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The importance of cancer-
associated fibroblasts in
targeted therapies and drug
resistance in breast cancer
Jian Zheng and Hua Hao*

Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University,
Shanghai, China
Cancer-associated fibroblasts (CAFs) play a substantial role in the tumor

microenvironment, exhibiting a strong association with the advancement of

various types of cancer, including breast, pancreatic, and prostate cancer.

CAFs represent the most abundant mesenchymal cell population in breast

cancer. Through diverse mechanisms, including the release of cytokines and

exosomes, CAFs contribute to the progression of breast cancer by

influencing tumor energy metabolism, promoting angiogenesis, impairing

immune cell function, and remodeling the extracellular matrix. Moreover,

CAFs considerably impact the response to treatment in breast cancer.

Consequently, the development of interventions targeting CAFs has

emerged as a promising therapeutic approach in the management of

breast cancer. This article provides an analysis of the role of CAFs in breast

cancer, specifically in relation to diagnosis, treatment, drug resistance, and

prognosis. The paper succinctly outlines the diverse mechanisms through

which CAFs contribute to the malignant behavior of breast cancer cells,

including proliferation, invasion, metastasis, and drug resistance.

Furthermore, the article emphasizes the potential of CAFs as valuable tools

for early diagnosis, targeted therapy, treatment resistance, and prognosis

assessment in breast cancer, thereby offering novel approaches for targeted

therapy and overcoming treatment resistance in this disease.
KEYWORDS

cancer-associated fibroblasts, breast cancer, mechanism, targeted therapy,
immunotherapy, drug resistance, prognosis
1 Introduction

Breast cancer is a prevalent malignancy among women, posing substantial risks to

their physical and mental well-being. It is estimated that more than 2.1 million women

were newly diagnosed with breast cancer in 2018, including 600,000 deaths and an

estimated 2.3 million new cases by 2030 (1, 2). The advancement in patient survival
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rates can be attributed to the timely identification and enhanced

therapeutic interventions, but the efficacy of treatment is hindered

by the emergence of metastasis and drug resistance (3, 4). A subset

of patients with breast cancer experience a relapse following initial

treatment, predominantly in the form of metastatic advanced breast

cancer, often accompanied by resistance to chemotherapy (5).

Moreover, advanced breast cancer is presently deemed incurable,

necessitating the exploration of novel treatment modalities (5). The

tumor microenvironment (TME), particularly cancer-associated

fibroblasts (CAFs), plays a considerable role in influencing the

metastatic potential, recurrence rates, and resistance to treatment

in breast cancer (6, 7). Consequently, there has been a growing

emphasis on the importance of CAFs in the initiation, progression,

invasion, and metastasis of breast cancer, as well as its potential

implications for therapeutic interventions.

CAFs represent the most abundant stromal cell population in

the TME of breast cancer. Their presence substantially influences

the malignant progression and drug resistance of breast cancer.

Fibroblasts, which are found in all organs, assume a spindle-shaped

morphology during the resting phase and are primarily responsible

for shaping the extracellular matrix (ECM) by synthesizing its

major constituents and regulating its organization and density

(5). Furthermore, their intercellular communication enables them

to contribute to the maintenance of tissue integrity (5). Therefore,

they determine crucial structural characteristics of the organ,

encompassing elasticity, rigidity, and tensile strength. In a state of

quiescence or rest, fibroblasts that exist under stable conditions

promptly become activated upon disturbance of homeostasis.

Research has demonstrated that fibroblasts undergo a

metamorphosis in circumstances of inflammation, fibrosis, and

wound healing (8–10). Given that both inflammation and fibrosis

are linked to the initiation and progression of cancer, fibroblasts are

stimulated during these processes (11). These fibroblasts activated

in the context of cancer are commonly referred to as CAFs (11).

Kojima et al. (12) demonstrated that autocrine transforming growth

factor-beta (TGF-b) and stromal cell-derived factor-1 signaling

induce the transformation of normal mammary fibroblasts into

CAFs. Upon activation, CAFs engage in interactions with tumor

cells, thereby facilitating the malignant progression of tumors

(13, 14).

CAFs play a crucial role in the construction and remodeling of

the ECM, enabling tumor cells to invade the TME and establish

interactions with cancer or other stromal cells through the secretion

of growth factors, cytokines, and chemokines. These interactions

subsequently promote the invasion, progression, metastasis,

angiogenesis, immunosuppression, and drug resistance of breast

cancer cells (15). Additionally, CAFs can engage in metabolic

processes that provide nutritional support for the growth of

breast tumors (16). Targeting CAFs is recognized as a potentially

effective therapeutic approach owing to their multiple cancer-

promoting mechanisms (13, 16). In this paper, we examine the

precise mechanism by which CAFs contribute to the initiation and

progression of breast cancer. Additionally, the potential importance

of CAFs in facilitating early detection, prognostic prediction,

treatment resistance and targeted therapeutic interventions for
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breast cancer is highlighted, thereby providing novel insights into

the management of the disease.
2 The origin of CAFs

At present, the precise origins of CAFs in breast cancer not

completely clear. The heterogeneity of CAF characteristics and

molecular markers may be due to their different cellular origins

(17). In breast cancer, researchers have obtained evidence that CAFs

are derived from the origins described below (Figure 1).
2.1 Resident normal fibroblasts

Resident normal fibroblasts (NFs) within breast cancer are

considered a substantial contributor to CAFs and the conversion

of NFs into CAFs is influenced by various factors, including growth

factors, cytokines, exosomal microRNA (miRNA), and proteins

(13). Dysregulation of miRNAs and exosomal miRNAs has been

linked to the modulation of CAF formation and activation (18).

Yang et al. (19) investigated the regulatory role of breast cancer-

derived exosomes in breast cancer cell invasion and metastasis

through the action of miR-146a. Additionally, these exosomes were

found to accelerate the conversion of NFs to CAFs and promote

their recruitment. Zhu et al. (20) observed that miR-425-5p derived

from breast cancer exosomes induced the transition of human

breast fibroblasts to CAFs through the TGFb1/ROS signaling

pathway. According to Li et al. (21), CAF activation is associated

with the enrichment of the FOS and JUN family of transcription

factors in activated enhancers, leading to enhanced CAF activation

and breast cancer metastasis. De Vincenzo et al. (22) further

demonstrated that breast epithelial cells expressing c-Myc

paracrine recruit and activate fibroblasts through the insulin-like

growth factor (IGF)/IGF-1 receptor axis.
2.2 Cells from other sources

CAFs can originate from resident NFs as well as other cell types,

including tumor cells with epithelial-mesenchymal transition

(EMT), endothelial cells with endothelial-mesenchymal transition

(EndMT), pericytes, adipocytes and bone marrow mesenchymal

stem cells (MSCs), etc. (5, 17). Weber et al. (23) reported that

tumor-derived osteopontin (OPN) induces the transformation of

MSCs into CAFs within the microenvironment, thereby promoting

tumor growth and metastasis through the OPN–MZF1–TGF-b1
pathway. Furthermore, it has been proposed that fibrocytes, which

are mesenchymal progenitor cells derived from circulating bone

marrow, may serve as an additional source of CAFs (24). Regarding

fibrosis, epithelial cells in close proximity to cancer cells have the

potential to undergo EMT and transform into CAFs (25).

Therefore, epithelial-derived cancers could potentially harbor a

substantial population of CAFs, which play a pivotal role in

driving tumor progression. Additionally, endothelial cells have the
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ability to undergo EndMT and acquire characteristics of CAFs (26).

Notably, both transformed epithelial and endothelial cells exhibit

the expression of CAF markers, including S100A4 (25, 26).

Similarly, Bochet et al. (27) found that Wnt3a secreted by tumor

cells triggers the conversion of adipocytes into CAFs in breast

cancer by activating the Wnt/b-catenin pathway. These CAFs

exhibit elevated expression of fibroblast-specific protein 1 (FSP-1)

rather than a-smooth muscle actin (a-SMA) (13). Hosaka et al.

(28) presented empirical evidence for vascular pericytes acting as a

source of CAFs, considerably facilitating the process of cancer

metastasis. The transition from pericytes to CAFs is regulated by

the PDGF–BB–PDGFRb signaling pathway, operating through the

mechanism of pericyte-fibroblast transition (28).
3 Heterogeneity of CAFs

CAFs exhibit a high degree of heterogeneity and are commonly

perceived as dynamic entities that are modified during the initiation

and advancement of tumorigenesis rather than being considered an

independent cell population (29, 30). The heterogeneity of CAFs is

evident in various dimensions, including their origins, subtypes,

biomarkers, and physiological roles.
3.1 Biomarker heterogeneity of CAFs

The representative markers of CAF include, but are not limited

to, a-SMA, serine protease fibroblast activation protein (FAP), FSP-
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1, PDGFRa, and PDGFRb. Nevertheless, even a-SMA, which is

widely recognized as one of the primary CAF markers, fails to

differentiate all CAFs within TME. Additionally, none of these CAF

markers exhibit specificity solely to CAFs because they are also

expressed in various cell types and healthy tissues (31). Regarding

breast and ovarian cancer, four distinct subsets of CAFs, namely,

CAF-S1 to CAF-S4, have been identified (13, 32–34). In a

subsequent investigation conducted by Kieffer et al. (35), a more

comprehensive examination of the FAP+ CAF-S1 subset using

single-cell RNA sequencing (scRNA-seq) revealed the existence of

eight subclusters. Notably, three of these subclusters exhibited gene

expression patterns associated with ECM production and TGF-b
signaling and demonstrated a considerable correlation with the

presence of CD4+ T cells expressing programmed cell death protein

1 and/or cytotoxic t-lymphocyte-associated protein 4.

Breast cancer can be divided into five molecular subsets based

on gene expression. These subtypes include luminal A, luminal B,

triple-negative/basal-like, HER2-enriched, and normal-like subtype

(36). Jung et al. (37) conducted a microarray analysis to assess the

expression levels of various factors, including prolyl 4-hydroxylase,

podoplanin, S100A4, chondroitin sulfate proteoglycan (NG2),

FAPa, platelet-derived growth factor receptor a (PDGFRa), and
PDGFRb. The results of their study revealed that the adipose

interstitial microenvironment was primarily observed in patients

diagnosed with luminal A type of cancer, while the fibrointerstitial

type was more prevalent among patients with HER-2, luminal B,

and triple-negative breast cancers (TNBC) (37). In their study, Park

et al. (38) examined the expression profile of various calcium-

related proteins in different breast cancer subtypes and discovered
FIGURE 1

Origins of CAFs in breast cancer. (Created by Figdraw).
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that TNBC also exhibited low levels of prolyl 4-hydroxylase,

S100A4, and podocin. Additionally, the normal-like stroma

displayed limited levels of S100A and prolyl 4-hydroxyl (38).

CAFs encompass a heterogeneous group of cells that exhibit

varied responses to stromal stimuli, display distinct secretory

phenotypes, and perform specific biological functions within the

dynamic TME. The identification of dependable and specific cell

surface markers is crucial in discerning different subsets of

CAFs (6).
3.2 Functional heterogeneity of CAFs

CAFs comprise diverse subsets with distinct functional

characteristics, some of which facilitate tumor progression, while

others impede it (31, 39). Avalle et al. (40) showed that STAT3

induces breast cancer growth through the secretion of ANGPTL4,

MMP13, and STC1 by CAFs. Additionally, Houthuijzen et al. (41)

revealed that the CD26+ and CD26-NF populations transform into

inflammatory CAFs (iCAFs) and myofibroblast CAFs, respectively.

This study further confirmed that CD26+ NF is converted into a

pro-tumor iCAF, which recruits bone marrow cells in a CXCL12-

dependent manner and enhances tumor cell invasion through the

activity of matrix metalloproteinases (MMPs) (41). Jabbari et al.

(42) found that CD36+ fibroblasts secrete proteins with dual

functions as follows: they impede tumor cell growth by binding to

specific receptors as well as enhance the expression of adipogenic

markers in CAFs, leading to reprogramming of the tumor matrix.

Additionally, the findings of Barone et al. indicated that the

activation of the nuclear Farnesoid X Receptor hampers the

tumor-promoting capabilities of CAFs by influencing their

mechanical characteristics and paracrine signaling repertoire (43).
3.3 Temporal heterogeneity of CAFs

Venning et al. (44) developed a multicolor flow cytometry

strategy based on the exclusion of non-CAFs and successfully

used this strategy to explore the temporal heterogeneity of freshly

isolated CAFs in 4T1 and 4T07 mouse models of TNBC. This study

found that the expression of six CAF markers, a-SMA, FAPa,
PDGFRa, PDGFRb, CD26, and PDPN, all changed over time as

tumors matured, from predominantly PDGFRa+ fibroblasts in

healthy breast tissue to predominantly PDGFRb+ CAFs in

tumors. The abundance and dynamics of each marker varied

depending on tumor type and time, providing evidence for

temporal coevolution of CAF populations (44).

Furthermore, the heterogeneity of tumors is influenced by the

inherent evolution of individual subclones as well as the selective

pressures exerted by the surrounding environment (45). The TME

encompasses various components, such as peripheral blood vessels,

immune and inflammatory cells, fibroblasts, ECM, and signaling

molecules, all of which engage in continuous and active

communication with cancer cells (46). Consequently, the
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heterogeneity (47). Among these components, CAFs, being a

crucial element of the TME, exhibit substantial heterogeneity and

may potentially impact tumor heterogeneity. Li et al. (48)

comprehensively characterized cervical cancer cell heterogeneity

using scRNAseq and identified epithelial cells, fibroblasts, and

CD8+ T cell subsets, illustrating the cellular heterogeneity of

cervical cancer, suggesting that tumor fibroblasts contribute to

cervical cancer progression. Chen et al. (49) employed scRNAseq

to investigate the evolving dynamics of the TME of pancreatic

ductal carcinoma (PDAC). Through this analysis, the researchers

discovered a distinct population of CAFs termed complement-

secreted CAFs (csCAFs), which selectively express a subset of

complement system components. Additionally, the team utilized

weighted gene co-expression network analysis to construct modules

associated with csCAFs. Notably, csCAFs were found exclusively in

early stages of PDAC and were localized in close proximity to

malignant cells within the surrounding tissue matrix (49). The

investigation of microenvironment heterogeneity has been limited,

yet it is evident that CAFs encompass a diverse population, the

extent of which is not completely understood regarding their

influence on tumor heterogeneity (50).
4 The role and mechanism of CAFs in
breast cancer

4.1 The role of CAFs in proliferation,
migration, and invasion of breast cancer

As shown in Figure 2, CAFs in breast cancer can enhance the

proliferation, invasion, and metastasis of breast cancer cells. This

section primarily provides a summary of the involvement of diverse

cytokines, protein molecules, and exosomes released by CAFs in the

malignant advancement of breast cancer.
4.1.1 CAFs and interleukin
The secretion of interleukin (IL) by CAFs is substantially

associated with cancer development. Ershaid et al. (51) discovered

that the secretion of IL-1b by CAFs plays a crucial role in promoting

breast cancer metastasis to the lungs through various mechanisms.

These include the modulation of the immune cell environment at

the metastatic site and the upregulation of adhesion molecules at

both the primary tumor and the metastatic site, and these processes

potentially enhance the invasion and dissemination of tumor cells

(51). Santolla et al. (52) demonstrated that the paracrine signaling of

IL-8/CXCR1/2 could effectively activate and induce the migration

and invasion properties of MDA-MB-231 breast cancer cells.

Similarly, Sun et al. (53) discovered that IL-6 exerted a

downregulating effect on the tumor suppressor, HIC1, thereby

facilitating the development of breast cancer within the TME

through paracrine or autocrine signaling mechanisms.
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4.1.2 CAFs and exosomes
The exosome signaling pathway, which involves the presence of

miRNA, serves as a means of communication between CAFs and

tumors and CAF-released exosomes can transfer to breast cancer

cells, releasing pertinent information and targeting specific genes

(18). Additionally, CAFs can secrete exosomes that contain a high

concentration of miR-21, miR-378e, and miR-143 which play a

considerable role in augmenting the stemness of tumors, modifying

the EMT phenotype, and facilitating the proliferation and

metastasis of tumors (19, 54). CAFs can release exosomes that

carry miR-181d-5p, facilitating the processes of EMT, proliferation,

migration, and invasion in breast cancer cells. This is achieved by

specifically targeting caudal-type homeobox 2 and subsequent

downregulation of homeobox A5 (55). Furthermore, Yan et al.

(56) discovered that exosomes containing miR-18b, derived from

CAFs, facilitated aberrant nuclear Snail expression by targeting

TCEAL7, thereby activating the nuclear factor kappa B (NF-kB)
pathway and subsequently inducing EMT, invasion, and metastasis

in breast cancer. Similarly, Chen et al. (57) found that exosomal

miR-500a-5p, originating from CAFs, enhanced breast cancer cell

proliferation and metastasis by targeting USP28. Moreover, the

activation of FAK signaling in CAFs facilitates the migration and

metastasis of breast cancer cells through intercellular

communication mediated by exosomal miRNAs (58). However,

Xi et al. (59) discovered that the upregulation of miR-30e or the

downregulation of CTHRC1 impeded the proliferation and

migration/invasion of breast cancer cells and stimulated apoptosis.
4.1.3 CAFs and other protein molecules
CAFs can facilitate the infiltration and spread of breast cancer

cells through the secretion of various cytokines and protein

molecules. Muchlińska et al. (60) observed that a-SMA-positive

CAFs potentially contribute to tumor expansion by releasing OPN.

Additionally, CAFs stimulate the proliferation, migration, and
Frontiers in Oncology 05
invasion of MDA‐MB‐231 cells within the breast TME through

the paracrine FGF2–FGFR1 signaling pathway (61). Huang et al.

(62) demonstrated that TGF-b1-activated CAFs facilitated tumor

invasion, lung metastasis, and EMT through autophagy and FAP-a
overexpression in both experimental models. Conversely, the effects

induced by TGF-b1-activated CAFs were hindered by the

autophagy inhibitor, 3-methyladenine (62). Avalle et al. (40)

provided evidence that STAT3 plays a crucial role in the pro-

tumorigenic functions of murine CAFs in breast cancer, both in

vitro and in vivo. This is achieved through the secretion of

ANGPTL4, MMP13, and STC1 by CAFs, which promotes breast

cancer growth. Ershaid et al. (51) established a connection between

tissue damage, inflammation, and the progression and metastasis of

breast cancer. They identified the involvement of the NLRP3

inflammasome in fibroblasts, specifically in CAFs, in mediating

tumor growth and facilitating the recruitment of CD11b+Gr1+

bone marrow cells into the TME (51). Ren et al. (63) explored the

autocrine role of Grem1, which is produced by CAFs, in promoting

fibroblast activation. Additionally, they demonstrated the paracrine

effect of Grem1 in stimulating breast cancer cell stemness and

invasion. Another study reported that interfering with

prostaglandin E2 signaling in CAFs inhibits mammary carcinoma

growth, but enhances metastasis (64). Furthermore, Chen et al. (65)

discovered that CAFs facilitate cancer cell invasion and migration

by secret ing MFAP5 and act ivat ing the Notch1/s lug

signaling pathway.
4.1.4 The inhibitory effect of CAFs on
proliferation and metastasis of breast cancer

Jabbari et al. (42) discovered that the proteins secreted by

CD36+ fibroblasts inhibited the growth of tumor cells by binding

to their corresponding receptors and enhanced the expression of

adipogenic markers in CAFs, thereby reprogramming the tumor

stroma. Similarly, Cao et al. (66) observed that oroxylin A
FIGURE 2

The impact of CAFs on the proliferation, invasion, and metastasis processes of breast cancer cells. (Created by Figdraw).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1333839
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zheng and Hao 10.3389/fonc.2023.1333839
deactivated CAFs and suppressed breast cancer metastasis by

selectively binding to ACTN1 and inhibiting its expression.
4.2 CAFs and tumor angiogenesis

CAFs faci l itate the processes of angiogenesis and

lymphangiogenesis as well as provide essential nourishment for

the growth and invasion of tumors (67, 68). As shown in Figure 3,

CAFs secrete vascular endothelial growth factors (VEGFs) and

release various signaling molecules that stimulate endothelial cells,

thereby initiating angiogenesis (69). Al-kharashi et al. (70)

discovered that CAFs in breast cancer exhibiting high levels of

DNA methyltransferase 1 could enhance the expression of IL-8/

VEGF-A, thereby facilitating angiogenesis, a process strongly

associated with the unfavorable survival outcomes of patients

with breast cancer. Similarly, Wan et al. (71) observed that CAFs

in breast cancer characterized by elevated levels of FOS-like antigen

2 could stimulate the sprouting of human umbilical vein endothelial

cells independent of VEGF, leading to angiogenesis and tumor

growth in vivo. CAFs exhibiting increased expression of the

epithelial chemokine CXCL14 induce EMT in breast cancer cells,

thereby facilitating their migration and invasion (72). This process

depends on the presence of nitric oxide synthase-1 and

encompasses the activation of angiogenesis and the recruitment

of macrophages (73). Eiro et al. found that CAFs, particularly those

derived from MMP11+ MIC tumors, could promote breast cancer

cell invasion and angiogenesis (74). Furthermore, substantially

upregulated long non-coding RNA (lncRNAs), SNHG5, and its

downstream signaling molecule, ZNF281CCL2/CCL5, in CAFs play

a pivotal role in establishing the premetastatic niche in breast cancer

(75). These molecules also influence angiogenesis and vascular
Frontiers in Oncology 06
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Additionally, the inhibitors, RS102895, marasviroc, and

cenicriviroc effectively impede angiogenesis and vascular

permeability within the premetastatic niche by obstructing the

binding of CCL2/CCR2 and CCL5/CCR5 (75).
4.3 CAFs and tumor energy metabolism

An energy metabolism coupling relationship exists between CAFs

and breast cancer cells (76). As shown in Figure 3, lactate produced by

hypoxic CAFs serves as a metabolic mediator that facilitates the growth

and invasion of breast cancer cells. This is achieved by activating the

TGFb1/p38 MAPK/MMP2/9 signaling pathway and enhancing

mitochondrial activity in cancer cells (77). Therefore, targeting

oxidized ataxia-telangiectasia mutated could be a viable therapeutic

approach for breast cancer (77). The heightened metabolic activity

observed in neoplastic cells results in elevated glucose absorption,

glycolysis, and lactic acid generation which prompts CAFs to secrete

TGF-b, consequently inducing a shortage of phosphoenolpyruvate.

This metabolic deficiency hampers the functionality of activated T cells

and promotes the conversion of CD4+T cells into T helper 2 cells (78,

79). CAFs facilitate the transfer of substrates (e.g. lactate, pyruvate, and

ketone bodies) to neighboring cancer cells through an autophagy-

mediated paracrine mechanism, where these substrates originate from

the increased glycolytic metabolism of CAFs (80). Several studies have

indicated the existence of metabolic coupling between catabolic

fibroblasts and anabolic cancer cells in breast cancer, prostate cancer,

head and neck cancer, and lymphoma. This metabolic coupling is

responsible for driving oxidative stress, glycolysis, autophagy, and

senescence of fibroblasts through the activation of hypoxia-inducible

factor and NF-kB signaling pathways (81). The fibroblast breakdown
FIGURE 3

The involvement of CAFs in the process of tumor angiogenesis and energy metabolism. (Created by Figdraw).
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and resultant metabolic byproducts create a microenvironment

abundant in nutrients that supports the growth of tumors. This is

achieved by producing mitochondrial fuel, including lactate, ketone

bodies, fatty acids, glutamine, and various amino acids, within the

nearby ECM (81). Autophagy is presumed to have an anti-tumor effect

on normal tissues and early tumors, but a pro-tumor effect on

established cancer cells (82). These studies indicate that CAFs

substantially impact the invasion and progression of breast cancer

cells by engaging in various metabolic coupling pathways, and the

findings potentially provide novel therapeutic approaches to manage

breast cancer.
4.4 CAFs and TME

The TME comprises diverse cellular components and ECM,

which are closely associated with the development, progression,

metastasis, and prognosis of breast tumors.

4.4.1 Remodeling of the ECM
An aberrant production and remodeling of the ECM is a distinctive

feature of CAFs. As shown in Figure 4, in breast tumors, type I collagen

is recognized as the principal constituent of the ECM, and its presence

is associated with tumor cell survival and the occurrence of metastasis.

Type I collagen fibers play a vital role in stimulating the expression of

MMP-9 in CAFs in breast cancer, thereby facilitating increased

migration and metastasis (83). Notably, the overexpression of MMP-

9 in breast cancer cell lines by CAFs substantially amplifies tumor

invasiveness, primarily by activating the TGF-b/SMAD signaling

pathway (84). CAFs can generate various types of MMPs and

plasminogen activators, which directly degrade the ECM.

Consequently, this process facilitates the invasion and metastasis of

breast cancer cells. Additionally, CAFs create a migratory route for

tumor cells, thereby promoting their infiltration into the blood and

lymphatic system (85). Fibronectin (FN) is an important ECM
Frontiers in Oncology 07
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proliferation, migration, EMT, and angiogenesis (86, 87). The

activation of CAFs can stimulate the upregulation of FN expression

and alter the organization of FN fibers, thereby facilitating the directed

migration of tumor cells (88). Consequently, CAFs play a crucial role in

the process of ECM remodeling, facilitating the synthesis and

remodeling of the ECM in breast cancer through various pathways,

thereby promoting tumor growth.

4.4.2 The secretion of a variety of cytokines and
protein molecules

CAFs exert regulatory control over tumor cells and the TME by

secretion of growth factors, cytokines, and chemokines (13).

Stromal cell-derived factor-1, TGF-b1, PDGF, hepatocyte growth

factor, epidermal growth factor, and MMP are involved in the

induction of EMT in breast cancer by CAFs (89, 90). Furthermore,

chemokines, proteins ranging from 8 to 14 kDa, were identified as

CAF-secreted factors associated with EMT in tumor cells. These

chemokines stimulate directional cell migration by establishing a

gradient that guides the movement of cell types expressing the

corresponding receptor (91). CAFs with upregulated epithelial

chemokine CXCL14 induce EMT in breast cancer and facilitate

the migration and infiltration of breast cancer cells (72). This

process depends on the availability of nitric oxide synthase-1 and

encompasses the activation of angiogenesis and the recruitment of

macrophages (73). EMT imparts mesenchymal properties to

epithelial cells, which is strongly associated with the invasive

traits of the cancer stem cell (CSC) phenotype. CAFs in breast

cancer can also induce EMT by upregulating vimentin and

downregulating E-cadherin (92). Breast CSCs are distinguished by

their CD44+/CD24- phenotype and can generate circulating tumor

cells, thereby facilitating tumor invasion and metastasis. CAFs

enhance the expression of the cytokine CCL2 by activating the

NOTCH1-STAT3 pathway, and CCL2 subsequently promotes the

development of the CSC phenotype. In an animal model of breast
FIGURE 4

The importance of CAFs within the TME. (Created by Figdraw).
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cancer, inhibiting CCL2 production by fibroblasts effectively

suppressed tumor formation (93). Furthermore, TNBC cells can

secrete Hh factors. This interaction activates the SMO pathway

upon binding to receptors on neighboring CAFs, thereby facilitating

the co-secretion of FGF5 within the cells. This process plays a

crucial role in maintaining the stemness of tumor cells (94).

4.4.3 Cell-cell interactions
Liu et al. discovered that extracellular ATP facilitated the

interactions between fibroblasts and breast cancer cells, leading to a

collaborative production of S100A4, which further exacerbated breast

cancer metastasis (95). Pakravan et al. observed that monocytes, once

activated by CAFs and polarized, experienced a decline in their ability

to eliminate tumors. Furthermore, the exosomes derived from these

monocytes facilitated the proliferation and migration of breast cancer

cells. Conversely, exosomes from CAF-educated monocytes

demonstrated a substantial enhancement in breast cancer

tumorigenicity in vivo (96).
4.5 CAFs and immune regulation

CAFs exert a direct or paracrine influence on immune cell

function or impede physical interactions between immune and

cancer cells. Consequently, this diminishes the ability of the

immune system to recognize and eliminate cancer cells, thereby

facilitating tumor immune evasion, a critical mechanism in tumor

progression (13, 39). As shown in Figure 5, CAFs substantially

associate with the inhibition of immune cells within the TME.
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4.5.1 Tumor infiltrating lymphocytes
The tumor infiltrating lymphocytes (TILs) found within tumor

tissues are characterized by substantial heterogeneity and serve as

integral components in the host’s immune response against tumor-

specific antigens. Within various cancerous tissues, TILs exhibit

distinct properties, either promoting or inhibiting tumor growth,

contingent upon the specific T-cell subset involved (3). The

elimination of FAP+ CAFs in vivo induce a shift in the immune

microenvironment from Th2 polarization to Th1 polarization,

indicating that CAFs may serve as promising targets for

metastatic breast cancer (97). Furthermore, the CAFs-s1 subtype

in breast cancer enhances the recruitment and differentiation of

CD4+CD25+ Treg in the TME through the CXCL12/SDF1-a
pathway, thereby suppressing the function of effector T cells (33).

a-SMA+ CAFs have been identified as an important cellular source

of TGF-b, which hampers the cytotoxic activity of CD8+ T cells by

downregulating the expression of perforin, granzyme A/B, FASL

(FAS ligand), and IFN-g (98, 99).
CAFs can impede the proliferation of effector T cells and

recruit CD4+ CD25+ T cells to the tumor stroma by secreting

CXC chemokine ligand 12, and this recruitment leads to the

transformation of CD4+ CD25+ T cells into CD25+ forkhead box

protein 3+ T cells, inducing immunosuppression and drug

resistance within the TME of TNBC. However, CAFs also

impede the proliferation of CD4+CD8+ T cells by releasing

nitric oxide. Additionally, CAFs can augment the population of

M2 macrophages by secreting IL-4 and IL-6, consequently

hindering T-cell functionality (33, 100–102). CAFs can

addit ional ly at tract var ious immune cel l s , inc luding
FIGURE 5

The involvement of CAFs in the regulation of tumor immunity. (Created by Figdraw).
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macrophages, neutrophils, and T cells, towards the neighboring

stroma. Consequently, these immune cells are hindered from

infiltrating the cancerous tissue and executing their typical anti-

tumor immune response (78).

4.5.2 Myeloid-derived suppressor cells
Myeloid-derived suppressor cells (MDSCs) encompass a diverse

assemblage of myeloid cells that contribute to immunosuppression

through the inhibition of cytokines and other molecules, thus

facilitating the advancement and metastasis of cancer (3). Two

primary MSDC subsets exist, namely polymorphonuclear MDSCs

(PMN-MDSCs) and monocytic MDSCs (M-MDSCs), which are

similar to neutrophil and monocyte phenotypic and morphological

characteristics, respectively (103, 104). A novel subgroup of

MDSCs, known as circulating fibroblasts, demonstrates

phenotypic and functional similarities to CAFs, implying a

potential correlation between MDSCs and CAFs (105). CAFs, by

releasing various cytokines and chemokines, have the capability to

facilitate the infiltration and generation of MDSCs, thereby

impeding the antitumor efficacy of effector T cells. Evidence

suggests that CCL2 plays a crucial role in the recruitment of both

PMN-MDSCs and M-MDSCs (106, 107). As the primary source of

CCL2, CAFs may induce the migration of MDSCs to the tumor site

through the activation of STAT3 signaling pathways (108).

4.5.3 Tumor infiltrating mononuclear cells
Monocytic myeloid cells, encompassing monocytes, terminally

differentiated macrophages, and dendritic cells, constitute a diverse

population of bone marrow-derived cells (3). These myeloid cells

play a crucial role in tumor progression by engaging in direct

interactions with tumor cells or providing support to the tumor

stroma, thereby facilitating tumor growth, angiogenesis, migration,

invasion, metastasis, and suppression of tumor immunity (109,

110). CAFs are capable of attracting monocytes to breast tumors

through the secretion of CCL2 and CXCL16 (111, 112). In vitro

experiments have demonstrated that the inhibition of IL-6 leads to a

reduction in CCL2 secretion and subsequent recruitment of

monocytes (112). In their study utilizing a 4T1 mouse metastatic

breast cancer model, Liao et al. (97) provided evidence that the

absence of FAP+ CAFs led to heightened levels of IL-2 and IL-7

expression, while dampening the expression of IL-6, IL-4, VEGF,

and CSF-1. Consequently, this alteration resulted in a diminished

influx of pro-tumor macrophages and regulatory T cells (Tregs),

alongside an augmented recruitment of anti-tumor dendritic and

cytotoxic T cells (97).

4.5.4 Mast cells and natural killer cells
The activation of CAFs has been observed through the release of

IL-13 and trypsin by MCs (113). Notably, MCs, once activated

contribute to tumor progression and immunity. CAFs play a role

in tumorigenesis by promoting the proliferation, migration, and

secretion of inflammatory cytokines in mast cells through the

upregulation of internal estrogen in prostate cancer (114).

Additionally, estrogen-induced CAFs contribute to the recruitment

of MCs through the production of CXCL12 and the activation of
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CXCR4 (114). Furthermore, a recent study in a microtissue model of

prostate cancer demonstrated a correlation between MCs and CAFs

to induce an early malignant morphological transformation of benign

epithelial cells (115). To date, studies on the correlation between MCs

and CAFs in tumors are still lacking.

Additionally, a-SMA+ CAFs, serving as the primary origin of

TGF-b, possess the ability to modulate the functionality of NKs (6,

102). Numerous studies have highlighted the role of TGF-b in

suppressing NK activation and the importance of their cytotoxic

activity (116). For instance, the induction of miR-183 by TGF-b
hinders the transcription of DAP12 and reduces the expression of

the activating receptors, NKp30 and NK Group 2D (NKG2D), in

NKs, consequently impeding their cytotoxicity (117).

Furthermore, the presence of various surface molecules on

CAFs, including dipeptidopeptidase 4, junctional adhesion

molecule 2, immune checkpoint B7-H3, and calbindin 11,

facilitate immune escape within the TME. These molecules play a

crucial role in mediating immune cell migration, proliferation, and

differentiation (33, 78). Zheng et al. discovered that secreted

disaccharide chain proteoglycans played a role as tumor

promoters and immunosuppressors in TNBC, specifically within

the context of CAFs (118). Furthermore aberrant angiogenesis,

collagen accumulation, and the remodeling of the ECM

collaborate to reconstruct the tumor stroma, resulting in the

formation of a rigid and compact barrier encasing the cancerous

cluster. This formidable structure impedes the infiltration and

subsequent assault of CD8+ T cells on the malignant cells (100,

119). Therefore, CAFs can change the immune function of immune

cells in the TME in different ways, affect the immune response, and

lead to immunosuppression.
5 The role of CAFs in the diagnosis of
breast cancer

Given the considerable contribution of CAFs to breast cancer

progression and their specific association with tumors, researchers have

attempted to assess their potential for on-time diagnosis of breast

cancer. Giussani et al. (120) conducted a study where they observed

elevated plasma levels of type IX and X collagen a1 and cartilage

ligament matrix in patients with breast cancer compared to those with

benign lesions and healthy individuals. Furthermore, in vitro

experiments demonstrated increased expression of these proteins in

fibroblasts cultured with tumor cell-conditioned medium (120). Thus,

it was suggested that the expression of these proteins by fibroblasts

could serve as reliable biomarkers for distinguishing between benign

and malignant tumors (120). Notably, Yamaguchi et al. (121)

categorized patients with invasive breast cancer into PDPN-positive

and -negative groups based on the presence of PDPN-positive CAF

and reported its relationship with magnetic resonance imaging

findings. Invasive breast cancer in PDPN-positive CAF tended to

have a more malignant pathological state (121). Pelon et al. (34)

discovered that the accumulation of CAF subsets in the lymph nodes

(LN) serves as a prognostic indicator, thereby indicating the potential

examination of CAF subsets in axillary LN during the initial diagnosis.
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Additionally, several studies have demonstrated the frequent detection

of increased levels ofWnt5a in the serum of patients with breast cancer,

which exhibited a strong correlation with microvessel density in breast

tumor tissues (71). This correlation suggests the potential clinical

importance of Wnt5a as a diagnostic tool for breast cancer (71).

Despite the high detectability of most markers found in CAFs,

their specificity remains limited. Consequently, recent advancements

in genetic testing techniques have facilitated investigations into the

gene expression profile of CAFs in breast cancer. Hang et al. (122)

compared the gene expression profiles between CAFs derived from

primary breast malignant tumors and normal breast stromal cells and

successfully identified eight key genes that exhibited differential

expression through this analysis. These findings have the potential

to identify patients with breast cancer with a poor prognosis (122).
6 The role of CAFs in breast cancer
treatment and drug resistance

Currently, breast cancer management primarily depends on

surgical resection, complemented by radiotherapy, chemotherapy,

endocrine therapy, and immunotherapy. Despite substantial

advancements in breast cancer treatment, the challenges of tumor

recurrence and drug resistance persist as major concerns (3, 4).

Numerous anti-cancer modalities, including targeted therapy,

chemotherapy, radiotherapy, and immunotherapy, have

demonstrated the potential to reduce tumor size and facilitate

remission in certain patients. Nevertheless, the emergence of

resistance among tumor cells towards these therapeutic

interventions stimulates persistent tumor cell proliferation.
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Consequently, understanding the underlying mechanisms of drug

resistance in tumor cells to identify novel and more efficacious

treatment approaches for breast cancer is essential.
6.1 CAFs as therapeutic targets for
breast cancer

Currently, various CAF-mediated anticancer therapies exist, most

of which are in the preclinical trial phases. Generally, these therapies can

be categorized into the following five application approaches: hindering

the transition from NFs to CAFs, facilitating the reversion from CAFs

to NFs, impeding tumor growth and advancement, stimulating the

immune system, and reversing tumor chemoresistance (123). Notably,

breast cancer has been extensively investigated as a primary focus for

targeting CAFs in cancer treatment as shown in Figure 6.

6.1.1 Targeting the origin of CAFs or reversion to
a non-CAFs state

The activation of resident fibroblasts plays a pivotal role in

forming CAFs and has been recognized as an important target for

therapeutic interventions in breast cancer studies. Cazet et al. (124)

conducted a study on a TNBCmodel, where they discovered that the

activation of Hedgehog-dependent CAFs and the remodeling of the

ECM contribute to the development of CSC niches, ultimately

leading to resistance against the chemotherapeutic agent,

docetaxel. They proposed therapeutic interventions targeting this

pathway to address this issue, which yielded promising outcomes in

preclinical models (13, 124). Consequently, these positive results

prompted the initiation of phase I and II clinical trials involving the
FIGURE 6

CAF-targeting therapeutic strategies in breast cancer. (Created by Figdraw).
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combination of the smoothened inhibitor, sonidegib, with docetaxel

(13). Losartan, which is an angiotensin inhibitor, demonstrated the

inhibition of angiotensin-II receptor-1 in CAFs, resulting in

decreased expression of downstream signaling molecules,

including TGF-b, connective tissue growth factor, and endothelin-

1 (125). This inhibition led to a reduction in stromal collagen and

hyaluronan production within tumors and an enhancement in drug

and oxygen delivery (125). Additionally, Coulson et al. (126)

demonstrated the efficacy of losartan in impeding mammary

tumor development and progression in a murine model.

Furthermore, scientific evidence has shown the efficacy of all-trans

retinoic acid in inducing a transformation of CAFs into a state of

reduced activity, thereby effectively suppressing their biological

functions (13). Additionally, paricalcitol, which is a vitamin D

receptor agonist, possesses the ability to deactivate CAFs (127).

Certain miRNAs can activate fibroblasts and induce their

transformation into CAFs. Conversely, the expression of miR-21

facilitates the reversion of CAFs into NFs, thereby effectively

enabling the remodeling of CAFs (128). AC1MMYR2, which is a

small molecule inhibitor of miR-21, functions by upregulating the

miR-21 target protein, Von Hippel-Lindau, consequently reducing

the activity of the NF-kB pathway (128). This inhibition of miR-21

and subsequent modulation of the NF-kB pathway attenuates CAF-

induced EMT and enhances the responsiveness to paclitaxel (128).

6.1.2 Targeting CAFs related protein molecules
and signaling pathways

The interaction between CAFs and neighboring tumor cells, as well

as the TME, through protein secretion, has led to the identification of

these proteins and their associated signaling pathways as promising

targets for therapeutic intervention. TGF-b, as a crucial mediator of the

reciprocal interactions between CAFs and breast cancer cells,

represents an important therapeutic target expressed in CAFs.

Preclinical investigations have shown that small-molecule inhibitors

directed towards TGF-b receptors effectively impede the aggressive

behavior of breast cancer cells (13, 127, 129, 130). Furthermore, clinical

trials have commenced for neutralizing antibodies that specifically

target TGF-b. One such monoclonal antibody, fresolimumab, can

neutralize all three isoforms of TGF-b (13). The bifunctional fusion

protein M7824, which targets TGF-b and PD-L1, exhibited antitumor

efficacy in preclinical investigations (131, 132). Moreover, the outcomes

of a phase I trial involving patients with solid tumors indicated an

acceptable safety profile and clinical advantages associated with M7824

(133). The efficacy of erdafitinib, an FGFR inhibitor, in overcoming

resistance to fulvestrant and CDK4/6 inhibitors in MCF-7 cells has

been documented (134). Additionally, AZD4547, a selective inhibitor

of FGFR1/2/3, has effectively suppressed tumor cell growth, including

breast cancer cells (13, 135). Furthermore, futibatinib has demonstrated

the ability to inhibit the in vitro growth of breast cancer cells by

targeting FGFR (136). Femel et al. (137) also demonstrated that the

immunization of mice with extra domain-A offibronectin resulted in a

considerable decrease in both the tumor-bearing and distant metastasis

rates in mouse breast cancer models. Similarly, Gagliano et al. (138)

identified the fibroblast-derived p110d subunit of phosphatidylinositol-
3-OH kinase (PIK3Cd) as a crucial mediator of TNBC. Subsequent
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administration of the PIK3Cd inhibitor CAL-101 reduced tumor

growth in an orthotopic breast cancer xenograft model (13).

The expression of histone deacetylase 6 (HDAC6) is frequently

increased in CAFs and indicates a negative prognosis in patients

with breast cancer (13). The administration of HDAC6 inhibitors

reduced tumor growth rate, hindered the accumulation of bone

marrow-derived monocytes and Tregs within the TME, influenced

the differentiation of macrophages, and stimulated the activation of

CD8- and CD4-positive T cells (139). This effect can be attributed to

the upregulation of prostaglandin E2 (cyclooxygenase-2) expression

by HDAC6 in CAFs, which occurs by regulating STAT3 activity (13,

139). Consequently, HDAC6 represents a promising therapeutic

target for breast cancer treatment.
6.2 The role of CAFs in immunotherapy of
breast cancer

CAFs constitute a diverse cellular population within the

mammary TME and play crucial roles in modulating the immune

response against tumors and influencing the efficacy of therapeutic

interventions. Although CAFs directly facilitate tumor growth,

metastasis, and angiogenesis, they can also contribute to the

development of an immunologically inert tumor phenotype by

impeding the infiltration and function of T cells or by facilitating

the recruitment of other immunosuppressive cell subsets (140).

6.2.1 Therapies targeting FAP molecules
Recently, there has been an increase in interest in advancing

immunotherapy strategies centered around “anti-CAF” development.

Notably, recent anti-CAF therapies have focused on FAP (141). The

eradication of FAP+ CAFs through DNA vaccination and the use of

chimeric antigen receptor T cells is a crucial adjunct to other

immunotherapy approaches (39). A groundbreaking investigation

demonstrated that the administration of an oral DNA-based FAP

vaccine resulted in the activation of CD8+ T cells, which effectively

eliminated CAFs (142). Thus, this intervention substantially enhanced

the absorption of chemotherapeutic agents within the TME in

multidrug-resistant mice afflicted with colon and breast cancers

(142). Moreover, the FAP DNA vaccine refinement successfully

circumvented immune tolerance and elicited both CD8+ and CD4+

immune reactions (39).

6.2.2 Therapies targeting TGF-b and PD-
L1 molecules

The activation of TGF-b in CAFs impedes T-cell infiltration and

enhances the efficacy of PD-L1 antibodies in a murine model of breast

cancer (143). Conversely, aberrant activation of the PD-1/PD-L1

signaling pathway is implicated in tumor immune evasion (143).

Therefore, researchers have devised a therapeutic approach that

concurrently targets TGF-b and PD-L1, resulting in the development

of a TGF-b/PD-L1 bispecific antibody (144). This antibody has

exhibited successful application in a murine breast cancer model and

is currently undergoing clinical investigation (144). The inhibition of

tumor cell growth can be achieved by specifically targeting the
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membrane-bound enzyme FAP present on the surface of CAFs (145).

The administration of renin-angiotensin inhibitors can disrupt the

TGF-b signaling pathway mediated by CAFs, reducing

immunosuppressive response and enhancing T-cell cytotoxicity (145).

Consequently, this intervention has considerable potential for

improving the efficacy of immunotherapy in breast cancer

treatment (145).

After the publication of the KEYNOTE-522 and -355 trials (146,

147), the Food and Drug Administration (FDA) authorized the use of

pembrolizumab, a PD-L1 inhibitor, in conjunction with chemotherapy

to treat patients with advanced TNBC whose tumors exhibit PD-L1

positivity. Additionally, the FDA approved pembrolizumab as a

neoadjuvant treatment for high-risk early-stage TNBC, with its

continued administration as a single-agent adjuvant treatment after

surgical intervention (140). Notably, despite the substantial progress in

the field, only a subset of patients with breast cancer undergoing

immune checkpoint blockade (ICB) therapy achieve long-lasting

responses, even when considering factors, such as mutational status

or expression of checkpoint inhibitors (148). Therefore, exploring the

factors that influence the response to ICB is imperative to devise novel

therapeutic approaches that enhance the ability of the immune system

to combat tumors and ultimately enhance the prognosis of patients

who do not currently benefit from ICB treatment (149).

6.2.3 Therapies targeting other molecules
The presence of CD10+GPR77+CAFs at moderate and high levels

in breast cancer or non-small cell lung cancer tissues is correlated with

resistance to chemotherapy and overall survival (OS) (150).

Furthermore, the identification of a specific subset of CD10+GPR77

+CAFs that promotes tumor growth, coupled with the findings that

targeting CD10+GPR77+CAFs, are potential therapeutic strategies. For

example, anti-GPR77 antibodies helped identify methods to inhibit

breast cancer initiation and enhance the susceptibility of tumor cells to

chemotherapy (150). Furthermore, the secretion of IL-6 derived from

CAFs has been found to induce resistance to trastuzumab, an anti-

HER2 monoclonal antibody, by activating the NF-kB, JAK/STAT3,
and PI3K/AKT signaling pathways, promoting tumor stem cell

proliferation, and inhibiting apoptosis. Consequently, a potential

approach to overcome trastuzumab resistance in HER2-positive

breast cancer could involve the combination of anti-IL-6 antibodies

with inhibitors targeting these specific pathways (151).

Given the pivotal role that CAFs play in promoting

immunosuppression, they present a promising avenue for

augmenting breast cancer immunotherapy. The strategic targeting of

CAFs is particularly important in reestablishing immune surveillance,

counteracting tumor immune evasion, modulating the TME, and

ultimately treating breast cancer.
6.3 The role of CAFs in chemotherapy and
chemoresistance of breast cancer

As shown in Figure 6, an increasing body of research has

demonstrated a strong correlation between the efficacy of

chemotherapy drugs and the regulation of the DNA damage

repair system (152). Several anti-tumor medications exert their
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therapeutic effects by inducing DNA damage in tumor cells;

however, certain tumor cells can counteract the effects of DNA-

damaging drugs by activating their intrinsic DNA damage repair

mechanisms. Sun et al. (153) demonstrated that the upregulation of

WNT16B protein expression in CAFs could damage DNA.

Additionally, the secretion of the exocrine factor, SFRP2, by CAFs

into the microenvironment can enhance the activation of the NF-

kB signaling pathway, thereby promoting the biological activity of

WNT16B (153). Consequently, this process induces resistance in

breast cancer cells against mitoxantrone (153).

Doxorubicin (DOX) is classified as an anthracycline antibiotic and

is utilized as both a primary treatment option for breast cancer and

other tumors, as well as an adjuvant therapy for patients who have

undergone breast cancer resection and exhibit axillary LN involvement.

The primary cause of DOX anti-tumor therapy failure is attributed to

the induction of anti-apoptotic mechanisms (154). Following

apoptosis, the release of high mobility group box-1 (HMGB1) into

the TME is induced (155). HMGB1 activation of CAFs in breast cancer

potentially mitigate the acquired chemotherapy resistance observed in

patients with breast cancer (156).

Type IV collagen, which is secreted by CAFs and serves as a

constituent of the ECM, diminishes the efficacy of chemotherapy

through its interaction with integrin receptors on tumor cells,

thereby promoting cell adhesion and facilitating the development of

drug resistance (157). Rong et al. (158) conducted a study utilizing real-

time quantitative polymerase chain reaction and western blotting to

examine the expression changes of IL-8 in CAFs in breast cancer before

and after docetaxel chemotherapy. The findings indicated a correlation

between IL-8 and resistance to breast cancer chemotherapy (158).

Furthermore, the study revealed that docetaxel treatment can

upregulate the expression of various genes, including CXC2, MMP1,

IL8, RARRES1, FGF1, and CXCR7, in CAFs (158). This upregulation

subsequently promotes the adhesion, invasion, and proliferation of

MDA and MB-231 cells, ultimately leading to the development of

chemotherapy resistance (158). A cellular-level investigation revealed

that CAFs within the TME can diminish the chemotherapeutic efficacy

of paclitaxel against breast cancer cells (128). Cui et al. (157) also

discovered that MMP-1 plays a crucial role in modulating the efficacy

of paclitaxel chemotherapy on breast cancer by synergistically

interacting with collagen IV in CAFs.

Currently, the precise understanding of the association between

fibroblasts in the TME and chemotherapy resistance remains unclear

across various levels of cellular, protein, and gene analysis. Therefore,

this necessitates further investigation and validation. Exploring the

correlation between fibroblasts in the microenvironment of breast

cancer and chemoresistance constitutes a novel research domain with

substantial potential and important clinical implications for

enhancing treatment effectiveness and prognosis.
6.4 The role of CAF in endocrine therapy
and drug resistance of breast cancer

The importance of endocrine therapy is particularly

pronounced in cases of hormone receptor-positive breast cancer,

leading to increased interest in studying the resistance mechanism
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of CAFs to endocrine therapy in breast cancer. Several studies have

demonstrated the importance of CAFs in developing tamoxifen

resistance (159). Specifically, CAFs activate the PI3K/AKT and

MAP-K/ERK pathways, contributing to this resistance (159).

Additionally, Yuan et al. (160) discovered that CAFs mediated

tamoxifen resistance in breast cancer cells through a G protein-

coupled estrogen receptor (GPCER)-integrin b1 dependent

mechanism. This process involves the upregulation of b1-integrin
expression via the GPCER/GFP/ERK pathway, ultimately

promoting CAF-induced EMT and subsequent tamoxifen

resistance in breast cancer cells (160). Brechbuhl et al. (161)

discovered that CD146 identified two separate populations of

CAFs in patients with estrogen receptor-positive (ER+) breast

cancer. Furthermore, they demonstrated that when MCF-7 breast

cancer cells were co-cultured with CD146-CAFs, there was a

reduction in the expression of ER and tamoxifen sensitivity

compared with that of tumor cells co-cultured with CD146+

CAFs (161).

Another study showed that glutamine secreted by CAFs

increased the survival rate and resistance to tamoxifen of breast

cancer epithelial cells (162). Furthermore, CAFs play a key role in

tamoxifen resistance by activating growth factor-related signaling

pathways or increasing mitochondrial function to exert anti-

apoptotic effects (163). In a recent study, Mao et al. (151)

provided evidence indicating that CAFs play an important role

in developing resistance to trastuzumab in human epidermal

growth factor receptor 2 (HER2)-positive breast cancer. This

resistance is believed to be mediated by various signaling

pathways, including IL-6 and the activation of NF-kB, JAK/

STAT3, and PI3K/AKT (151). Notably, elevated expression of

PDGFRb is linked to resistance to tamoxifen, specifically, as well

as poorer prognosis, drug resistance, and increased rates of tumor

recurrence in breast and prostate cancer (164). HOTAIR plays a

role in augmenting ER downstream gene pathways and facilitating

the processes of EMT and metastasis in breast cancer (165).

Additionally, lncRNA-ROR can bind to miR205-5p, thereby

instigating the EMT process (165). UCA1 has also been found

to mediate tamoxifen resistance through the involvement of HIF-

1a and Wnt/b-catenin (165).

Tamoxifen continues to be the most effective therapeutic

intervention for ER+ breast cancer. Nevertheless, many patients

encounter tamoxifen resistance accompanied by metastatic relapse,

thereby presenting a substantial clinical obstacle. Therefore, to gain a

deeper understanding of tamoxifen resistance within the TME, Gao

et al. (166) conducted a comprehensive analysis of the

microenvironment using scRNA-seq. Notably, they successfully

identified a previously unrecognized subset of CAFs, known as

CD63+ CAF, which plays an important role in promoting

tamoxifen resistance in breast cancer (166). Furthermore, it was

discovered that CD63 +CAFs release miR-22, which is abundant in

the extracellular environment. This miR-22 can bind to its target,

ERa, and the phosphatase and tensin homolog, resulting in the

development of tamoxifen resistance in breast cancer cells (166).

Importantly, the therapeutic efficacy of tamoxifen against breast

cancer was improved when CD63+ CAFs were pharmacologically
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inhibited using CD63 neutralizing antibodies or crGd-Mir-22-sponge

nanoparticles (166).
7 The role of CAFs in the prognosis of
breast cancer

With the progress in understanding the genetic and molecular

attributes of CAFs and gaining insights into the mechanisms

through which CAFs facilitate tumor promotion, CAFs have

emerged as potentially valuable clinical biomarkers to diagnose

and prognose cancer. Currently, investigating CAFs as indicators

for tumor detection has emerged as a prominent area of research.

Among the markers used to assess favorable tumor prognosis are

FAP, MMP-2, and MMP-9 (167, 168). The markers commonly

employed in clinical practice to assess the unfavorable prognosis of

tumors include a-SMA, flatfoot protein, FSP-1, vimentin, and

cytoadherin C (169, 170). CAFs typically exhibit elevated levels of

a-SMA, MMPs, and PDGFRa/b while displaying a diminished

expression of Cav-1. In breast cancer, the presence of a-SMA-

positive myofibroblasts is positively linked to tumor cell

proliferation and inversely associated with both OS and

recurrence-free survival (RFS) (171, 172). Furthermore, a meta-

analysis has revealed an inverse correlation between a-SMA

positivity in CAFs and the duration of OS and RFS in patients

with breast cancer (169). In luminal breast cancer, the existence of

intratumoral CAFs exhibiting a substantial upregulation of a-SMA

expression (13% within the luminal breast cancer group)

demonstrated a statistically significant association with poor

prognosis (p=0.019) (60).

The presence of PDGFRb in CAFs correlates with the clinical

features and prognosis of individuals diagnosed with breast cancer.

Moreover, a considerable correlation was found between elevated

levels of PDGFRb expression and reduced OS and disease-free

survival (DFS) rates among patients with breast cancer (173).

Patients exhibiting low expression of PDGFRb can derive

substantial therapeutic advantages from tamoxifen treatment

(173). Additionally, Strell et al. (13) identified a specific

subpopulation of fibroblasts characterized by low PDGFRa and

high PDGFRb expression, which serves as a predictive marker for

increased recurrence risk in patients with ductal carcinoma in situ.

The induction of this fibroblast subset is facilitated through contact-

dependent communication between epithelial cells and fibroblasts,

mediated by Jagged1 and Notch2, respectively (13). The expression

of PDGFRb in stromal cells exhibited an inverse correlation with

radiation benefit, RFS, and breast cancer-specific survival (174–

176). Additionally, the prognostic value of stromal PDGFRb
expression was more substantial in young and premenopausal

patients with breast cancer (174, 175).

The Cox regression analysis revealed a substantial correlation

between increased MMP-11 expression in CAFs and a reduced

duration of RFS (177). Furthermore, GPER exhibits promise as a

valuable prognostic biomarker and predictor of multidrug

resistance, thereby potentially serving as a viable therapeutic

target for breast cancer (178). In breast cancer , the
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downregulation of Cav-1 expression in CAFs has been observed,

and its expression is positively associated with patient prognosis

(179, 180). Notably, conflicting viewpoints have also been reported

in relevant studies. Goetz et al. (181) found that Cav-1 expression

was inversely correlated with prognosis in patients with breast

cancer and that Cav-1 knockdown resulted in decreased fibroblast

contractility. Li et al. (182) found that loss of Cav-1 expression in

breast cancer cell stroma was considerably associated with poor

prognosis using meta-analysis. Additionally, CAF expression was

higher in metastatic axillary LNs than that in normal/reactive

axillary LNs, implying that Cav-1 plays a role in breast cancer

metastasis (183).

The activation of Tregs and the subsequent immunosuppressive

effects mediated by FAP-positive CAFs in breast cancer occur in a

manner dependent on dipeptidyl peptidase 4 (33). This mechanism

has been linked to an unfavorable prognosis. Notably, a separate

study revealed a positive correlation between high levels of FAP

expression and extended OS and DFS in patients with invasive

ductal carcinoma (167). Furthermore, the upregulation of stromal

KDM2A is correlated with advanced tumor stage and unfavorable

clinical outcomes among individuals diagnosed with breast cancer

(184). Zeng et al. (75) discovered that elevated expression levels of

CCL2 and CCL5 were associated with tumor metastasis and a

negative prognosis in patients with breast cancer. Additionally, Lim

et al. (185) used a tissue microarray of human breast cancer to

establish a link between S100A8 expression and a poor prognosis. A

positive correlation exists between the activation and expression

levels of EGFR and the unfavorable prognosis of breast cancer and

head and neck squamous cell carcinoma, irrespective of the

administration of anticancer therapeutics (186, 187). In breast

cancer, the expression of PDPN in CAFs exhibited a positive

association with higher histological grade while displaying an

inverse correlation with ER status, DFS, and OS (13, 188–190).

The study has revealed that the presence of CD10+ GPr77+ CAFs

within tumors can serve as a predictive factor for both

chemotherapy response and patient survival, particularly in cases

of ER- HER2- subtype and high-grade breast tumors (13).

Furthermore, Bonneau et al. (191) provided evidence that CAFs

of the S1 subtype contribute to the incidence of distant recurrence

in early luminal breast cancer (6, 13). These important findings

highlight the potential utility of CAFs as diagnostic and prognostic

indicators in clinical practice.

The identification of lncRNAs as novel biomarkers has been

facilitated by translational genomics and in-depth biological

decoding of CAFs. For instance, the upregulation of LINC00092

by CAFs has been linked to a poorer prognosis in patients with

ovarian cancer (192). Examining the entire genome transcriptome

has revealed important and consistent alterations in gene

expression within CAFs in breast cancer and myoepithelial

populations. Furthermore, it is feasible to generate a prognostic

gene signature (26-gene) capable of predicting RFS in individuals

diagnosed with breast cancer (29).

Therefore, given the conflicting prognostic value of CAFs

reported in several studies (161, 171), it is imperative to
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thoroughly address the heterogeneity of the CAF population and

the diverse tumor background or progression stage. This will aid in

identifying specific biomarkers that can facilitate early diagnosis,

follow-up, and treatment evaluation of clinical cancer.

Summary and prospects

CAFs play an important role in mammary TME and exhibit

diverse functions in the initiation and progression of breast cancer,

including the facilitation of tumorigenesis, proliferation, invasion,

angiogenesis, and resistance to treatment. Although some

advancements have been made in investigating CAFs in breast

cancer, a substantial gap remains to be clarified before their clinical

application can be established. The importance of CAFs in cancer

cells and tumor dynamics is increasingly evident, not only in the

mammary gland, but also in other tumor entities (5). As previously

stated, the importance of CAFs in cancer treatment, prognosis, and

treatment outcomes has become apparent. Importantly, targeting

CAFs may offer a potential solution to the persistent challenges

faced in long-term breast cancer therapy, specifically distant

metastasis and treatment resistance.

Currently, the primary treatment approaches for CAFs in breast

cancer include the following (1): targeting the origin of CAFs by

impeding their formation and inducing their reversion to a non-

CAF state; however, the precise etiology of CAFs remains unknown,

posing a considerable impediment to the efficacy of these

therapeutic interventions (2); targeting CAFs and their secreted

factors, which has been applied in clinical practice; however, there

are some problems, such as lack of specific markers and low

targeting efficiency, that require improvement; and (3) promoting

CAFs to convert into anti-tumor molecules. The investigation of the

potential of CAFs to differentiate in multiple directions and their

conversion from tumor-promoting to anti-tumor or tumor-

inhibiting subtypes is a key area of interest for future research in

the field of tumor treatment (123). Currently, the elucidation of the

origin, definition, biological heterogeneity, and other fundamental

attributes of CAFs in breast cancer is yet to be clarified.

Furthermore, the precise understanding of the association

between CAFs within the TME and drug resistance remains

elusive at the cellular, protein, and gene levels, necessitating

further investigation and validation. The investigation of CAFs

and drug resistance within the breast cancer microenvironment

constitutes an emerging field with vast potential and substantial

clinical implications for enhancing treatment efficacy and

prognosis. A comprehensive investigation of CAFs will contribute

to a better understanding of the intricate interplay between cancer

cells and the various components of the breast cancer

microenvironment, consequently paving the way for novel

therapeutic approaches to managing breast cancer.
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smooth muscle actin-positive cancer-associated fibroblasts secreting osteopontin
promote growth of luminal breast cancer. Cell Mol Biol Lett (2022) 27(1):45.
doi: 10.1186/s11658-022-00351-7

61. Suh J, Kim DH, Lee YH, Jang JH, Surh YJ. Fibroblast growth factor-2, derived from
cancer-associated fibroblasts, stimulates growth and progression of human breast cancer
cells via Fgfr1 signaling. Mol Carcinog (2020) 59(9):1028–40. doi: 10.1002/mc.23233

62. Huang M, Fu M, Wang J, Xia C, Zhang H, Xiong Y, et al. Tgf-B1-activated
cancer-associated fibroblasts promote breast cancer invasion, metastasis and epithelial-
mesenchymal transition by autophagy or overexpression of Fap-A. Biochem Pharmacol
(2021) 188:114527. doi: 10.1016/j.bcp.2021.114527

63. Ren J, Smid M, Iaria J, Salvatori DCF, van Dam H, Zhu HJ, et al. Cancer-
associated fibroblast-derived gremlin 1 promotes breast cancer progression. Breast
Cancer Res (2019) 21(1):109. doi: 10.1186/s13058-019-1194-0

64. Elwakeel E, Brüggemann M, Wagih J, Lityagina O, Elewa MAF, Han Y, et al.
Disruption of prostaglandin E2 signaling in cancer-associated fibroblasts limits
mammary carcinoma growth but promotes metastasis. Cancer Res (2022) 82
(7):1380–95. doi: 10.1158/0008-5472.Can-21-2116

65. Chen Z, Yan X, Li K, Ling Y, Kang H. Stromal fibroblast-derived mfap5
promotes the invasion and migration of breast cancer cells via notch1/slug signaling.
Clin Transl Oncol (2020) 22(4):522–31. doi: 10.1007/s12094-019-02156-1

66. Cao Y, Cao W, Qiu Y, Zhou Y, Guo Q, Gao Y, et al. Oroxylin a suppresses actn1
expression to inactivate cancer-associated fibroblasts and restrain breast cancer
metastasis. Pharmacol Res (2020) 159:104981. doi: 10.1016/j.phrs.2020.104981

67. De Francesco EM, Sims AH, Maggiolini M, Sotgia F, Lisanti MP, Clarke RB.
Gper mediates the angiocrine actions induced by Igf1 through the Hif-1alpha/Vegf
pathway in the breast tumor microenvironment. Breast Cancer Res (2017) 19(1):129.
doi: 10.1186/s13058-017-0923-5

68. Cadamuro M, Brivio S, Mertens J, Vismara M, Moncsek A, Milani C, et al.
Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor
lymphangiogenesis in cholangiocarcinoma. J Hepatol (2019) 70(4):700–9.
doi: 10.1016/j.jhep.2018.12.004

69. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour
angiogenesis. Nat Rev Cancer (2017) 17(8):457–74. doi: 10.1038/nrc.2017.51

70. Al-Kharashi LA, Tulbah A, Arafah M, Eldali AM, Al-Tweigeri T, Aboussekhra
A. High dnmt1 expression in stromal fibroblasts promotes angiogenesis and
unfavorable outcome in locally advanced breast cancer patients. Front Oncol (2022)
12:877219. doi: 10.3389/fonc.2022.877219

71. Wan X, Guan S, Hou Y, Qin Y, Zeng H, Yang L, et al. Fosl2 promotes vegf-
independent angiogenesis by transcriptionnally activating Wnt5a in breast cancer-
associated fibroblasts. Theranostics (2021) 11(10):4975–91. doi: 10.7150/thno.55074

72. Sjoberg E, Meyrath M, Milde L, Herrera M, Lovrot J, Hagerstrand D, et al. A
novel Ackr2-dependent role of fibroblast-derived Cxcl14 in epithelial-to-mesenchymal
transition and metastasis of breast cancer. Clin Cancer Res (2019) 25(12):3702–17.
doi: 10.1158/1078-0432.CCR-18-1294

73. Augsten M, Sjöberg E, Frings O, Vorrink SU, Frijhoff J, Olsson E, et al. Cancer-
associated fibroblasts expressing cxcl14 rely upon Nos1-derived nitric oxide signaling
for their tumor-supporting properties. Cancer Res (2014) 74(11):2999–3010.
doi: 10.1158/0008-5472.Can-13-2740
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