
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Nadia Judith Jacobo-Herrera,
National Institute of Medical Sciences and
Nutrition Salvador Zubirán, Mexico

REVIEWED BY

Eric Hanse,
University of California, Irvine, United States
Amir Shadboorestan,
Tarbiat Modares University, Iran
Rridha Oueslati,
University Carthage - Sciences Faculty of
Bizerte, Tunisia

*CORRESPONDENCE

Xiaorong Shui

shuixiaor@126.com

RECEIVED 06 November 2023
ACCEPTED 29 January 2024

PUBLISHED 16 February 2024

CITATION

Wang Z, Zhang Y, Liao Z, Huang M and Shui X
(2024) The potential of aryl hydrocarbon
receptor as receptors for metabolic
changes in tumors.
Front. Oncol. 14:1328606.
doi: 10.3389/fonc.2024.1328606

COPYRIGHT

© 2024 Wang, Zhang, Liao, Huang and Shui.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 16 February 2024

DOI 10.3389/fonc.2024.1328606
The potential of aryl
hydrocarbon receptor as
receptors for metabolic
changes in tumors
Zhiying Wang1, Yuanqi Zhang2, Zhihong Liao1,
Mingzhang Huang1 and Xiaorong Shui1*

1Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang,
Guangdong, China, 2Department of Breast Surgery, Affiliated Hospital of Guangdong Medical
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Cancer cells can alter their metabolism to meet energy and molecular

requirements due to unfavorable environments with oxygen and nutritional

deficiencies. Therefore, metabolic reprogramming is common in a tumor

microenvironment (TME). Aryl hydrocarbon receptor (AhR) is a ligand-activated

nuclear transcription factor, which can be activated by many exogenous and

endogenous ligands. Multiple AhR ligands can be produced by both TME and

tumor cells. By attaching to various ligands, AhR regulates cancer metabolic

reprogramming by dysregulating various metabolic pathways, including

glycolysis, lipid metabolism, and nucleotide metabolism. These regulated

pathways greatly contribute to cancer cell growth, metastasis, and evading

cancer therapies; however, the underlying mechanisms remain unclear.

Herein, we review the relationship between TME and metabolism and describe

the important role of AhR in cancer regulation. We also focus on recent findings

to discuss the idea that AhR acts as a receptor for metabolic changes in tumors,

which may provide new perspectives on the direction of AhR research in tumor

metabolic reprogramming and future therapeutic interventions.
KEYWORDS

aryl hydrocarbon receptor, cancer, metabolic reprogramming, metabolism,
tumor microenvironment
1 Introduction

Cancer is the leading cause of death worldwide, an important barrier to life expectancy,

and a cause of considerable economic burden on patients (1). Cancer is caused due to

oncogene activation and the loss of cancer suppressors, which causes metabolic

reprogramming to provide metabolites and energy needed by the cancer cells to sustain

tumorigenesis and survival (2). Under normoxic conditions, cells obtain energy via

glycolysis and mitochondrial oxidative phosphorylation, whereas under hypoxic
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conditions, with compromised mitochondrial function, cells mainly

rely on glycolysis (3). The infinite proliferation of cancer cells

necessitates urgent requirements for more energy, resulting in an

imbalance between the production and consumption of energy and

oxygen and a hypoxic environment, followed by a series of

dysregulations in various metabolic pathways (4).

Recent studies have revealed considerable differences between

the metabolic profiles of cancer and normal tissues, with cancer cells

exhibiting varying degrees of alteration in metabolic pathways,

including glycolysis, the tricarboxylic acid (TCA) cycle, amino

acid, nucleotide, and lipid metabolism. Tumor cells undergo

adaptive changes in their metabolic characteristics, a process

known as metabolic reprogramming, in response to several

interacting factors, including a harsh tumor microenvironment

(TME) caused by fast tumor cell proliferation (5). In addition to

markedly altered glucose metabolism, tumor cells differ greatly

from normal cells regarding nucleotide production and utilization

(6); for example, among the three breast cancer subtypes, triple-

negative breast cancer (TNBC) has shown the most robust

nucleotide biosynthesis compared with that shown by normal

breast tissue (7, 8). These metabolic changes and various

reactions depend not only on the cancer subtype but also on how

the cancer cells interact with the intricate surrounding milieu (9). A

particular heterogeneity of cancer cells may result from the changes

in cellular metabolic pathways, together with the molecules

produced and inefficient oxygen supply, forming the unfavorable

TME, which in turn regulates the proliferation and invasion of

cancer cells (10). In summary, tumor metabolic reprogramming is a

notable contributor to a distinctive TME.

Reportedly, in glioma cells, aryl hydrocarbon receptor (AhR) is

activated by kynurenine (Kyn), which is generated by indoleamine

2,3-dioxygenase (IDO), causing tumor-associated macrophage

(TAM) accumulation in the TME. Mounting evidence suggests

that Kyn-triggered AhR helps tumor cells avoid the immune system

(11, 12). In patients with melanoma, high levels of IDO-1 and Kyn

have been linked to immunosuppression (13). Although the precise

measurement of Kyn in cutaneous melanoma is unknown, it is

estimated to be >50 µM in the TME and approximately 2–8 µM in

the plasma (depending on the disease type) (14–18). Furthermore,

excess reactive oxygen species (ROS) from the TME may trigger the

synthesis of antioxidant proteins by activating AhR, enabling tumor

cell response to the TME (19). In summary, AhR is an important

target for enhancing tumor adaptation, tumor immune evasion, and

monitoring changes in the TME.

AhR is a ligand-activated transcription factor that is most

commonly associated with xenobiotic ligand metabolism (20).

Previous research has discovered that AhR has a crucial role in

lipid metabolism, nucleotide de novo synthesis, and tumor

glycolysis (21–23). AhR ligands include environmentally toxic

chemicals, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin),

and exogenous and endogenous ligands, such as 2-(1’H-indole-3’-

carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) and various

tryptophan metabolites (24, 25). Previous studies have shown that

AhR ligands may exhibit agonistic or antagonistic activities (26–28).

AhR can cause metabolic modifications in cancer cells via the

regulation of glycolysis and lipid metabolism by interacting with
Frontiers in Oncology 02
different ligands (29). However, the causal relationship between

AhR and metabolic reprogramming in cancer remains unclear.

ROS are inevitable byproducts of intracellular metabolism (30)

and are generated due to active mitochondrial metabolism (31).

ROS mediate oxidative stress; however, the true cause is not the

formation of ROS but rather the imbalance in space and time

between ROS production and detoxification (32). Oncogene

activation, upregulation of the phosphoinositide 3-kinase

signaling pathway, and hypoxia cause mitochondria in the cancer

cells to produce ROS at a higher rate (33–35), producing a harsh

TME. Low ROS concentrations, particularly that of H2O2, favorably

control cellular growth and adaptation to metabolic stress (36).

Thus, antioxidants are beneficial for tumor cell proliferation and

can be targeted to inhibit antioxidants to prevent cancer cell

proliferation, tumorigenesis, and metastasis (37). Uric acid (UA),

a byproduct of purine metabolism, exhibits antioxidant properties

(38) that are likely to have prognostic implications for patients with

cancer. Reportedly, AhR can mediate ROS generation (39–41).

Interestingly, increased ROS levels in the TME can trigger the

production of antioxidant proteins by activating AhR, thereby

shielding breast cancer cells from oxidative stress (19). Cancer

cells that undergo metabolic reprogramming inevitably produce

excess ROS, resulting in a harsh TME. AhR detects ROS and

mediates their generation. Hence, AhR, TME, metabolic

reprogramming, and ROS are intertwined and maintain a

dynamic equilibrium.

Presently, many studies have shown that AhR is involved in the

process of cancer metabolic reprogramming by binding with

different ligands and that novel interventions targeting AhR may

have notable clinical value. In this review, we highlight AhR

signaling pathways in the TME and their contributions to tumor

survival and invasion. Additionally, we describe the important role

of AhR in the regulation of cancer cell metabolism and relevant

pathways, which may be used to better understand the potential of

anticancer therapies.
2 Clinical applications of metabolic
reprogramming in tumors

The TME, a crucial location for cancer cell metabolism, is

critical for AhR to regulate tumor metabolic reprogramming. Many

studies have focused on the relationship between tumor cells and

their microenvironments. TME is composed of both cancerous and

non-cancerous cells that control tumor growth, progression, and

resistance to cancer treatment (42). TME includes extracellular

matrix, endothelial cells, cancer-associated fibroblasts, adipocytes,

and TAMs. It has been demonstrated that the chemical carcinogen

3-methylcholanthrene activates AhR in CAF, which accelerates the

development of breast cancer (43). Kyn-activated AhR produced by

CAFs isolated from tumors is associated with tumor drug

resistance, and it has been suggested that targeted inhibition of

AhR may be a new strategy for the treatment of malignant tumors

(44, 45). There is evidence that CAF is associated with tumor

metabolism (46), and interestingly, AhR can be activated by small

molecules produced in metabolism (47). In glioblastoma, kyn
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activates AhR in TAM to regulate its function and T-cell immunity,

correlating with poor tumor prognosis (11). Tryptophan-derived

metabolites can aid immune escape from tumors by activating the

AhR of TAM, and expression of the AhR in TAM has a profound

impact on tumor growth and TME (48). In TME, the expression of

AhR in CAF and TAM is closely related to metabolism and

tumor progression.

TME stud ies have main ly focused on metabo l i c

reprogramming, which is considered one of the key factors

promoting cancer development (49). The dysregulation of tumor

cell metabolism results in hypoxia, an acidic TME, and the

depletion of sensitive metabolites in the cells (50), which enables

the invasion of effector T cells to compete with the tumor for

metabolites and compromise their function (51, 52). Cellular

carcinogenesis causes metabolic pathways to be dysregulated, and

these altered metabolic pathways, in turn, provide cancer cells with

a better chance of survival under hypoxic environments and confer

them the ability to proliferate and survive at a high rate. Reportedly,

metabolic byproducts of cancer cells can regulate the function of

tumor-infiltrating immune cells and offer numerous benefits. For

example, lactic acid released by cancer cells through glycolysis

promotes the polarization of immune cells toward an

immunosuppressive phenotype (53, 54). Changes in the

metabolism of cancer cells also exert a considerable effect on

other TME components, such as non-cancerous cells, in the

microenvironment, which can stimulate the migration of cancer

cells and mediate pro-cancerous activities (9). Because cancer cells

grow much faster than normal cells because of metabolic

reprogramming (55), metabolic reprogramming and the TME

have become popular research topics. Studies on tumor

heterogene i ty have focused on the deve lopment o f

immunosuppression by tumor cells in response to glucose

competition with normal tissues and the increased release of

lactate from the microenvironment following metabolism (56,

57). Tumor metabolism is controllable, and clinical therapy that

reprograms the TME greatly affects the chemotherapy, radiation,

and targeted therapy on tumor cells. Through the use of nano-

delivery technologies, the T cell activator anti-CD28-coupled aryl

hydrocarbon receptor (AhR) inhibitor (CH223191) can be

encapsulated to modify the tumor immune milieu and

successfully prevent tumor cell metastasis (58).

There have been some successful attempts at reprogramming

tumor metabolism worldwide. A meta-analysis showed that the

overexpression of glucose transporter protein 1 (GLUT1) in solid

cancers is linked to the poor prognosis of many tumor types,

suggesting that direct GLUT1 targeting could be a promising

treatment strategy for solid cancers (59). Serine biosynthesis is

frequently increased in various cancer cells, and overexpressed

genes are involved in nucleotide synthesis, antioxidant defense,

and methylation responses in breast cancer cells (60, 61). Fatty acid

synthase (FASN) is an oncogene and is involved in cancer-

associated metabolic reprogramming, and FASN-targeted drugs

are in clinical development and trials (62). In addition to recent

studies on glucose, amino acid, and lipid metabolisms, the study of
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nucleotide metabolism and its metabolites in the TME metabolic

reprogramming has been a hot spot. Recent research demonstrated

that purine metabolism in the TME causes heterogeneity in

macrophages (63), and that proline isomerase of CAF in TME

targets pancreatic ductal adenocarcinoma synergetically with

gemcitabine, the antipyrimidine metabolizing medication, to

facilitate the elimination of the tumor by immunochemotherapy

(64). It’s interesting to note that changes in AhR expression are

correspond to susceptibility and resistance to the clinical

antimetabolic chemotherapy medicines gemcitabine and

cytarabine, which are currently widely utilized (65, 66).

The synthesis of nucleotides and deoxyribonucleotides is the first

metabolic route to be extensively studied and successfully targeted in

cancer therapy (67). Deoxyribonucleoside triphosphates (dNTPs),

which are necessary for DNA replication and transmission of the

entire genome to the next generation, are required by all dividing cells

during the S phase of the cell cycle. Additionally, compared with

normal cells, tumor cells that are highly replicating and proliferating

have more active nucleotide metabolism. Targeting DNA replication is

another early cancer therapeutic strategy (68). Early identified

antimetabolic chemotherapeutic agents include folate antagonists,

pyrimidines, and purines such as methotrexate, cytarabine, and

fluorouracil. However, these interfere with DNA replication and

synthesis and greatly damage autologous cells, searching for specific

targets is an urgent problem. Both remedial and de novo synthesis can

provide nucleotides for cellular needs, and remedial synthesis serves as

the main route for nucleotide acquisition in healthy cells. In a recent

study, breast cancer cells undergoing lung metastasis were found to

have considerably higher levels of phosphoribosyl pyrophosphate

synthase 2 (PRPS2), which is a crucial gene for de novo nucleotide

synthesis. This gene leads to the production of more cyclic guanosine

monophosphate (cGMP), which in turn activates the cGMP-

dependent protein kinase G and downstream mitogen-activated

protein kinase (MAPK) pathways, thereby increasing tumor

stemness. Tumor stemness can be considerably reduced and lung

metastasis can be prevented in breast cancer cells by silencing the

PRPS2 gene to block de novo nucleotide synthesis. The metabolic

signature of metastatic breast cancer cells is accelerated by nucleotide

synthesis from scratch, and its metabolites can modify signaling

pathways to support breast cancer stemness and metastasis

(69) (Figure 1).

Nucleotide biosynthesis requires a large amount of energy, as

shown by the purine synthesis pathway, which requires five

adenosine triphosphate molecules, two glutamine and formic acid

molecules, and one glycine, aspartic acid, and carbon dioxide

molecule to produce one hypoxanthine nucleotide molecule (70).

Metabolic reprogramming is crucial in the fight against tumors

because the energy metabolism of malignant cells differs greatly

from that of normal cells. Many studies have revealed that AhR

regulates metabolic pathways and ROS of tumors to varying

degrees, offering notable potential for antitumor research (19, 21,

23, 40, 41, 71–73). Recent studies have shown that ROS are involved

in metabolic regulation by activating the ribotoxic stress response

(RSR) in cellular models (74).
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3 Role of AhR in tumor progression

AhR functions as a complex metabolic regulator and

transcription factor in most cancer cells. AhR is a ligand-activated

receptor for aryl hydrocarbons. When activated from its dormant

state in the cytoplasm, AhR translocates to the nucleus and activates

the transcription of its target genes (75). In tumor immune escape,

AhR plays a key role in the immunosuppressive phenotype of the

TME in cancer cells and is closely related to human amino acid

metabolism as a sensor of tryptophan metabolites and is also a

powerful immune system regulator (48). AhR activation enhances

tumor aggressiveness, reduces cluster of differentiation (CD)8 T cell

(76) and macrophage (48) antitumor immunity, and aids tumor

cells in evading immune responses (77). In summary, AhR

overexpression helps tumor cells evade the immune system by

sending inhibitory signals to the immune cells through the TME.

In addition to its role in tumor immune evasion, AhR may also

play a crucial role in the growth of tumor cells by controlling the cell

cycle. In liver cancer, AhR activation prevents tumor cells from

entering the G0/G1 phase, which reduces DNA replication and

prevents cell proliferation. High levels of tetraploidy have been

associated with an increased risk of tumor formation (78), and the

existing evidence shows that tumors typically contain chromosomes

close to the tetraploid, and the uncontrolled proliferation of

tetraploid cells trigger tumor formation (79). Sustained DNA
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damage has been observed in AhR-deficient hepatocytes, which is

detrimental to the entry of cells into the tetraploid phase of

proliferation. AhR, as a tumor suppressor, can be activated by

controlling the expression of inflammatory cytokines, DNA

damage, and cell proliferation (78). In a study, AhR mutant mice

showed increased development of liver tumors, and AhR agonists

suppressed cholesterol regulatory element-binding protein (SREBP)

2 and stopped tumor progression in mice (28). Studies on

hepatocellular carcinoma have shown that the activation of AhR

can have an oncogenic effect, as opposed to immune escape. Thus, it

is evident that the regulatory activities of AhR play intricate roles in

tumors and are closely linked to tryptophan metabolism (80).

It is worth investigating whether AhR activation promotes or

hinders tumor formation, and studies on breast cancer have readily

demonstrated this paradox. When AhR was knocked down by short

interfering RNA in two different types of breast cancer cells, BT474

and MDA-MB-468, its regulatory effect on cell proliferation was

enhanced in BT474 cells, whereas no effects were detected on the

proliferation of MDA-MB-468 cells (81). Animal and cellular

studies on the breast cancer cell line MCF-7 have shown that

AhR expression is not necessary for mammary carcinogenesis

(82) and that the MCF-7 cell proliferation is unaffected by AhR

deficiency (83). In contrast, AhR overexpression promotes MCF-7

cell proliferation (84). Furthermore, whether AhR promotes or

inhibits malignancy in TNBC MDA-MB-231 cells remains
FIGURE 1

Clinical applications of metabolic reprogramming in tumors. Cancer cells can secrete a variety of factors to stimulate non-cancer cells in the TME,
favoring their own proliferation, migration and immune escape. Studies indicate that new targets for anti-tumor metabolism are likely to include
phosphoribosyl pyrophosphate synthase 2 (PRPS 2), glucose transporter protein 1 (GLUT1), and fatty acid synthase (FASN). Among these, it has been
demonstrated that the nucleotide de novo synthesis-related enzyme PRPS 2 is linked to the stemness of breast cancer, and its efficient suppression
will prevent lung metastases of breast cancer. Targeting nucleotide de novo synthesis has significant promise since, in contrast to cancer cells,
normal cells obtain nucleotides through remedial synthesis. This is because ab initio nucleotide synthesis consumes a considerable quantity of ATP.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1328606
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1328606
debatable (85–87). According to previous studies, ligands for AhR

can either be exogenous or endogenous, and they can function in an

agonistic or antagonistic manner (88). Thus, AhR expression alone

plays various roles in breast cancer depending on the ligand to

which it binds and its effects on different cell types. This suggests

that AhR may serve as a relay for pro- or oncogenic factors, and its

binding to various AhR ligands helps control the growth and

migration of breast cancer cells. Protein kinase A complexes of

AhR and nuclear factor-kB (NF-kB) RelB can attach to chemokine-

specific binding sites to activate inflammatory factors (89). This

promotes the proliferation and migration of breast cancer cells.

Additionally, AhR can interact with NF-kB RelA and lead to an

increase in cellular-master regulator of cell cycle entry and

proliferative metabolism (Myc) levels in MCF-7 cells, which

further triggers carcinogenesis (90).

Epithelial-mesenchymal transition (EMT) is the process that

epithelial cells lose their polarized shape and acquire the capacity of

migration and invasion. It occurs in the early stages of tumor

metastasis and is considered to be an important cause of cancer

metastasis (91). EMT biomarkers such as waveform protein, N-

calmodulin, and MMP 9 are overexpressed in cancer and involved

in the promotion of cancer metastasis (92). Many studies have shown

that AhR activity leads to loss of cell contact inhibition and alterations

in extracellular matrix remodeling, and it is also found that AhR plays

critical role in EMT induction (93–95). According to Dai et al., kyn

stimulates AhR in renal cell carcinoma to promote infiltration,

migration, and EMT progression (96). MMP, a biomarker of EMT,

is a family of zinc-dependent endoproteases which could degrade the

extracellular matrix to promote cell proliferation and migration (97).

MMP could also affect the TME of malignant tumors and support

EMT by inducing invasive and metastatic tendencies of cancer cells

(98). In esophageal cancer cells, knockdown of AhR gene inhibits

tumor progression by down-regulating the expression levels of MMP

1, MMP 2, and MMP 9 (99). Different thyroid carcinoma cell types

are promoted to express MMP1, MMP2, and MMP9 differently by

kyn-activated AhR (95). TCDD-activated AhR upregulates MMP9

expression activity in a variety of malignant tumors (100–104). As a

result, the activation of AhR in different tumors demonstrated a

consistent promotion of MMPs, which therefore affect EMT and the

further tumor progression.

In addition to MMP, other markers of EMT are also widely

studied. TDO 2 regulates metastasis and invasion of hepatocellular

carcinoma by activating the Kyn-AhR pathway to promote EMT in

cancer cells (104). In thyroid carcinogenesis cells, kyn activates AhR

expression, then promotes an increase in fibronectin, SLUG, and N-

calmodulin and a decrease in E-calmodulin, which resulted in

increased cell invasion and motility. The authors also found that

AhR has a close correlation with EMT, with AhR being essential in

managing the immunosuppressive milieu, it therefore triggers the

development of both EMT and an immunosuppressive TME (95).

3,3’-Diindolylmethane could reverse the EMT process by regulating

AhR inhibition of the EGFR/RhoA/ROCK 1/NF-kB/COX 2/PGE 2

pathway, it is reported that 3,3’-Diindolylmethane down-regulated

the expression of mesenchymal cell markers including b-Catenin,
Vimentin, and Slug, and upregulated the epithelial cell marker

Claudin-1 (105). TCDD-activated AhR also promotes EMT in
Frontiers in Oncology 05
ovarian cancer cells (106), and the current study demonstrated

that both ligand-activated AhR promote EMT. However, direct

overexpression of AhR showed different regulating roles in different

cancers. In lung cancer cells, cells overexpressing AhR exhibited

lower cell mobility, high expression of E-cadherin and low

expression of waveform proteins (biomarkers associated with

EMT), suggesting that higher AhR expression are associated with

lower cell motility (107). Studies on gastric cancer cells indicated

that ROS mediates the KYNU-kyn-AhR signaling pathway to

influence EMT capacity (108). Direct overexpression of AhR leads

to the opposite effect, however, the role of ligand-activated AhR in

the EMT of malignancies is better established. Therefore, AhR has

its potential to be the receptor for metabolic changes in tumors.

Although intricate processes are involved, AhR plays a crucial

role in tumorigenesis. The activation of the tryptophan 2,3-

dioxygenase-2 (TDO2)–Kyn–AhR pathway promoted liver

metastases of colon cancer in a mouse model by aiding in

immune evasion and maintaining stemness (109). As AhR can

bind to various ligands, we can deduce that it plays various roles in

malignancies. However, because the diverse roles of AhR impede a

thorough investigation of its mechanisms, it is imperative to

identify a broad path for future research on the involvement of

AhR in carcinogenesis and development.
4 Effect of different ligand-activated
AhR on tumor glucose metabolism

Cancer cells support their metabolism through glycolysis, both

aerobic glycolysis (also called the Warburg effect) and anaerobic

glycolysis, to provide biosynthetic molecules and energy for the

survival and development of cancer cells (55); therefore, robust

glycolysis is considered a hallmark of cancer metabolism. However,

the effects of AhR on augmented glycolysis remain unclear. Most

cells receive sufficient energy to maintain cellular activity through

efficient oxidative phosphorylation of glucose in normoxic

environments; however, in hypoxic environments, glucose can

only be used to produce energy through inefficient anaerobic

glycolysis (110, 111). Interestingly, increased glycolytic

metabolism can indicate that cancer cells are actively reproducing

because glycolysis serves as the primary energy source for cancer

cells under both normoxic and hypoxic conditions (55). Numerous

studies have suggested that AhR may be an important regulator of

glycolytic gene expression and glycolytic endpoints (21, 112–116).

Reportedly, TDO2 enhances the Kyn pathway (KP), thereby

producing excess Kyn, which further activates AhR and upregulates

CXC chemokine ligand 5 (CXCL5). CXCL5 recruits TAM into the

TME and promotes TAM polarization and abundance, leading to

active glycolysis in cancer cells and thereby promoting cancer cell

proliferation and survival. AhR modulates glucose absorption and

total glycolytic flux, in addition to upregulating CXCL5 by affecting

several glycolytic genes, including GLUT1, hexokinase (HK) 1/2,

and phosphofructokinase-liver type (23). The activation of the

cytokine/IDO/Kyn/AhR pathway in pancreatic cancer cells can

shield them from inflammation in the hostile TME and facilitate

their adaptation to it (117).
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Recently, it was discovered that AhR binds to lncRNA and

actively controls the expression of the glycolytic enzyme gene

hexokinase 2 (HK2), stimulating glycolytic metabolism and

accelerating tumor growth (72) (Figure 2). Another study found

that HK2 is a transcriptional target of AhR, and over-expression of

HK2 could in turn alter AhR gene expression and modulate its

activity (118). Additionally, in oncogene MYC-expressing rat

fibroblast cells, AhR deletion has been shown to reduce

intracellular glucose and pyruvate as well as the expression of

enzymes associated to glycolysis and tricarboxylic acid (21). In

addition, AhR activated by 2,3’,4,4’,5-pentachlorobiphenyl

(PCB118) increased ROS production by up-regulating

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase.

In the last stage of the glycolytic process, ROS can further

upregulate the expression level of the rate-limiting enzyme M2-

type pyruvate kinase (PKM2) to improve glucose metabolism in

tumor cells (71).

Reduced glucose uptake and mitochondrial activity are

correlated with downregulated GLUTs due to 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD)-activated AhR, which

impacts glucose transport and utilization in pluripotent

embryonal cancer cells (119). While assays for glycolytic products

have revealed a considerable reduction in glycolytic flux, AhR

activation has been shown to decrease the rate of glucose uptake

and the formation of pyruvate and lactate (115). The glycolytic

process considerably decreased in the colon cells after activation of

AhR by Norisoboldine, indicating that AhR activation interferes

with the glycolytic pathway by suppressing the production of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (120)

(Figure 2). Consequently, AhR showed important regulating roles

in the control of glucose metabolism by binding with different

ligands. In addition to glycolysis, cancer cells harness lipid
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metabolism to obtain the energy and molecules needed for

proliferation, survival, invasion, and adaptation to the TME (121).
5 Potential regulatory mechanisms of
AhR in tumor lipid metabolism

Lipids are involved in energy metabolism and are important

components of the cell membranes and secondary messengers.

Because tumors have high metabolic demands and large fatty

acids consumption, therefore, cancer cells are different from

normal cells in terms of how they absorbing exogenous fatty acids

and producing endogenous fatty acids. Specialized transporter

proteins are necessary for the effective passage of exogenous FA

across the plasma membrane. Tumors exhibit a significant increase

in the gene and protein expression levels of these fatty acid

transporter proteins; of them the most well studied protein is CD

36, which is commonly referred to as fatty acid translocase (FAT)

(122, 123). AhR activation was linked to increased CD36

expression, and siAhR efficiently reduced lipoxin A4-induced

CD36 overexpression and lipid uptake (124).

In healthy tissues, only hepatocytes and adipocytes are capable

of de novo lipogenesis; however, cancer cells also have the ability to

reactivate this anabolic process (125). Key regulators of

adipogenesis, including sterol regulatory element binding protein

(SREBP), acetyl coenzyme A carboxylase (ACC), FASN and stearoyl

coenzyme A desaturase 1 (SCD-1), are detected to be significantly

up-regulated in various human cancers (125–128). According to

further analysis, we found that these enzymes connected to de novo

adipogenesis can be effectively regulated by AhR. The expression

level of SCD-1 can be attenuated by inhibiting the expression of

AhR (129). Indole-3-acetic acid (IAA)-activated AhR negatively
FIGURE 2

Effects of AhR in tumor energy metabolism. The lncRNA-SLCC1 binds to the AhR and increases the expression of HK2, which activates glycolytic
metabolism and promotes tumor growth. As a result of AhR’s activation of NADPH oxidase and subsequent upregulation in ROS production, the
expression level of PKM2, the rate-limiting enzyme of aerobic glycolysis, is further increased. This boosts the aerobic glycolysis of tumor cells and
encourages the growth of tumor cells via suppressing GAPDH and preventing glycolysis, AhR activation promotes Treg development via controlling
the NAD+/SIRT1/SUV39H1/H3K9me3 signaling pathway.
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regulates SREBP-1c and FASN (130). In colon tumor cells,

inhibition of AhR activity decreases the expression levels of SCD-

1, a key enzyme of the biosynthetic pathway, and SREBP, a

transcriptional regulator of adipogenesis, to restrict cancer cell

proliferation in a cell-specific manner (73). Although there has

been very limit research on AhR’s role in tumor lipid metabolism, it

is found that AhR influences many of the genes that are up-

regulated in tumors and are linked to lipid metabolism

regulation, including CD36, SCD-1, SREBP, and FASN.

Therefore, AhR has great potential in regulating tumor lipid

metabolism and worth more further investigation.
6 AhR, UA, and ROS are jointly
involved in the adaptive regulation of
TME by tumors

By integrating metabolomics and transcriptomics, it has been

discovered that AhR regulates MYC expression to modulate

glycolysis and de novo pyrimidine production in the cells.

Metabolomics data also showed a decrease in uridine

monophosphate (UMP), and AhR silencing resulted in

decreased expression and translation of genes related to

pyrimidine ab initio synthesis (21). No previous study has

reported whether purine metabolism in nucleic acids is related

to AhR, however, we found that AhR may play important roles in

regulating nucleotide metabolism.

UA is a metabolite of purines, and a large number of clinical

studies have shown that UA is associated with tumorigenesis and

progression and has received wide attention. Breast cancer cell

proliferation and migration have been reported to be affected by

increased de novo nucleotide synthesis, and UA was used to assess

the prognosis of patients with breast cancer and as a feedback

regulator of signaling pathways (69). Serum hyperuric acid (SUA)

has been shown to affect the course of treatment and prognosis of

patients with cancer, and prospective studies have reported that

SUA increases the probability of cancer-induced mortality (131–

134). In contrast, clinical evidence from some regions suggests that

UA exhibits an anticancer effect due to its antioxidant activity (135–

138), and fundamental research revealed that UA exerts anticancer

effects by promoting dendritic cell maturation, which thereafter

triggers an immune rejection response against tumors (139).

Reportedly, UA exerts antioxidant effects in extracellular

environments but exerts pro-oxidant effects in intracellular

environments. UA may function as an antioxidant, scavenge

oxygen free radicals, and reduce the production of carcinogenic

ROS, which increases the mutation rate of cells, thereby increasing

the risk of carcinogenesis, indicating that targeting UA may lower

the risk of cancer (38, 140). However, by functioning as a pro-

oxidant, UA may penetrate normal cells and contribute to cancer

progression by enhancing tumor cell proliferation, migration, and

survival through ROS and inflammatory stress (141).

According to certain theories, AhR can regulate the

transcription of some CYPs, which can mediate AhR to generate

ROS, and AhR is crucial for the burst of ROS that occurs following
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reoxygenation (142). After activation, AhR translocates from its

inhibitor proteins to the nucleus and actively forms heterodimers

with ARNT (143, 144). The transcription of genes, including

CYP1A, NADPH oxidase 2, P40phox, and P47phox, is stimulated

by the binding of these complex proteins to dioxin- or xenobiotic-

responsive elements, which is a key step in the development of

oxidative stress-mediated breast cancer (145). An imbalance

between ROS production and antioxidant scavenging activity

induces oxidative stress (146, 147). Additionally, it has been

reported that pentachlorobiphenyl stimulates NADPH oxidase via

AhR, thereby increasing ROS generation (71). Cell cycle protein-

dependent kinase inhibitor 1 B (p27kip1) coordinates cell cycle

progression by inhibiting cyclin-dependent kinase complexes (148).

AhR was established as a direct regulator of p27Kip1 transcription.

AhR activation in hepatocellular carcinoma upregulates p27kip1,

which suppresses hepatocellular carcinoma cell proliferation (149)

(Figure 3). Recently, it has been found that ROS can activate RSR

signaling to participate in the metabolic regulation of cells (74).

Indirect oxidative damage to DNA and free radicals in the

cellular and mitochondrial dNTP pools can result from redox

regulation dysfunction and increased ROS levels (150), and the

incorporation of these oxidized nucleotides into DNA synthesis can

result in mismatches, mutations, and cell death (151, 152).

Eukaryotic cells have two functionally distinct dNTP pools. The

smaller pool is used for mitochondrial DNA replication and is

available throughout the cell cycle, whereas the other pool is used

for genomic DNA replication and repair in the nucleus and is

available primarily during the S phase (67). The human MutT

homolog 1 (MTH1) protein is required for the effective survival of

cancer cells, but not for normal noncancerous cells. When oxidized

dNTPs are present in cancer cells due to oxidative stress and

excessive ROS under harsh conditions, MTH1 overexpression

prevents DNA damage induced by oxidized nucleotides during

replication. Owing to the strict redox control in normal cells than in

cancer cells, normal cells may appear less dependent on MTH 1

activity (153). In summary, MTH1 activity facilitates the alleviation

of DNA damage in tumor cells via AhR-mediated ROS

production (Figure 4).
7 Conclusion and perspective

In conclusion, AhR is crucial in the regulation of cellular

metabolism, especially in tumor metabolic reprogramming. Many

study has been focus on glucose metabolism, but no unified

conclusions are achieved on whether AhR upregulation promotes

or inhibits glucose metabolism (23, 72). In terms of lipid

metabolism, the involvement of AhR in tumor lipid metabolism

has been reported only in colon cancer (73). However, we found

that AhR pays significant roles in the regulation of genes related to

lipid metabolism changes in a variety of cancer cells. These findings

highlight the pivotal role of AhR in metabolic control.

Unfortunately, no great advancement has been made in research

on nucleotide metabolism in initial clinical tumor therapy trials

targeting AhR.
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FIGURE 4

Mechanism of AhR involvement in intracellular ROS regulation. Excess ROS is produced by mitochondrial metabolism when electrons are
overworked (32). ROS also form NTP oxidation pools, dope oxidized dNTPs, and cause oxidative stress, which damages DNA during tumor cell
replication. ROS can also trigger the transcription of genes like CYPs and NOX2 to react with the ROS (19). Reactive oxygen species generation is
suppressed by UA’s antioxidant action. Tumor cell growth benefits from base mismatch reduction, mutation reduction, and purification of the NTP
oxidation pool—all of which are achieved by MTH1 (153).
FIGURE 3

AhR controls the cell cycle and produces ROS. Following TCDD and PCB118 activation of the AhR complex with P23, AIP, Hsp90, etc., AhR is
transported to the nucleus where it binds to ARNT to form a heterodimer. This heterodimer then binds to XRE to activate the expression of XRE-
controlled genes like CYP1A, Nox2, P27Kip1, etc. ROS are regulated by CYP1A, Nox2, P40, P47, and other proteins, and P27Kip1 can block the cell
cycle. Additionally, Kyn, a byproduct of IDO1-controlled tryptophan metabolism, plays a role in AhR regulation.
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Many studies have revealed that AhR may control ROS in the

TME, creating an environment favorable for tumor growth and

migration, and even affecting cancer treatment (41). From the

above, we can draw various conclusions. The regulatory function

of AhR in cell glucose, lipid, and nucleotide metabolism is

undeniably present and can aid tumor immune escape by

modifying immune cells in the TME. While tumor metabolic

reprogramming helps cancer cells proliferate quickly, it also

unavoidably produces a harsh TME, as indicated by increased

ROS levels. Although excess ROS accumulation is harmful to cell

proliferation, AhR can detect excess ROS and trigger the

production of antioxidant proteins, thereby shielding cancer

cells from oxidative stress. The effects of ROS on tumor cells

can also be mitigated by MTH1-mediated cleansing of oxidized

dNTPs (153). UA, the final byproduct of human purine

metabolism, exhibits antioxidant properties (38) and reduces

intracellular ROS, which in turn reduces AhR activation and

downregulates P27kip1, promoting tumor cell cycle and

progression (Figure 4). In conclusion, AhR has great potential to

regulate tumor metabolic reprogramming by sensing changes in

the TME.
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