancer (19, 43, 44)

↓: Pancreatic cancer, bladder cancer (32, 45)

Saliva ↓: Lung cancer (46)

Glycine Serum/plasma ↓: Kidney cancer, endometrial cancer, esophageal cancer (16, 47, 48)

Urine ↓: Esophageal cancer (48)

(Continued)
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TABLE 1 Continued

Metabolite Sample Diseases Refs

Serine Serum/plasma ↑: Lung cancer, prostate cancer (24, 35)

↓: Endometrial cancer (47)

Urine ↑: Gastric cancer (40)

Saliva ↓: Lung cancer (41)

Methionine Serum/plasma ↑: Epithelial ovarian cancer, non-small cell lung cancer (19, 33)

↓: Small cell lung cancer (29)

Saliva ↑: Oral squamous cell carcinoma (38)

Cysteine Serum/plasma ↑: Lung adenocarcinoma, gastric cancer, oral squamous cell carcinoma (49–51)

Proline Serum/plasma ↑: Lung cancer, pan-cancer (36, 52)

↓: Hepatocellular carcinoma, pancreatic cancer (27, 53)

Saliva ↓: Thyroid cancer, lung cancer (41, 42)

Phenylalanine Serum/plasma ↑: Non-small cell lung cancer, lung cancer (54–56)

↓: Pancreatic cancer (32)

Phenylalanine Saliva ↓: Thyroid cancer (42)

Tyrosine Serum/plasma ↑: Hepatocellular carcinoma, non-small cell lung cancer (19, 57)

Saliva ↓: Lung cancer (46)

Nucleotide metabolism

Hypoxanthine Serum/plasma ↑: Esophageal squamous cell carcinoma, breast cancer (31, 58)

↓: Esophageal squamous cell carcinoma (59)

Inosine Plasma ↓: Pancreatic cancer, esophageal squamous cell carcinoma (59, 60)

Saliva ↑: Oral squamous cell carcinoma (38)

Uracil Serum ↑: Lung adenocarcinoma (49)

↓: Breast cancer (61)

Saliva ↑: Oral squamous cell carcinoma, lung cancer (38, 41)

Lipid metabolism

Palmitic acid Serum/plasma ↑: Non-small cell lung cancer, pancreatic cancer (19, 53)

↓: Lung cancer, gastric cancer (62, 63)

Linoleic acid Serum/plasma ↓: Esophageal squamous cell carcinoma, colorectal cancer, gastric cancer (31, 44, 63)

Phosphatidylcholines Serum/plasma ↑: Hepatocellular carcinoma (64)

↓: Lung cancer, pancreatic cancer, hepatocellular carcinoma (28, 64, 65)

Pleural effusion ↓: Lung cancer (66)

Lysophosphatidylcholines Serum/plasma ↑: Colorectal cancer (44)

↓: Pancreatic cancer, gastric cancers, renal cell carcinoma, colorectal cancer,
esophageal squamous cell carcinoma, lung cancer

(35, 54, 59, 63, 67–69)

Pleural effusion ↓: Lung cancer (66)

Phosphatidylethanolamines Serum/plasma ↑: Pancreatic cancer (28, 70)

Pleural effusion ↓: Lung cancer (66)

Lysophosphatidylethanolamines Serum/plasma ↑: Esophageal squamous cell carcinoma (59)

↓: Pancreatic ductal adenocarcinoma, colorectal cancer (69, 70)

(Continued)
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patients with cancer have been reported in recent studies (16–18).

Using GC-MS techniques, two studies detected relatively low levels

of glucose in the plasma of patients with diffuse large B-cell

lymphoma and in urine from patients with prostate cancer (17,

18), which may potentially result from increased glucose uptake by

tumor cells from the peripheral circulation. In contrast, Nizioł et al.

observed higher glucose concentrations in patients with renal

cancer than in healthy controls using MRI spectroscopy (16),

which appears to contradict the theory of active glucose

metabolism in tumor tissues. Considering the characteristics of

renal blood flow regulation, it is more likely a stress glucose

elevation caused by sympathetic excitation during renal ischemia

(81). Taken together, these metabolomic findings suggest that

changes in glucose levels in biological fluids may help in the early

identification of patients with cancer.

2.1.2 Pyruvate
Pyruvate synthesis relies primarily on the glycolytic pathway,

and the conversion of glucose to glucose-6-phosphate catalyzed by

hexokinase is the first rate-limiting step. KRAS mutation has been

reported to directly regulate the enzymatic activity of hexokinase 1,

thereby increasing glucose utilization by tumor cells (82).

Overexpression of phosphofructokinases and pyruvate kinases in

tumor tissues has also been confirmed to be involved in tumor

growth and invasion (83, 84). Several studies have consistently

found that patients with cancer show relatively high levels of

pyruvate in the blood and urine. In addition to decreased glucose

levels, Lima et al. observed a marked increase in urinary pyruvate

levels in patients with prostate cancer (18). In another study, by

combining differential metabolites obtained by MS with a metabolic

network based on Kyoto Encyclopedia of Genes and Genomes

database, Guo et al. constructed a metabolite panel (including

pyruvate) specifically for non-small cell lung cancer (NSCLC)

with a diagnostic accuracy of almost 98% (19). Subsequently, by

applying the NMR technique, Ye et al. proposed that the

combination of pyruvate and acetate presented significantly

superior diagnostic performance compared to carbohydrate

antigen 199 (CA199) and carcinoembryonic antigen (CEA) and
Frontiers in Oncology 05
could serve as a candidate marker for the diagnosis of esophageal

cancer (20).

2.1.3 Lactic acid
Aerobic glycolysis, known as the “Warburg effect,” is a classic

example of metabolic adaptation in tumor cells; even under aerobic

conditions, glucose in tumor cells is not completely oxidized but is

catabolized to lactic acid, which provides a large carbon source for

tumor cells while rapidly generating adenosine triphosphate (85,

86). Lactic acid transport relies on monocarboxylic acid

transporters (MCTs), in which abnormal expression of MCT1

and MCT4 in different tumor types affects intracellular and

extracellular lactic acid homeostasis, thereby participating in

distant metastasis and recurrence (87, 88). To explore the serum

metabolic profile of osteosarcoma, Lv et al. applied non-targeted

metabolomics techniques to identify the metabolites that differ

between patients with cancer and healthy individuals. The area

under the curve (AUC) of lactic acid was 0.97 according to receiver

operating characteristic (ROC) analysis (21). Using benign lesions

as controls, Sato et al. demonstrated that urine lactic acid levels were

significantly elevated in patients with renal cell carcinoma, which

was consistent with their previous metabolomic analysis based on

tumor tissue samples (22). Conversely, another metabolomic study

of kidney cancer reported lower serum lactic acid levels in patients

with cancer (16). Although the phenomenon discussed in the above

two studies requires further confirmation, variations in inclusion

criteria for controls across studies may influence the alteration of

lactate levels in blood and urine.

2.1.4 Myoinositol
Inositol is a class of cyclic sugar alcohols with nine isomer forms

that are widely distributed throughout the body, among which

myoinositol is the most stable. In addition to dietary intake,

myoinositol can be synthesized in vivo by inositol-3-phosphate

synthase 1 (ISYNA1) and inositol monophosphatase catalysis (89).

Zhou and colleagues found a positive correlation between ISYNA1

expression and the survival of patients with pancreatic cancer, and

observed increased invasiveness in ISYNA1-silenced pancreatic
TABLE 1 Continued

Metabolite Sample Diseases Refs

Sphingomyelins Serum/plasma ↑: Ovarian cancer, papillary thyroid cancer, pancreatic ductal
adenocarcinoma, endometrial cancer

(47, 70–72)

↓: Laryngeal cancer, (73)

Ceramides Serum/plasma ↑: Ovarian cancer (71)

↓: Pancreatic cancer (67, 70)

Glycocholic acid Serum/plasma ↑: Colon cancer, hepatocellular carcinoma, pancreatic cancer (57, 60, 74)

Estradiol Serum ↑: Breast cancer (75)

Urine ↑: Breast cancer (76, 77)

Others

Hippuric acid Urine ↓: Prostate cancer, renal cell carcinoma, bladder cancer (23, 78, 79)
Up arrow indicates increase, down arrow indicates decrease.
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cancer cells (90). However, ISYNA1 plays the opposite role in

bladder cancer, and its knockdown significantly promotes apoptosis

of bladder cancer cells (91). Three studies reported increased

myoinositol levels in prostate cancer (24), renal cell carcinoma

(22) and pancreatic cancer (26), whereas two studies reported

decreased myoinositol levels in kidney cancer (16) and lung

cancer (25). These studies have confirmed the effectiveness of

metabolic panels, including myoinositol, in the early diagnosis

of cancer.
2.2 Amino acid metabolism

2.2.1 Glutamine and glutamic acid
Glutamine is a crucial nutrient for sustaining cell proliferation

and survival, especially in tumor cells. Solute carrier family 1

member 5 is a key protein responsible for glutamine transport,

and its upregulation in tumor tissues indicates increased

glutamine uptake (92). Glutamate is the breakdown product of

glutamine, catalyzed by glutaminase, which can be further

converted to a-ketoglutarate (a-KG) by glutamate dehydrogenase

or aminotransferase. On the one hand, a-KG entering the

tricarboxylic acid (TCA) cycle replenishes the intermediate

products of aerobic oxidation and promotes the production of

adenosine triphosphate. On the other hand, a-KG can also

further enter the fatty acid synthesis pathway by converting to

citric acid, which is more pronounced in the hypoxic TME (93, 94).

In addition, it has been demonstrated that regulatory activation of

glutaminases promotes tumor progression by producing more

glutathione to assist tumor cells in resisting oxidative stress (95).

Numerous studies have reported changes in glutamine and

glutamate levels in the blood and urine of cancer patients, and

suggested that these two metabolites could be used as potential

metabolic markers to effectively distinguish cancer patients from

non-cancerous individuals. Seven studies found higher levels of

glutamine (21, 22, 27–31) and three studies observed lower

glutamine levels in patients with cancer (32, 35, 36). These

findings may be attributed to enhanced glutamine catabolism,

which produces more glutamate. It is worth mentioning that in a

study on esophageal squamous cell carcinoma, the authors found

serum glutamine and glutamate levels were significantly higher in

cancer patients compared to healthy controls (31). While only

glutamate showed a statistically significant difference when

patients with dysplasia were used as controls, this may indicate

that glutamate and glutamine metabolism dynamically change

during cancer progression. However, in two other studies based

on serum metabolomics, an increase in glutamine and a decrease in

glutamate levels were observed in ovarian and prostate cancers,

respectively (23, 33). This implies that reproductive system tumors

are likely to be less dependent on glutamine metabolism. Similarly,

one study found significantly lower blood glutamate levels

in patients with colon cancer than in those with colon

adenomas (34), although more work is needed to verify the

glutamate differences between patients with colon cancer and

healthy individuals.
Frontiers in Oncology 06
2.2.2 Branched-chain amino acids (BCAAs)
BCAAs refer to three non-essential amino acids, namely

leucine, isoleucine, and valine, which are derived from exogenous

food intake and endogenous tissue protein breakdown. The

upregulation of L-type amino acid transporter 1, induced by

hypoxia-inducible factor in the TME can promote more BCAAs

into cells (96). The catabolism of BCAAs mediated by amino acid

branched-chain transaminases is abnormally active in pancreatic

malignancies (97, 98). Based on serum metabolomics, two studies

observed reduced leucine levels in renal tumors and small cell lung

cancer (SCLC), respectively (16, 29). Consistent with these findings,

patients with pancreatic ductal adenocarcinoma also had reduced

levels of two isomers of leucine: isoleucine and ortholeucine (39).

Decreased levels of BCAAs have also been detected in saliva samples

from patients with cancer, including oral squamous cell carcinoma,

lung cancer and thyroid cancer (38, 41, 42), implying vigorous

catabolism of BCAAs in cancer cells to meet the energy

requirements of biological macromolecules. However, urinary

metabolomics showed the opposite trend. Two studies found that

patients with prostate cancer have higher levels of BCAAs in their

urine than controls (18, 37). Based on MS and binary logistic

regression analysis methods, Huang’s team observed a decline in

urinary isoleucine in patients with gastric cancer and constructed an

early diagnostic model by combining differential metabolites with

age (40). It is worth noting that considering the effect of age on

human metabolism, taking age into account somewhat improved

the reliability of the diagnostic model in this study.

2.2.3 Amino acids in one-carbon metabolism
One-carbon metabolism not only provides raw materials for

nucleotide synthesis and methylation reactions in tumor cells but

also participates in maintaining cellular redox homeostasis, which is

an important component of metabolic reprogramming in tumor

cells (99).

Serine and glycine are the main sources of one-carbon units for

tumor cells. In the serine-restricted TME, tumor cells can regulate

the expression of phosphoglycerate dehydrogenase, allowing more

3-phosphoglycerate to enter the serine synthesis pathway (100).

Published studies regarding the variation of serine content in

biofluids are inconsistent. Yang et al. proposed a diagnostic

model of metabolites containing serine for early-stage lung cancer

with an AUC of more than 95% (35). Similarly, an MS study on

prostate cancer demonstrated that differential serum metabolites

(L-serine, myoinositol and decanoic acid) performed better than

prostate specific antigen in distinguishing patients with prostate

cancer from benign prostate hyperplasia (24). Both studies

confirmed higher serine levels in patients with cancer whereas

serum glycine and serine levels were inversely correlated with the

risk of endometrial cancer in an observational study (47). Further

studies are needed to determine whether these two metabolites are

directly involved in the pathological process of endometrial cancer.

Moreover, there is a notable disparity in serine levels in urine and

sputum samples from individuals with cancer compared to those

without cancer (40, 41). The conversion of serine to glycine requires

catalysis by serine-hydroxymethyltransferase, an important target
frontiersin.org
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for the regulation of lung cancer metastasis (101). Several studies

have consistently found relatively low levels of glycine in the

circulating body fluids of cancer patients (41, 47, 48).

Tryptophan catabolism can also produce one-carbon units.

Abnormalities in tryptophan metabolism in tumor cells have been

extensively studied and metabolites involved in tryptophan

catabolism, such as kynurenine, have emerged as targets for anti-

tumor therapy (102). Alterations in tryptophan levels in the

biological fluids of lung cancer patients have been observed in

three studies, two of which found that patients with NSCLC had

elevated blood tryptophan levels compared to healthy controls (19,

43). In contrast, a study based on sputum metabolomics observed

the opposite trend in patients with lung cancer (46), and the

difference in the distribution of tryptophan in blood and sputum

may be the result of increased tryptophan consumption by tumor

cells. In addition to lung cancer, there are significant changes in

circulating blood tryptophan levels in colorectal, pancreatic, and

bladder cancer (32, 44, 45).

Methionine can provide methyl groups for the synthesis of

various bioactive substances, such as carnitine, choline, and

creatine, through transmethylation reactions; therefore, there is

intense competition for methionine in the TME. High expression

of methionine transporters in tumor cells results in a stronger

methionine uptake capacity than that of CD8+ T cells, thereby

limiting the anti-tumor function and survival of CD8+ T cells (103).

Changes in blood methionine levels have shown significance in the

diagnosis of lung cancer, although they have an opposite trend in

SCLC and NSCLC (19, 29), suggesting metabolic heterogeneity

between the different pathological types of lung cancer. Besides,

increased methionine and spermidine levels were observed in

patients with oral squamous cell carcinoma in a salivary

metabolomics study (38).

The transsulfuration pathway refers to the synthesis progress of

cystine by serine and homocysteine under the catalysis of

cystathionine b-synthase and cystathionine-g-lyase, which is the

main source of cystine synthesis in vivo. Cystathionine-g-lyase is the
key enzyme in this process and its high expression in tumor tissues

has emerged as a promising target for cancer therapy (104, 105).

Patients with lung adenocarcinoma (49), gastric cancer (50), and

oral squamous cell carcinoma (51) show elevated cysteine levels in

their blood, which also reflects the disorder of cysteine metabolism

in the tumor state, demonstrating that cysteine can be used as a

biomarker for cancer early detection.
2.2.4 Proline
As a non-essential amino acid, in addition to exogenous food

intake, proline comes from the de novo synthesis pathway and

collagen degradation (106). The conversion between pyrroline-5-

carboxylate and proline is a reversible reaction catalyzed by

pyrroline-5-carboxylate reductase and proline dehydrogenase; the

former has been consistently recognized as a key oncogenic factor

that promotes tumor proliferation and maintains redox

homeostasis (107), while proline dehydrogenase plays a dual role

in tumors by regulating apoptosis and autophagy in tumor cells

(108). There are also conflicting results regarding changes in blood
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proline levels in patients with tumors, and two studies reported

elevated proline levels compared to controls (36, 52), which may be

associated with the high expression of pyrroline-5-carboxylate

reductase in tumors. However, a multicenter study found that the

serum proline level in patients with pancreatic cancer was lower

than that in healthy controls and benign lesion groups and

proposed a metabolic panel (proline, creatine and palmitic acid)

that showed good sensitivity and specificity in the early diagnosis of

pancreatic cancer (53). Sputum proline levels have also been

reported, with two studies showing reduced proline levels in

patients with thyroid and lung cancer (41, 42).

2.2.5 Phenylalanine and tyrosine
The conversion of phenylalanine to tyrosine, catalyzed by

phenylalanine hydroxylase is the main metabolic pathway of

phenylalanine in the human body. In addition to being the main

source of catecholamine neurotransmitters, tyrosine is also

converted to janosonic acid and acetoacetic acid, catalyzed by

tyrosine aminotransferase, and then enters the TCA cycle and

lipid metabolism pathway, respectively. Cang et al. found elevated

plasma levels of phenylalanine in NSCLC and suggested that this

may be due to abnormal inflammation and immune responses in

tumors, which impair the function of phenylalanine hydroxylase

(54). Similarly, two recent studies have reported increased levels of

phenylalanine in the blood of lung cancer patients (55, 56). In

another metabolomic study, patients with lung cancer showed

increased sputum levels of tyrosine compared to those with

benign lung lesions, and a metabolic panel combining tyrosine

with diethanolamine, cytosine, and lysine was proposed for the

early diagnosis of lung cancer (46). Changes in phenylalanine and

tyrosine levels in other cancers have also been reported (32, 42, 57).

One of these observational studies demonstrated a good positive

correlation between tyrosine content and hepatocellular carcinoma

based on serum metabolomics (57).
2.3 Nucleotide metabolism

2.3.1 Inosine and hypoxanthine
Inosine and hypoxanthine are important intermediate products

of purine metabolism that are produced sequentially by the

decomposition of hypoxanthine nucleotides. Hypoxanthine can

enter the salvage synthesis pathway to participate in nucleotide

synthesis again or be further oxidized by xanthine oxidase to form

uric acid and excreted from the body. To realize the early diagnosis

of esophageal squamous cell carcinoma, Zhu et al. conducted a

comparative analysis of serum metabolites in 140 patients with

cancer and 170 healthy controls and established a panel consisting

of eight metabolites among which inosine and hypoxanthine levels

were relatively low in the cancer cohort compared to those in the

healthy cohort (59). In contrast, using abnormal esophageal

squamous hyperplasia as a control, Zhang et al. obtained a

completely different panel containing increased hypoxanthine, l-

glutamate, l-aspartate and decreased 2-ketoisocaproic acid (31).

Altered plasma levels of inosine and hypoxanthine were also found
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in patients with pancreatic and breast cancer in two other MS

studies (58, 60).

2.3.2 Uracil
Uracil is derived from the catabolism of pyrimidine nucleotides

in the liver, which can be further catabolized to b-alanine, a key

mediator of metabolic crosstalk between tumor and stromal cells

(109). In addition to being excreted in urine, more importantly, b-
alanine can be broken down into acetyl coenzyme A, providing

energy and raw materials for cellular biosynthesis. There is

inconclusive evidence on the changes in uracil levels among

cancer patients, as both increased (38, 41, 49) and decreased (61)

have been reported.
2.4 Lipid metabolism

2.4.1 Palmitic acid
Palmitic acid is the most abundant saturated fatty acid in the

human body, accounting for approximately 25% of the total fatty

acids and 65% of the total saturated fatty acids in the human body

(110). Interestingly, tumor cells can directly obtain fatty acids

produced by adipocyte lysis in the TME, and an in vitro study

proposed that adipocyte-derived palmitic acid promotes melanoma

cell proliferation by activating protein kinase B (111, 112). Two

studies found increased levels of palmitic acid in the blood of

patients with NSCLC and pancreatic cancer and both proposed that

metabolite panels containing palmitic acid could be used for the

early diagnosis of diseases (19, 53). However, in another lung cancer

study that included adenocarcinoma, squamous cell carcinoma,

SCLC, and other pathological types, significantly lower palmitic

acid levels were found in the case group than in the control group,

and metabolic differences between SCLC and NSCLC may be

responsible for this inconsistency with the aforementioned

study (62).

2.4.2 Linoleic acid
As an essential fatty acid, linoleic acid can only be acquired from

food and cannot be synthesized because the body lacks relevant

desaturation enzymes. In addition to participating in the composition

of membrane phospholipids and cell energy supply, linoleic acid can

be further converted to g-linolenic acid and arachidonic acid through
desaturation and extension reactions. Arachidonic acid derivatives

such as prostaglandins and leukotrienes are important mediators

involved in the inflammatory response and tumor development

(113). Studies have identified significantly lower blood linoleic acid

levels in patients with esophageal cancer (31), gastric cancer (63), and

colon cancer (44), suggesting a key role of linoleic acid metabolism in

gastrointestinal tumors.

2.4.3 Phosphatidylcholines (PCs) and
phosphatidylethanolamines (PEs)

PCs and PEs are the most abundant phospholipids in biofilms, and

the ratio of PEs to PCs is critical in regulating lipoprotein secretion and

maintaining mitochondrial function. In one MS study, lung cancer

patients had lower levels of PCs and PEs in pleural effusions than did
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tuberculosis patients (66). Differences in blood PCs and PEs between

cancer patients and controls were also reported in four studies (28, 64,

65, 70). Interestingly, in a-fetoprotein (AFP)-negative hepatocellular

carcinoma, the concentrations of PC (22:6/18:2) and PC (18:2/18:2)

were increased while the concentrations of PC (16:0/16:0) were

decreased, which indicated that serological alterations in PCs would

help us to identify patients with hepatocellular carcinoma missed by

AFP at an early stage (64). Lysophosphatidylcholines (LPCs) and

lysophosphatidylethanolamines are metabolic intermediates of PCs

and PEs that are hydrolyzed by phospholipases. A significant body

of literature has documented that changes in their levels in biological

fluids are associated with early tumor diagnosis (35, 54, 59, 63, 67–70).

2.4.4 Sphingomyelins (SMs) and ceramides (CERs)
SMs and CERs are not only involved in maintaining the fluidity

of biological membranes, but also act as important signaling

molecules to regulate different life activities. SMs mainly promote

cell proliferation and migration, while CERs can induce cell

apoptosis and senescence (114). Five recent studies based on

blood metabolomics observed differences in SMs between cancer

patients and controls, four of which observed elevated levels of SMs

in the patients with cancer (47, 70–72). One study showed reduced

SM 42:2 and SM42:3 in patients with laryngeal cancer compared to

patients with benign laryngeal tumors and healthy volunteers (73).

A prospective study of 252 cases and 252 matched controls

compared the differences in circulating lipid metabolites between

groups, followed all enrolled subjects for up to 23 years, and

concluded that: increased SMs and CERs predicted higher ovarian

cancer risks (71).
2.4.5 Glycocholic acid (GCA)
Bile acids are important products of cholesterol metabolism in

hepatocytes and enter the intestine via the bile duct bile salt pump,

thus contributing to lipids digestion and absorption (115).

Farnesoid X receptor, the receptor of bile acids, plays a key role

in maintaining bile acid balance in the liver and intestine (116). In

the TME, inflammation inhibits the expression of the bile duct bile

salt pump and the farnesoid X receptor, thus disrupting bile acid

homeostasis and inducing an inflammatory response, ultimately

creating a vicious cycle (117). GCA is the most abundant bile acid in

the human body, whose changes in cancer have demonstrated its

diagnostic potential. Two multicenter studies found higher levels of

GCA in patients with hepatocellular carcinoma and colon cancer

(57, 74). Another study proposed that the panel composed of five

metabolites (creatine, inosine, b-sitosterol, sphinganine and GCA)

had better diagnostic performance than carbohydrate antigen 125

and CEA (60).

2.4.6 Estrogens and estrogen metabolites
Estrogens, a class of cholesterol derivatives, have been reported

to be involved in the development of multiple malignancies,

especially breast cancer (118, 119). In a randomized controlled

trial, Dallal CM et al. found that postmenopausal women with

elevated serum estradiol levels had a higher risk of breast cancer

(75). Urinary estradiol levels in postmenopausal women have also
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been shown to be positively associated with the risk of breast cancer

in two case-control studies (76, 77). Hydroxylation is the main

pathway of estrogens metabolism. Based on the MS technique,

studies have successively reported there is an inverse correlation

between the ratio of serum 2-hydroxylation pathway metabolites to

16-hydroxylation pathway metabolites with breast cancer risk in

postmenopausal women (75, 120, 121). However, due to the

diversity of 16-hydroxylation pathway metabolites and the limited

accuracy of specific estrogen metabolite concentrations determined

by MS, the association between the ratio and breast cancer risk

needs to be further verified (122). The formation of catechol

estrogen quinones is a key molecular mechanism of estrogen

carcinogenesis. It can further promote DNA mutation by reacting

with DNA to form depurinating DNA-adducts (119). Previous

studies have suggested that high-risk breast cancer patients have

higher levels of depurinating DNA-adducts in circulating body

fluids than healthy controls (123, 124), yet a recent study by

Reding KW et al. found no correlation between urinary levels of

depurinating DNA-adducts and breast cancer risk (125). In

conclusion, these inconsistent findings indicate the necessity to

further explore the reliability of circulating estrogens and their

metabolites in predicting the risk of breast cancer.
2.5 Others

Hippuric acid, also known as “benzoylaminoacetic acid,” is a

coupling of benzoic acid and glycine. Owing to its high stability, it was

initially identified as a detoxification metabolite of toluene and is still

used to predict occupational exposure to toluene (126). Moreover,

hippuric acid is an intestinal metabolite of phenylalanine, and its role

as a host-gut microbiome co-metabolite has received increasing

attention (127). Although the mechanisms underlying the altered
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metabolism of hippuric acid in cancer development have not been

elucidated, limited experimental studies have shown that a high-salt

diet produces more hippuric acid by increasing the abundance of

bifidobacteria in the mouse intestine, which enhances the tumor-

killing function of natural killer cells (128). In three MS studies

comparing the variance in urinary metabolites between patients with

cancer and controls, reduced levels of hippuric acid were consistently

observed, further suggesting its potential utility in cancer diagnosis

(23, 78, 79).

Extracellular vesicles (EVs) serve as important mediators of cell-

to-cell communication and offer new opportunities for identifying

novel tumor markers (129). In addition to circulating proteins and

nucleic acids, the role of EV-derived lipid metabolites in cancer

diagnosis is also gaining attention (Table 2). Phospholipids are

important components of extracellular vesicles, and there is

growing evidence that PCs, PEs, and SMs in EVs derived from

biological fluids show significant differences between cancer patients

and non-cancer controls (130–132, 134–136, 139). It has been

proposed that changes in the fatty acids content of blood-derived

extracellular vesicles may indicate the presence of cancer (133, 136–

138, 140). Although there is currently no consensus on the diagnostic

value of extracellular vesicle-derived lipid metabolites in different

tumors, these findings suggest a great potential for metabolomics-

based extracellular vesicle assays to advance into clinical practice.
3 Metabolomic biomarkers for
distinguishing type, grade and stage
of cancer

In recent years, metabolic differences in different types of cancer

have also been noted. Studies have not only identified metabolites

that help to detect specific pathological types but also proposed
TABLE 2 Summary of extracellular vesicles lipidomics biomarkers for cancer diagnosis.

Disease Sample Controls Lipids and derivatives Refs

Lung cancer Serum Benign lung nodules and
healthy donors

CE(19:2), CER(42:1), TG(54:2), PC(38:6), PC(38:7), PC(37:5), PC(38:5), TG(56:8) (130)

Pleural
effusion

Tuberculosis PC (35:0), SM (44:3) (131)

Breast cancer Plasma Healthy donors PC ae C40:6, LPC a C26:0, PC aa C38:5, PC ae C40:2, PC ae C34:2, PC ae C32:2,
PC ae C38:3, SM (OH) C16:1

(132)

Prostate cancer Plasma Tumor-free controls Hydroxyoctanoic acid (133)

Urine Benign prostate hyperplasia PCs, FA esters, sterols (134)

Healthy donors Lactosylceramide (d18:1/16:0),
PS 18:1/18:1,

(135)

Colorectal cancer Serum Healthy donors Phospholipids, FAs, sphingolipids (136)

Plasma Healthy donors FAs (137)

Hepatocellular
Carcinoma

Plasma Cirrhosis FAs, phospholipids, sulfatides (138)

Malignant
melanoma

Serum Healthy donors PC 16:0/0:0 (139)

FAs (140)
fro
CE, cholesteryl ester; CER, ceramide; TG, triglyceride; PC, phosphatidylcholine; SM, sphingomyelin; LPC, lysophosphatidylcholine; FA, fatty acid; PS, phosphatidylserine.
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potential metabolic markers to distinguish between the presence or

absence of genetic mutations and primary or secondary tumors. In

addition, the non-invasive and convenient characteristics of blood

and urinary metabolomics make it a useful tool for predicting

cancer grade and stage, which may instruct clinicians to develop

appropriate treatment plans for patients (Table 3).
3.1 Type

3.1.1 Glucose metabolism
Both primary brain tumors and secondary brain metastases are

important reasons for short survival and high mortality rates.

Metabolites of brain tumors can be released directly into the

cerebrospinal fluid; therefore, abnormal metabolic variations in

cerebrospinal fluid can effectively reflect the pathophysiological

changes of brain tumors. One cerebrospinal fluid metabolomics

study described the metabolic characteristics of primary central

nervous system lymphoma, secondary central nervous system

involvement of systemic lymphoma (SCNSL), and lung

adenocarcinoma with brain metastases (MBT) by liquid

chromatography-quadrupole time-of-fight spectrometric and

cross−contrasted the differential metabolites of patients with these

three types of brain tumor (144). Compared with MBT, SCNSL had

lower levels of pyruvate, a common substrate for aerobic and

anaerobic oxidation. Additionally, there was a higher level of

citric acid in MBT than in primary central nervous system

lymphoma and SCNSL, implying a more active aerobic oxidative

metabolism in MBT. Epithelial growth factor receptor (EGFR)

mutations are common in lung cancer, and the identification of

gene mutation types is becoming increasingly crucial because of the

clinical efficacy of the latest generation of EGFR-targeted drugs.

Chen et al. used GC-MS to compare the volatile metabolites of

malignant pleural effusion in lung cancer patients with or without

EGFR mutations (143). There was a clear separation between the

clustering of patients with and without EGFR mutations from the

score plot. After performing ROC analysis and bootstrapped t-test,

they identified 5 and 14 volatile organic compounds related to

glucose synthesis and catabolism, respectively, for the early

identification of EGFR mutation.

3.1.2 Amino acid metabolism
Due to the presence of heterogeneity, significant amino acid

alterations have also been observed in the biological fluids of

patients with different pathological types of cancer. A study using

MS analyzed the plasma metabolite differences in patients with

three types of lung cancer: lung adenocarcinoma, lung squamous

cell carcinoma, and SCLC (62). Ornithine has emerged as a possible

biomarker, following the application of orthogonal projections to

latent structures discriminant analysis (OPLS-DA). Based on

previous studies (153), to further explore metabolic changes of

kynurenine and tryptophan in different types of lung cancer,

Mandarano et al. observed that patients with squamous cell

carcinoma have a higher serum kynurenine/tryptophan ratio than

patients with lung adenocarcinoma (141). Kynurenine was also
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highlighted in another MS study on epithelial ovarian cancer, which

explored serum metabolomic alterations in four different

histopathological types (145). A panel of 12 metabolites

containing kynurenine were identified as potential markers for

distinguishing serous carcinoma from non-serous carcinoma by

ROC analysis.

3.1.3 Lipid metabolism
Changes in lipid metabolites have been associated with the

origin of malignant lung nodules. In a study conducted by Liu et al.

involving 16 patients with pulmonary metastatic carcinoma and 80

patients with primary lung carcinoma, a group of lipid metabolic

biomarkers consisting of L-octanoylcarnitine, retinol, and

decanoylcarnitine were able to predict metastatic lung cancer

(AUC > 0.95) (142). Abundant differential metabolic molecules

associated with lipid metabolism between serous ovarian carcinoma

and non-serous ovarian carcinoma have also been identified by

Olkowicz et al., such as phosphatidic acid (38:4), monoacylglycerol

(18:2), stearidonic acid, choladien-24-oic-acid and hydroxy-5-

cholenoic acid (145).
3.2 Grade

One reported NMR spectroscopic metabolic panel could

distinguish patients with low-grade bladder cancer (n = 54) from

those with high-grade bladder cancer (n = 41) through a

permutation analysis-validated OPLS-DA model comprising five

metabolites (leucine, histidine, alanine, 3-methyl-2-oxovalerate,

and tyrosine) (146). In addition to bladder cancer, an OPLS-DA

score plot by Kurokawa et al. showed patients with meningioma

were clustered according to different grades (147). Finally, Arginyl-

Proline, PS (44:6), 3-O-sulfogalactosylceramide (42:2), PS (36:5)

and CER (40:1) were identified as serum metabolic markers for

high-grade meningiomas. Arginyl-Proline is a dipeptide formed by

the dehydration condensation of arginine and proline, the increase

in which indicates that high-grade meningiomas have a greater

capacity for proliferation. The four remaining metabolic markers

indicated the significant involvement of phospholipid metabolism

in the pathological progression of high-grade meningiomas.
3.3 Stage

3.3.1 Glucose metabolism
Attempts to use metabolomic techniques identifying biomarker

for advanced renal cell carcinoma have been reported. Sato et al.

reported that a panel of four metabolites, l-kynurenine, l-glutamine,

fructose 6-phosphate, and butyrylcarnitine, could predict stage III/

IV disease with high accuracy (sensitivity 88.5% and specificity

75.4%) (22). Higher levels of glucose-6-phosphate may indicate an

increase in the energy requirements obtained through glycolysis.

GLUT5, a specific fructose transporter, has recently been reported

to interact with interleukin-6 to participate in tumor progression by

promoting fructose uptake (154). In an MS study of NSCLC
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TABLE 3 Summary of biofluid metabolomic biomarkers for typing, grading and staging in cancer.

Application Disease Sample Subjects Metabolites Refs

Typing Lung cancer Plasma/serum Squamous cell carcinoma
Adenocarcinoma
SCLC

Palmitic acid, heptadecanoic acid, pentadecanoic acid,
acylcarnitine C8:1, ornithine

(62)

Squamous cell carcinoma
Adenocarcinoma

Kynurenine-tryptophan ratio (141)

Primary lung cancer
Pulmonary metastatic carcinoma

L-octanoylcarnitine, retinol, decanoylcarnitine (142)

Pleural
effusion

Lung cancer with EGFR
mutation
Lung cancer without
EGFR mutation

Butanoic acid, (tetrahydro-2-furanyl) methyl ester,
1-hexene, 3,4-dimethyl-, 2-undecen-4-ol (Receiver
operating characteristic analysis)
2-undecen-4-ol, 2H-tetrazole, 2-methyl-, 2-propanol,
1-chloro-3-propoxy-,4H-1,2,4-Triazol-4-amine,
cyclobutylamine, butanoic acid, (tetrahydro-2-furanyl)
methyl ester hexane, 2,3,5-trimethyl-,1H-Tetrazole-
1-ethanol, cyclopropene, allyl acetate (Bootstrapped t-test)

(143)

Brain tumors Cerebrospinal
fluid

PCNSL
SCNSL
MBT

Inositol phosphate, homocysteine, valyl-methionine,
5-aminoimidazole (PCNSL versus SCNSL)
Butyrylcarnitine, 3-dehydrocarnitine,2-furoylglycine,
hypotaurine, L-glutamic, N-butyrylglycine, pyruvic acid,
citric acid, phytosphingosine etc. (PCNSL versus MBT)
1-methyladenosine, citric acid, valyl-methionine,
L-glutamic, hypotaurine (SCNSL versus. MBT)

(144)

Ovarian cancer Serum Serous cystadenocarcinoma
Non-serous serous carcinoma

Phosphatidic acid (38:4), sphingosine-1-phosphate (t16:1),
N-arachidonoyl taurine (C20:4), aldosterone,
lysophosphatidylinositol(O-32:1),18-hydroxycorticosterone,
stearidonic acid, tetradecanoylcarnitine,
choladien-24-oic acid, hydroxy-5-cholenoic acid,
monoacylglycerol (18:2), kynurenine

(145)

Grading Bladder cancer Serum High grade
Low grade

Leucine, histidine, alanine, 3-methyl-2-oxovalerate, tyrosine (146)

Meningioma Plasma High grade
Low grade

Arginyl-Proline, PS (44:6), 3-O-sulfogalactosylceramide
(42:2), PS (36:5), CER (40:1)

(147)

Staging Lung cancer Plasma Early stage (stage I/II)
Advanced stage (stage III/IV)

Palmitic acid, heptadecanoic acid, ornithine, tridecanoic
acid, stearic acid

(62)

Non-small cell
lung cancer

Plasma Early stage (stage I/II/III)
Advanced stage (stage IV)

D-phenylalanine, phenylacetic acid, o-
phosphoethanolamine, dehydroepiandrosterone, uric acid,
a-D-glucose, D-4-hydroxy-2-oxoglutarate, xanthosine,
allocholic acid, 5-aminopentanoic acid,
D-fructose

(148)

Esophageal
squamous
cell carcinoma

Plasma/serum Stage Tis
Stage I-II
Stage III-IV

Indoleacrylic acid, LPC (20:5), LPE (20:4) (59)

Esophageal
squamous
cell carcinoma

Plasma/serum Stage I–IIA
Stage IIB–IV

Hyodeoxycholic acid, (2S,3S)-3, methylphenylalanine,
carnitine C9:1, indole-3-carboxylic acid

(149)

Colorectal
cancer

Plasma/serum Stage I–II
Stage III–IV

Glycerophospholipids, SM C18:0, citrullin (150)

Advanced stage (stage III/IV) Hydroquinone, leucenol and sphingomyelin (151)

Bladder cancer Serum Stage Ta/T1
Stage T2

Histidine, alanine, tryptophan, glutamine, glycine,
methylhistidine, choline, isobutyrate, threonine

(146)

Renal
cell carcinoma

Urine Stage I–II
Stage III–IV

l-kynurenine, l-glutamine, fructose 6-
phosphate, butyrylcarnitine

(22)

Prostate cancer Serum
and urine

Advanced stage (stage T2/T3) Citric acid (152)
F
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EGFR, epithelial growth factor receptor; SCLC, small cell lung cancer, epithelial growth factor receptor; PCNSL, primary central nervous system lymphoma; SCNSL, secondary central nervous
system involvement of systemic lymphoma; MBT, lung adenocarcinoma with brain metastases; PS, phosphatidylserine; CER, ceramide; LPC, lysophosphatidylcholine;
LPE, lysophosphatidylethanolamine; Tis, tumor in sit; SM, sphingomyelin.
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patients, 11 metabolites including D-fructose were identified that

differed markedly in plasma between patients in the early and

advanced stages according to partial least squares discriminant

analysis (variable importance in projection ≥ 1) and Mann-

Whitney test (P-value ≤ 0.05) (148). Citric acid, an intermediate

product of the TCA cycle, is crucial for the interactions between

glucose and lipid metabolism. In a study on prostate cancer,

Buszewska-Forajta et al. observed low levels of citric acid in the

blood, urine, or tissue of patients in the advanced stages, suggesting

that citric acid and prostate cancer progression are closely

linked (152).

3.3.2 Amino acid metabolism
In an NMR study, a metabolite panel containing seven amino

acids demonstrated an AUC > 0.80 in distinguishing between stage

Ta/T1 and T2 bladder cancer, and all of these amino acids were

relatively reduced in stage T2 (146). Apart from D-fructose,

alterations in plasma levels of intermediates in the phenylalanine

metabolism pathway, such as D-phenylalanine and phenylacetic acid,

have also been observed to differ in patients with early- and

advanced- stage lung cancer (148). (2S,3S)-3-Methylphenylalanine,

another phenylalanine derivative, was identified as a putative

biomarker of esophageal squamous cell carcinoma progression

using least absolute shrinkage and selection operator regularization

and random forest (149).

3.3.3 Lipid metabolism
In the absence of inexpensive and effective markers, colonoscopy

and computed tomography remain the primary methods of clinically

staging of colon cancer. A combination of tandem MS and logistic

regression analysis of serum samples collected from 744 patients with

colon cancer generated metabolomic profiles that distinguished

stages III-IV from stages I-II (150). The top ten metabolites

included nine PCs and SM (C18:0), indicating that phospholipid

metabolism was disturbed during colorectal cancer progression.

Hydroquinone and sphingomyelin, two other molecules of the lipid

metabolism pathway, were identified by Rao et al. as new markers for

the early detection of advanced colorectal cancer and showed a good

correlation with the traditional markers CA199 and CEA (151).

However, owing to the small sample size and lack of early-stage

patients for comparison, further verification is required. In an

untargeted plasma metabolomics study, LPC (20:5) and LPE (20:4)

were identified as putative biomarkers of esophageal squamous cell

carcinoma progression (59), which may be related to their

involvement in pathological injury to the cell membrane. After

successfully identifying plasma metabolites that help in the

diagnosis of lung cancer through metabolomics, Qi et al. attempted

to identify metabolic markers that could distinguish different stages of

lung cancer (62). In their study, an optimized discriminant logistic

regression model generated by least absolute shrinkage and selection

operator regularization of five variable importance in projection-

selected metabolites (palmitic acid, heptadecanoic acid, ornithine,

tridecanoic acid and stearic acid) was able to effectively discriminate

between early and advanced stages. Four are fatty acids, except for

ornithine, implying that fatty acid biosynthesis is required for tumor

growth and proliferation.
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4 Metabolomic biomarkers for
monitoring cancer treatment efficacy
and prognosis

Most studies have identified metabolomic markers for

predicting therapy efficacy and prognosis in blood, urine, and

other biofluids from patients with cancer (Table 4), which may

help clinicians screen good responders and prevent delaying the

malignant condition in poor responders by adjusting their

treatment strategies timely.
4.1 Glucose metabolism

Blood metabolites collected before treatments have predictive

power for therapeutic response and survival of patients with cancer.

One study reported lower levels of isocitric acid and citric acid in

the non-pathological complete response group than in the

pathological complete response group, suggesting that these two

compounds may predict patient responses to neoadjuvant

chemoradiotherapy (156). Using multivariate logistic regression

analysis, another MS study determined a five-metabolite panel

containing lactic acid, 2-hydroxyglutaric acid, and succinic acid

that could predict the recurrence of renal cell carcinoma after

surgery with a sensitivity and specificity of 88.9% and 88.0%,

respectively (163). Microvascular invasion is a detrimental factor

affecting the surgical outcome and prognosis of patients with

hepatocellular carcinoma, sensitive detection methods are still

lacking because of its insidious nature. Lee et al. presented an

OPLS-DA model in their NMR study that effectively differentiated

between patients with and without microvascular invasion (159).

Combining formate and CA199 improved the ability to predict

microvascular invasion, which was confirmed in the validation

cohort. Differential metabolites have also been detected in the

peritoneal lavage fluids of gastric cancer patients and those with

peritoneal metastasis tended to have higher glyceraldehyde-3-

phosphate (161).
4.2 Amino acid metabolism

Plasma metabolomics measured with high-performance liquid

chromatography for NSCLC patients receiving anti-programmed cell

death protein 1 therapy with good survival have also been compared

with those obtained from patients with poor survival and could be

successfully separated in a multivariate model (concordance index =

0.775, hazard ratio = 3.23) (155). Quinolinic acid, a tryptophan

intermediate metabolite mentioned in this study, was negatively

correlated with the immunotherapy efficacy in NSCLC patients.

Another tryptophan catabolite, 3-hydroxyanthranilic acid, was also

proposed as a potential indicator of adverse clinical outcomes in

NSCLC patients receiving anti-programmed cell death protein 1

therapy (43). In addition to NSCLC, abnormal tryptophan

catabolism is also found in esophageal and ovarian cancers. Plasma
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kynurenine levels have been proposed to be negatively correlated with

patient survival (157, 166). According to serum metabolomic profiles

detected by NMR, the levels of three amino acids (glutamine,

histidine and valine) in bladder cancer patients decreased markedly

after surgery and approached those in healthy controls (164). In an

untargeted study using both NMR and MS, significant increases in

glycine and decreases in taurine and glutamine levels were observed

in patients resistant to neoadjuvant chemotherapy (165). Monitoring

changes in blood amino acids has also been reported to effectively

predict chemotherapy efficacy and survival in patients with

hematological malignancies (169, 170).
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4.3 Nucleotide metabolism

Recent studies have also revealed that metabolites of nucleotide

metabolic pathways can be potential predictors of cancer prognosis.

Jung et al. divided 18 patients with bladder cancer who received

neoadjuvant chemotherapy into sensitive (n = 6) and resistant (n =

12) groups based on their therapeutic response and observed higher

serum hypoxanthine levels in the resistant group (P-value < 0.05)

(165). Furthermore, elevated serum levels of 1-methyladenosine (a

purine nucleotide metabolite) are associated with an increased risk

of prostate cancer recurrence (168).
TABLE 4 Summary of biofluid metabolomic biomarkers for treatment response and prognosis prediction in cancer.

Disease Sample Metabolites Potential clinical uses Refs

Lung cancer Serum/
plasma

SM 42:2, SM 35:1, PC (16:0/14:0), PC (14:0/16:1), SM 38:3,
CER (d18:1/24:1)

Recurrence after surgery (35)

3-hydroxyanthranilic acid Efficacy of anti-PD-1 immunotherapy (43)

Serine, glycine, arginine, quinoline acid Efficacy of anti-PD-1 immunotherapy (155)

Esophageal squamous
cell carcinoma

Serum/
plasma

Isocitric acid, linoleic acid, citric acid, L-histidine,
3’4dihydroxyhydrocinnamic acid

Efficacy of
neoadjuvant chemoradiotherapy

(156)

Kynurenine, 2-piperidinone, hippuric acid, LPC (14:0) Survival (157)

Monoglyceride (20:4) isomer, 9,12-octadecadienoic acid,
L-isoleucine

Survival (149)

Pancreatic cancer Serum/
plasma

Succinic acid, gluconic acid, Metastasis (60)

LPC18:2, CER 36:1, CER 38:1, CER 42:2, PC 32:0, PC O-
38:5, SM 42:2

Survival (67)

Urine Trigonelline, hippurate, myoinositol Survival (158)

Hepatocellular
carcinoma

Serum Formate Microvascular invasion (159)

Retinol, retinal Survival (160)

Gastric cancer Peritoneal
lavage fluid

Glyceraldehyde-3-phosphate sulfite Peritoneal metastasis (161)

Colorectal cancer Serum Diacron’s reactive oxygen metabolites, total thiol Survival (162)

Renal cell carcinoma Urine Lactic acid, glycine, succinic acid, 2-hydroxyglutarate,
kynurenic acid

Recurrence after surgery (163)

Bladder cancer Serum Dimethylamine, malonate, lactate, glutamine,
histidine, valine

Postoperative dynamic monitoring (164)

Taurine, glutamine, glycine, hypoxanthine Efficacy of neoadjuvant chemotherapy (165)

Ovarian cancer Plasma Kynurenine/tryptophan ratio Survival (166)

Serum Hydroxybutyric acid, maleic acid, D-dysteine, N-
acetylasparagine, 3-hydroxy-2-methylpyridine-4,5-
dicarboxylate, dihydroneopterinphosphate

Efficacy of chemotherapy (167)

Prostate cancer Serum 1-methyladenosine, phosphatidic acid 18:0-22:0 Recurrence (168)

Osteosarcoma Serum 5-aminopentanamide, FA 18:3 + 2O Lung metastasis (21)

Diffuse Large B-Cell Lymphoma Serum/
plasma

Malate Survival (17)

Valine, hexadecenoic acid, pyroglutamic acid Survival (169)

Multiple myeloma Serum Cysteine, hypotaurine Efficacy of chemotherapy (170)

Ethanoic acid, xylitol Survival
fro
SM, sphingomyelin; PC, phosphatidylcholine; CER, ceramide; PD-1, programmed cell death protein 1; LPC, lysophosphatidylcholine; FA, fatty acid.
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4.4 Lipid metabolism

Surgery remains the preferred treatment for resectable lung

cancer. Yang et al. proposed a panel composed of six phospholipids

(SM 42:2, SM 35:1, SM 38:3, PC 30:0, PC 30:1and CER 42:2) through

the long-term follow-up of patients undergoing surgery, which could

effectively distinguish between patients with postoperative recurrence

and non-recurrence (35). Pancreatic cancer and liver cancer are

highly malignant and rapidly evolving diseases for which

convenient and sensitive clinical prognostic markers are still

lacking. Recent researches have shown that lipids and lipid

molecules in the blood are strongly related to patient survival. By

establishing proportional hazards model, Wolrab et al. found LPC

18:2 and PCO-38:5 exhibited a positive and negative correlation with

the overall survival of patients with pancreatic cancer, respectively

(67). Similarly, liver cancer patients with low levels of retinol and

retinal showed poor survival, so these two metabolites were identified

as new prognostic markers superior to AFP (160).
4.5 Others

Based on the role of oxidative stress in the pathological

progression of colon cancer, a large-scale study enrolled 3361

patients with colon cancer and followed them for up to 6 years to

explore the correlation between oxidative stress products and

patient prognosis (162). A higher pre-treatment serum abundance

of total thiol and the total thiol to diacron reactive oxygen

metabolites ratio were associated with lower mortality,

particularly in stage IV patients. In a pancreatic cancer study, a

panel of three metabolites (trigonelline, hippurate and myoinositol)

measured by 1H-labeling NMR had the potential to stratify

postoperative patients into good or poor outcomes (158).
5 Major analytical techniques
in metabolomics

NMR is a technique that utilizes the resonance phenomenon of

nuclei in a magnetic field to measure the resonance frequency and

intensity of different nuclei. It has several advantages, including fast
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analysis, non-destructive testing, and good repeatability due to the

simple sample pretreatment process. However, NMR also presents

the limitations of poor sensitivity and resolution when

characterizing metabolites that are present at low concentrations,

are unknown, or have overlapping spectra (171). The development

and application of two-dimensional (2D) NMR technology (172)

and cryogenic probe 13C NMR spectroscopy (173) are the main

means to improve resolution and enhance sensitivity. Mass

Spectrometry (MS) is a technique that ionizes molecules by

bombarding them with electrons. The ions are then separated

based on their mass-to-charge ratio, and the relative peak

intensities of different ions are measured (174). Higher sensitivity

is the main advantage of MS compared to NMR. GC-MS and LC-

MS have different applications for metabolomics studies depending

on the nature of the isolated metabolites (175). LC-MS is primarily

used to analyze non-volatile and unstable substances, while GC-MS

is suitable for the analysis of volatile metabolites. The advent of

UPLC-MS/MS technology has further improved the analytical

speed and sensitivity of MS technology. In addition to separation-

based MS technology, nanoparticle-enhanced laserdesorption/

ionization-mass spectrometry (NPELDI-MS) has significantly

advanced metabolomics due to its increased sensitivity, speed,

and mass accuracy (176). A large-scale gastric cancer study

combined NPELDI-MS technology with machine learning

algorithms to construct a blood metabolic marker panel for the

early detection of gastric cancer that significantly outperforms

traditional tumor markers (176). Table 5 compared the

characteristics of NMR and MS techniques.
6 Limitations and challenges of cancer
metabolomic biomarkers in
liquid biopsy

By offering a comprehensive “fingerprint” of metabolite

alterations across various biofluids, metabolomics has presented

an array of potential biomarkers in cancer management. However,

multiple studies have reported inconsonant changes in metabolites

for a specific type of cancer. It is important to fully understand the

current limitations in metabolomics research and find solutions to

these challenges in future studies.
TABLE 5 Comparisons of common analytical techniques in metabolomics.

NMR MS

Sample preparation Simple and non-destructive Complex and destructive

Sensitivity Low High

Resolution Low High

Repeatability High Low

Quantitative capability Absolute quantification Relative quantification

Qualitative capability Accurate but limited databases LC-MS: Relatively difficult and limited databases
GC-MS: Relatively easy and robust databases
NMR, nuclear magnetic resonance; MS, mass spectrometry; LC-MS, liquid chromatography-mass spectrometry; GC-MS, gas chromatography-mass spectrometry.
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The heterogeneity of the study population is an important

reason for the differences between studies. Metabolic information

carried by body fluids not only comes from the internal

metabolism of the entire body but also is affected by the

external environment. Therefore, a patient’s metabolic profile

can be affected by various factors such as age, gender, dietary

habits, medications, and comorbidities, it is necessary to set up

strict exclusion and control matching criteria to minimize the

impact of confounding factors. Moreover, considering the

existence of individual heterogeneity, expanding the sample size

and establishing a validation cohort are key to improving the

objectivity of the research findings.

Differences in sample selection and preparation significantly

contribute to the variation in results. Various biological fluids,

including blood, urine, pleural fluid, peritoneal fluid, and

cerebrospinal fluid, can be analyzed for metabolomics. Peripheral

blood and urine are the first choice for most metabolomics

studies because of their high clinical accessibility. Selecting

appropriate sample sources based on the physiological characteristics

of tumors can provide more valuable information for metabolomics

studies. For example, as a crucial component of the lung cancer

microenvironment, pleural effusion can more directly reflect

metabolic changes in lung cancer patients and is less influenced by
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the body’s systemic metabolism (143). Uniform collection time and

appropriate storage conditions are crucial for accurate metabolomics

data. Therefore, proper sample preparation is vital and should align

with the research design and sample requirements (177).

Disagreements among different studies may be related to

variations in analytical platforms and statistical methods. Most

metabolomics studies rely on either MS or NMR techniques for

metabolite detection and analysis. The lack of uniform criteria for

selecting differential metabolites and the use of a single analytical

platform have led to unsatisfactory comparisons between studies.

Since NMR and MS technologies are different in principles and

strengths, combining these two technologies is a crucial approach

to fully harnessing the potential of metabolomics in cancer

research (178). The selection of suitable statistical methods is

also a crucial step in identifying metabolic markers specific to

tumors. The multivariate analysis approach enables researchers to

gain a comprehensive understanding of the contribution of

various metabolites in cancer development and facilitates the

establishment of more reliable metabolic models. Besides

commonly used multivariate analysis methods such as Principal

Component Analysis and OPLS-DA, multivariate logistic

regression models that include clinicopathologic factors and

contributing metabolites are a recommended option (179).
FIGURE 2

Cancer metabolic markers obtained by liquid biopsy. Combining liquid biopsy with metabolomics can provide potential biomarkers for different
aspects of clinical cancer management. PC, phosphatidylcholine; LPC, lysophosphatidylcholine; PE, phosphatidylethanolamine; LPE,
lysophosphatidylethanolamine; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; SCLC, small cell lung cancer; PD-1,
programmed cell death protein 1.
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Furthermore, the use of machine learning algorithms has

facilitated the efficient analysis of complex metabolomics

datasets (167). However, selecting appropriate algorithms and

improving their generalizability remain issues for future

consideration (180).
7 Conclusions and prospects

Advances in liquid biopsy are breaking new grounds for cancer

diagnosis and treatment. Although liquid biopsy is not yet a

complete substitute for tissue biopsy, it is a convenient, sensitive,

and safe strategy for future clinical cancer management.

Considering the intricate roles of metabolites and their related

pathways in cancer development, metabolomic biomarkers

identified in recent biofluid metabolomics studies would offer

valuable information for tumor diagnosis, classification, and

prognosis prediction (Figure 2). Metabolites that differ

significantly in the body fluids of patients with cancer compared

to those with benign disease and healthy individuals can aid

clinicians in recognizing the presence of tumors early, particularly

in patients who test negative for traditional tumor markers (181).

Identifying the differential metabolites that vary in distinct tumor

types, grades, and stages assists in understanding the pathological

characteristics and malignancy of tumors and provides clues for

appropriate treatment plans. Tracking metabolite changes before

and after treatment enables real-time monitoring of patient

responses and timely identification of patients with a favorable

prognosis. However, most of the current findings in this field are

limited to single-center, small-sample studies. Inter-agency

collaboration or the promotion of centralized testing centers

should be encouraged to ensure accurate identification of

metabolomic biomarkers. Only through validation in multi-center

studies and clinical trials can these metabolic markers advance to

the clinical translation stage. Therefore, caution must be exercised

at this time when considering the practical application of these

results in the clinic. Notably, differential metabolites, especially

those overlapping metabolites between studies, can guide

researchers to further explore metabolic mechanisms in cancer

development and provide a theoretical basis for the identification

of metabolic markers. Furthermore, recent studies have shown that

combining metabolomics with other omics can result in more

sensitive cancer marker panels for detecting changes in a patient’s

condition (182, 183). The biomolecular mechanisms underlying
Frontiers in Oncology 16
metabolic markers may make targeting metabolism for antitumor

therapy a promising option in clinical settings.
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