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CT-based radiomics nomogram
for overall survival prediction
in patients with cervical
cancer treated with
concurrent chemoradiotherapy

Chao Xu1†, Wen Liu2†, Qi Zhao1, Lu Zhang1, Minyue Yin2,
Juying Zhou1*, Jinzhou Zhu2* and Songbing Qin1*

1Department of Radiation Oncology, The First Affiliated Hospital of Soochow University,
Suzhou, China, 2Department of Gastroenterology, The First Affiliated Hospital of Soochow University,
Suzhou, China
Background and purpose: To establish and validate a hybrid radiomics model to

predict overall survival in cervical cancer patients receiving concurrent

chemoradiotherapy (CCRT).

Methods: We retrospectively collected 367 cervical cancer patients receiving

chemoradiotherapy from the First Affiliated Hospital of Soochow University in

China and divided them into a training set and a test set in a ratio of 7:3.

Handcrafted and deep learning (DL)-based radiomics features were extracted

from the contrast-enhanced computed tomography (CT), and the two types of

radiomics signatures were calculated based on the features selected using the

least absolute shrinkage and selection operator (LASSO) Cox regression. A hybrid

radiomics nomogram was constructed by integrating independent clinical risk

factors, handcrafted radiomics signature, and DL-based radiomics signature in

the training set and was validated in the test set.

Results: The hybrid radiomics nomogram exhibited favorable performance in

predicting overall survival, with areas under the receiver operating characteristic

curve (AUCs) for 1, 3, and 5 years in the training set of 0.833, 0.777, and 0.871,

respectively, and in the test set of 0.811, 0.713, and 0.730, respectively.

Furthermore, the hybrid radiomics nomogram outperformed the single clinical

model, handcrafted radiomics signature, and DL-based radiomics signature in

both the training (C-index: 0.793) and test sets (C-index: 0.721). The calibration

curves and decision curve analysis (DCA) indicated that our hybrid nomogram

had good calibration and clinical benefits. Finally, our hybrid nomogram

demonstrated value in stratifying patients into high- and low-risk groups

(cutoff value: 5.6).

Conclusion: A high-performance hybrid radiomics model based on pre-

radiotherapy CT was established, presenting strengths in risk stratification.
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1 Introduction

Cervical cancer, as one of the most common gynecologic

malignancies, is the fourth leading cause of cancer-related death

among women around the world, with over 300,000 deaths

worldwide per year (1, 2). In developing countries, the incidence

of cervical cancer was approximately 15.7/100,000, and the risk of

death due to cervical cancer was nearly 0.9% (3). With the

adv an c emen t i n r a d i o t h e r ap y and chemo th e r a p y ,

chemoradiotherapy is currently the first-line treatment option for

locally advanced cervical cancer and was demonstrated to be

associated with improved overall survival compared with

radiotherapy alone (4, 5). However, the overall survival of cervical

cancer seems to be without significant progress, with the 5-year

overall survival (OS) rate of all the cases still below 66.7%, less than

30% in small cell carcinoma of the cervix (6–8). Precise prediction

of clinical outcomes may help physicians provide individualized

treatment to cervical cancer patients with different risks and deliver

timely intervention in patients with a high risk of death.

The rapid development of artificial intelligence (AI) over the

past decade has created growing excitement, and its application in

medicine is currently a hot topic. Radiomics, as an effective and

widely researched case of AI application in medicine, transforming

medical images into diggable data by the high-throughput

extraction of quantitative features, shows a promising application

in cancer diagnosis, evaluation of treatment response, and

prediction of survival outcomes (9–13). Several studies have

proved the value of radiomics in predicting recurrence and

metastasis in cervical cancer patients treated with concurrent

chemoradiotherapy (CCRT) (14–16). However, limited studies

have focused on the prediction of the final survival outcome.

Furthermore, the handcrafted radiomics features are restricted to

the current recognition of medical images and the reserved

knowledge of operators (17).

Deep learning, as one of AI’s most powerful and typical

algorithms, can automatically learn and extract features via

multiple processing layers. Compared to traditional feature

extraction, deep learning reduces manual preprocessing steps and

can provide more deep-going features (18). Adding deep learning-

based features can further improve the performance of predictive

models (19, 20).

In our research, we aimed to develop and validate a

comprehensively hybrid radiomics nomogram based on pre-

radiotherapy contrast-enhanced CT by integrating independent

clinical risk factors, handcrafted radiomics signature, and deep

learning (DL)-based radiomics signature to predict the overall

survival of cervical cancer patients treated with CCRT.
Abbreviations: CCRT, concurrent chemoradiotherapy; DL, deep learning; CT,

computed tomography; LASSO, least absolute shrinkage and selection operator;

DCA, decision curve analysis; OS, overall survival; BMI, body mass index; FIGO,

International Federation of Gynecology and Obstetrics; HPV, human

papillomavirus; ROI, region of interest; AUC, area under the ROC curve.
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2 Materials and methods

2.1 Patients

The retrospective study was approved by the ethics committee

of our institution. A total of 367 cervical cancer patients receiving

CCRT between 2010 and 2017 in the First Affiliated Hospital of

Soochow University were enrolled in our research. The training and

test sets were split up at random from the enrolled patients at a ratio

of 7:3 (Figure 1). The concrete inclusion and exclusion criteria are

shown in Supplementary Material. Contrast-enhanced CT images

were collected before radiotherapy. Baseline clinical-pathological

data, including age, body mass index (BMI), pathological type,

surgery, overall stage, and human papillomavirus (HPV) infection

were obtained from the medical records. The tumor stage was

strictly adherent to the 2018 International Federation of

Gynecology and Obstetrics (FIGO) staging system.
2.2 Treatment and follow-up

All patients in this research received CCRT. For the

radiotherapy regimen, patients underwent external radiotherapy

(ERT) with or without intracavitary brachytherapy (IBT). ERT

methods include three-dimensional conformal radiation therapy

(3D-CRT) and intensity-modulated radiotherapy (IMRT), and CT

simulation positioning was used. The total external radiation dose

was DT45–50Gy, and the positive lymph node area in the pelvic and

abdominal cavity can increase by 10–15 Gy. Intracavitary

brachytherapy uses iridium-192 as the radiation source, with a

single dose of 5–7 Gy; the dose at point A was 25–30 Gy. For the

chemotherapy regimen, the choice depended on the decision of the

professional multidisciplinary team and the tolerance of patients.

The last follow-up time was December 2019. Postoperative

follow-up, including outpatient review, inpatient medical review,

and telephone interview, was performed regularly. The follow-up

information was recorded carefully in the hospital’s electronic

patient record system. OS was defined as the date of pathological

diagnosis to the date of death or of the last contact.
FIGURE 1

Flowchart of cervical cancer patients’ selection in the training set
and test set.
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2.3 Imaging acquisition and
tumor segmentation

All cervical cancer patients underwent a standard and systemic

pelvic contrast-enhanced CT scan with 16-channel CT scanners

(Philips Brilliance Big Bore CT, Philips, Bothell, WA, USA). Details

regarding the CT scanning parameters were as follows: 120 kVp

tube voltage, a tube current range of 250 to 350 mAs, 3 mm slice

thickness, an image matrix of 512 × 512, a reconstruction slice

thickness range of 1 or 2 mm, and standard B (body) reconstruction

kernels. The patients’ CT data were saved in “DICOM” format from

the image-archiving workstation in our hospital. The clinical target

volume 1 (CTV1) was chosen as the region of interest (ROI). CTV1

was defined as the upper boundary (without para-abdominal aortic

lymph node metastasis) for the bifurcation of the abdominal aorta,

and the upper boundary (with para-abdominal aortic lymph node

metastasis) should be extended appropriately, 7 mm around the

blood vessels, inside the psoas major muscle and on the surface of

the vertebral body. The lower boundary is 3 cm above the top of the

vagina. The anterior boundary is the posterior wall of the bladder,

and the posterior boundary is the mesorectum. The processing flow

of image and clinical data is shown in Figure 2. Three radiologists

who were blinded to the clinical-pathological data and had at least 5

years of work experience participated in the process of tumor

segmentation. One radiologist manually delineated ROI slice-by-

slice using the Treatment Planning System (TPS) equipped with

four medical accelerators (cms, Monaco, pinnacle, and varian). The
Frontiers in Oncology 03
other two radiologists performed the role of reviewers and made

corrections by consensus.
2.4 The handcrafted radiomics feature
extraction/selection and radiomics
signature building

A total of 107 originally handcrafted radiomics features were

extracted using PyRadiomics (version 2.2.0), including 14 shape

features, 18 intensity features, and 75 texture features. The Z-score

normalization was applied to balance the distribution of feature

intensity. Then, the least absolute shrinkage and selection operator

(LASSO) Cox regression with 10-fold cross-validation was applied

to select significant features with non-zero coefficients. The

handcrafted radiomics signature was calculated as a linear

combination of the selected features weighting by respective

coefficients. The detailed process of feature extraction can be seen

in Supplementary Material.
2.5 DL-based radiomics feature extraction/
selection and radiomics signature building

Before the model pretraining and feature extraction, the largest

ROI was selected as the center slice, 1 slice upward and 1 slice

downward to represent each patient. These slices were saved in
FIGURE 2

Workflow of the study. Handcrafted radiomics process including tumor segmentation, feature extraction, feature selection, and the construction of
handcrafted radiomics signature. The deep learning (DL) radiomics process including image cropping, image preprocessing, feature extraction based
on the pre-trained reconstructed ResNet101 model, feature selection, and the construction of DL-based radiomics signature. Univariate and
multivariate analyses were performed to select independent clinical risk factors. The hybrid nomogram incorporating the handcrafted radiomics
signature, the DL-based signature, and the independent clinical risk factors was constructed for clinical application.
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“jpg” format. Then, the selected image grayscale values were

normalized to the range (−1, 1) using a min–max transformation,

and the size of the cropped image was resized to 224 * 224 pixels.

The DL model was developed based on ResNet101 DL

architecture (21). ResNet101 was first proposed by the teamwork

of Kaiming He and was characterized by its strength in capturing

the images’ finest details (22, 23). A dual pretrained ResNet101-

based model was used to perform feature extractions. First, the base

ResNet101 model (Supplementary Material Figure S1A) was

pretrained on ImageNet (https://www.image-net.org). Then, the

pretrained base ResNet101 model architecture and learned

weights were retained to conduct the second pretraining in our

own training sets, which is typically called transfer learning. The

detailed process of the second pretraining was as follows. The last

fully connected layer (FCL) and the classified layer (1,000 categories

of ImageNet) of the base pretrained ResNet101 model were

truncated and replaced with three linear layers and a new

classifier layer (two categories of survival status) (Supplementary

Material Figure S1B). Furthermore, in order to avoid overfitting and

improve generalization, the methods of data augmentation were

taken advantage of, such as flip, crop, rotation, and color, which

were only applied in the training set. Finally, the dual pretraining

weights of the new ResNet101 model were frozen and used as a

feature extractor. A total of 50 deep learning features of each ROI

image were output after the computation of the frontier

convolutional layers, hidden layers, linear1, and linear2. The

parameters of DL model development are described in

Supplementary Material. The extracted DL features of three slices

were averaged to represent each patient.

The same as the method of the construction of the handcrafted

radiomics signature, the DL-based radiomics signature was also

calculated as a linear combination of the selected features weighting

by respective coefficients after LASSO Cox regression with 10-fold

cross-validation.
2.6 Clinical model and development of
hybrid radiomics nomogram

To explore the effect of clinical variables on the prognosis of

cervical cancer patients and demonstrate the prognostic value of our

hybrid model, the Cox regression analysis was applied to develop

the clinical model. The Cox regression model was based on the

results of multivariate analysis, in which the variables were first

selected by the univariable regression analysis. The criterion for

variable inclusion in univariable and multivariate analyses was p

< 0.05.

The hybrid model was established by integrating the

handcrafted radiomics signature, the DL-based radiomics

signature, and the independent clinical risk factors into the

multivariable Cox proportional hazards. We used the method of

the scaled Schoenfeld residual test to check the proportional

hazards (PH) assumption. The prognostic value of the hybrid

model was compared with the single clinical model, the

handcrafted radiomics signature, and the DL-based radiomics

signature in both the training set and test set using C-index and
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areas under the receiver operating characteristic (ROC) curve

(AUCs). A hybrid radiomics nomogram was built to provide an

individual evaluation of the overall survival. The Brier scores and

calibration curves were used to evaluate the fit degree of the actual

outcome and the models’ predictions in all sets. Decision curve

analysis (DCA) was plotted to quantify the net benefits to a range of

threshold probabilities in test sets, demonstrating clinical

usefulness. Furthermore, the risk score of each patient was

computed based on the established hybrid radiomics model, and

patients were stratified into high- and low-risk groups according to

their risk scores using X-tile software (version 3.6.1). The Kaplan–

Meier survival analysis was applied to calculate the survival rates

between the two risk groups and compared using the log-rank test.
2.7 Statistical analysis

All statistical analyses were performed in R software (version

4.1.0) (http://www.R-project.org). The detailed R packages applied

in the analysis can be seen in Supplementary Material. Continuous

variables were compared using the Wilcoxon test, and categorical

variables were compared using a chi-square test or Fisher’s exact

te s t . A two-s ided p-va lue of <0 .05 was cons idered

statistically significant.
3 Results

3.1 The characteristics of patients

A total of 367 cervical cancer patients who received CCRT were

enrolled in the research: 263 in the training set and 104 in the test

set. The detailed clinical-pathological characteristics are

summarized in Table 1. There were no significant differences

between the training set and test set in terms of age, BMI,

pathological type, surgery, overall stage, and HPV infection. The

median follow-up period in the training and test sets were 56 and 53

months, respectively. A total of 46 (17.5%) patients and 20 (19.2%)

patients were confirmed dead in the training and test sets during the

follow-up period.
3.2 Feature selection and
signature development

A total of 107 originally handcrafted radiomics features and 50

DL-based features for each patient were extracted. Then, two

handcrafted radiomics features and two DL-based radiomics

features that were most useful to predict OS were selected using

LASSO in the training set to build a radiomics signature

(Supplementary Material Table S3). Supplementary Material

Figure S2 depicts the procedures of variable selection. Then, the

two types of radiomics signatures were calculated according to the

method mentioned above.

Six important clinical variables mentioned above were admitted

into univariable and multivariate Cox regression analyses. Age and
frontiersin.org
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stage were demonstrated as independent clinical risk factors and

were used to build the clinical model (Figure 3). The Kaplan–Meier

survival analysis indicated that patients with a higher FIGO stage

had a lower OS (Supplementary Material Figure S3).
3.3 The performance of handcrafted
radiomics signature, DL-based radiomics
signature, clinical model, and hybrid
radiomics nomogram

The handcrafted radiomics signature yielded a C-index of 0.628,

and the AUCs for 1, 3, and 5 years were 0.818, 0.587, and 0.676,

respectively, in the test set. The DL-based radiomics signature

yielded a C-index of 0.652, and the AUCs for 1, 3, and 5 years

were 0.485, 0.659, and 0.648, respectively, in the test set. The clinical

model yielded a C-index of 0.663, and the AUCs for 1, 3, and 5 years

were 0.696, 0.699, and 0.629, respectively, in the test set.
Frontiers in Oncology 05
We then created a hybrid radiomics nomogram by integrating

handcrafted radiomics signature, DL-based radiomics signature,

age, and FIGO stage into the multivariable Cox proportional

hazards model (Figure 4). The chi-square test of the Schoenfeld

residuals demonstrated that the hybrid Cox model satisfied the PH

assumption (p > 0.05) (Supplementary Material Figure S4). The

hybrid radiomics model achieved a C-index of 0.793 in the training

set and 0.721 in the test set. The AUCs for 1, 3, and 5 years in the

training set were 0.833, 0.777, and 0.871, respectively. The AUCs for

1, 3, and 5 years in the test set were 0.811, 0.713, and 0.730,

respectively. Both C-index and AUCs confirmed that the hybrid

radiomics nomogram outperformed the single signatures in the

training and test sets. We summarized the concrete results in

Table 2. The Brier scores (all <0.25) and the calibration curves

presented that nomogram-predicted outcomes had good agreement

with the actual survival (Figures 5A–F). In addition, the DCA

curves in Figure 6 showed that the hybrid nomogram for

predicting 3-year and 5-year OS had greater net benefits

compared with the single signatures in the training and test sets,

indicating that the hybrid nomogram had better clinical practice.
3.4 The RSF risk stratification of patients

We calculated the risk score of each patient based on our hybrid

nomogram and divided them into a high-risk group and a low-risk

group. The optimal cutoff value for the risk score was 5.6 using X-

tile (Supplementary Material Figure S5). The results of the Kaplan–

Meier survival analysis and log-rank test indicated that the OS rates

of the high-risk and low-risk groups were significantly different in

both the training and test sets (Figure 7). The 2-, 3-, and 5-year OS

rates of the two groups in the training sets were observed to be 96%

vs. 76%, 69% vs. 55%, and 37% vs. 17%, respectively. The 2-, 3-, and

5-year OS rates of the two groups in the test sets were observed to be

94% vs. 73%,61% vs. 55%, and 34% vs. 18%, respectively.
4 Discussion

In this retrospective study, we established and validated a

hybrid CT-based radiomics nomogram to predict overall survival

in cervical cancer patients receiving CCRT. The hybrid radiomics

nomogram developed by integrating handcrafted radiomics

signature, DL-based radiomics signature, and independent clinical

risk factors outperformed the model that used a single predictor.

Furthermore, the risk scores calculated by the hybrid model could

stratify cervical cancer patients into high- and low-risk groups with

different prognoses, showing potential in clinical practice.

In recent years, there have been an increasing number of studies

attempting to combine clinical data with imaging features to predict

lymph node metastasis, treatment response, and prognosis (24–27).

The imaging features contained the categories of radiomics (CT,

MRI, and PET-CT) and pathological images. Zhang et al. (24)

retrospectively analyzed the pre-treatment MRI images of 277

cervical cancer patients who received neoadjuvant chemotherapy

(NACT) to predict tumor response to NACT in cervical cancer
TABLE 1 Baseline clinical characteristics of cervical cancer patients
receiving CCRT in the training and test sets.

Characteristics Training set
(n = 263)

Validation set
(n = 104)

p

Age (%) 0.325

<60 198 (75.3) 84 (80.8)

≥60 65 (24.7) 20 (19.2)

BMI (%) 0.746

<24 168 (63.9) 69 (66.3)

≥24 95 (36.1) 35 (33.7)

Pathology (%) 0.977

Squamous carcinoma 244 (92.8) 96 (92.3)

Adenocarcinoma 17 (6.5) 7 (6.7)

Adenosquamous carcinoma 2 (0.8) 1 (1.0)

Surgery (%) 0.959

No 86 (32.7) 35 (33.7)

Yes 177 (67.3) 69 (66.3)

Overall stage (FIGO) (%) 0.864

I/II 224 (85.2) 90 (86.5)

III 39 (14.8) 14 (13.5)

HPV infection 0.682

No 32 (12.2) 15 (14.4)

Yes 231 (87.8) 89 (85.6)

Status 0.810

Alive 217 (82.5) 84 (80.8)

Dead 46 (17.5) 20 (19.2)

Follow-up time (months)
Median (range)

56
(3,110)

53
(3,109)

0.662
CCRT, concurrent chemoradiotherapy; BMI, body mass index; FIGO, International
Federation of Gynecology and Obstetrics; HPV, human papillomavirus.
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patients (the AUCs in the training set, internal validation set, and

external validation set were 0.963, 0.940, and 0.910, respectively).

Zhang et al. (25) developed a LASSO–Cox model to predict 5-year

OS based on H&E-stained pathological images (the AUCs of the

combined model, the single clinical model, and the pathological

model in the test set were 0.750, 0.729, and 0.793, respectively).

Chen et al. (26) developed a support vector machine (SVM) model

to predict lymph node metastasis based on pre-therapy CT

radiomics features (AUCs were 0.841 ± 0.035). On the one hand,

our study aimed to establish a CT-based radiomics nomogram for

overall survival prediction in patients with cervical cancer treated

with CCRT, which is less researched by others. On the other hand,

compared with the above studies, our research had a larger sample
Frontiers in Oncology 06
size and made full use of the CT radiomics data. Extracted features

included handcrafted radiomics features and deep learning-based

radiomics features. Our research supplemented the evidence of

radiomics in the prediction of the prognosis of cervical cancer

patients treated with CCRT.

Both radiomics and clinical-pathological data contained

important prognostic information. Our research identified that

age and FIGO stage were independent clinical risk factors of

cervical cancer receiving CCRT, in line with other studies (28–

30). In contrast to models constructed by a single type of clinical

risk factors, the hybrid model combining clinical data with

radiomics contained more prognostic information and had better

predictive ability. Zhang et al. (13) developed a CT-based hybrid
FIGURE 4

Nomogram predicting the overall survival (OS) rates for 1, 3, and 5 years of patients with cervical cancer treated with concurrent chemoradiotherapy.
FIGURE 3

Forest plot of multivariate Cox regression analysis of overall survival (OS).
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radiomics nomogram for the prediction of local recurrence-free

survival in esophageal squamous cell cancer patients. A model

incorporating handcrafted radiomics features and clinical features

outperformed the single clinical model (C-index in the external

validation set was 0.66 vs. 0.60), and adding deep learning features

can further improve the accuracy of model prediction (C-index in

the external validation set was 0.76). In our research, a hybrid

nomogram established by integrating the handcrafted radiomics

signature, the DL-based radiomics signature, and the independent

clinical risk factors outperformed a single predictor (C-index in test

set: 0.721).

In contrast with the traditional medical image assessments that

mainly focused on qualitative features like tumor density, regularity

of tumor margins, tumor enhancement pattern, and anatomical

relationship with surrounding tissues, radiomics analysis could
Frontiers in Oncology 07
output many high-throughput quantitative features, enabling

more objective analysis and evaluation of medical images (11).

Furthermore, radiomics had strength in overcoming the spatial and

temporal specificity of the whole cancer course, compared with

genomics and proteomics (31). Multiple studies have demonstrated

that radiomics could reflect the heterogeneity of tumor cells and

tumor microenvironments (32–34). In our research, we extracted

107 handcrafted radiomics features. We finally selected one of the

gray-level co-occurrence matrix (GLCM) features (Joint Average)

and one of the gray-level dependence matrix (GLDM) features

(Gray-Level Non-Uniformity) with LASSO regression to calculate

the handcrafted radiomics signature. GLCM is a method of second-

order statistical texture analysis that provides more information

about texture by considering relationships between the intensity of

pairs of neighboring pixels/voxels. GLCM can map the relationship
B C

D E F

A

FIGURE 5

Calibration curves for predicting overall survival (OS) in the training (A–C) and test sets (D–F).
TABLE 2 Predictive performances of clinical model, handcrafted radiomics signature, DL-based radiomics signature, and hybrid nomogram.

Model AUC
1-year

AUC
3-year

AUC
5-year

Brier score
1-year

Brier score
3-year

Brier score
5-year

C-index

Clinical Training 0.774 0.693 0.690 0.035 0.099 0.126 0.671

Test 0.696 0.699 0.629 0.062 0.111 0.153 0.663

Handcrafted Training 0.697 0.703 0.825 0.036 0.107 0.126 0.722

Test 0.818 0.587 0.676 0.065 0.114 0.143 0.628

Deep learning Training 0.744 0.600 0.697 0.036 0.120 0.143 0.643

Test 0.485 0.659 0.648 0.062 0.113 0.150 0.652

Hybrid Training 0.833 0.777 0.871 0.033 0.089 0.103 0.793

Test 0.811 0.713 0.730 0.070 0.111 0.154 0.721
fr
DL, deep learning; AUC, area under the receiver operating characteristic curve.
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between voxels within the ROI (35). Joint Average, as one of the

GLCM features, can return the mean gray-level intensity of the

distribution. GLDM features are computed based on the overall

spatial relations of intensities, which describe the relations between

intensities of every central pixel and all its neighbors within a

window (36). Gray-Level Non-Uniformity, as one of the GLDM

features, can return the similarity of gray-level intensity values in

the images.

Deep learning is characterized by automatically learning from a

huge amount of image data and extracting features via

convolutional operations. Conventional radiomics needs
Frontiers in Oncology 08
handcrafted drawing ROI, which relies on clinicians’ professional

knowledge, but it is time-consuming. In contrast, deep learning can

simplify the multi-step process by directly inputting a large dataset

of labeled images with greater reproducibility (37). In addition, deep

learning can dig out in-depth information hiding in images via

multiple processing layers, complementing radiomics further (38).

In this research, we chose a dual pretrained ResNet101-based model

to perform feature extractions. On the one hand, the ResNet101

model is capable of training up to 100 layers of deep networks. On

the other hand, the ResNet101 model can better tackle the problem

of gradient vanishing by introducing the residual layers,
BA

FIGURE 7

The hybrid nomogram risk stratification patients. (A) The nomogram risk stratification of patients in the training set. (B) The nomogram risk
stratification of patients in the test set.
B C

D E F

A

FIGURE 6

Decision curve analysis of the hybrid nomogram and the single clinical model, handcrafted radiomics signature, and DL-based radiomics signature
for 1-year (A), 3-year (B), and 5-year (C) overall survival (OS) in the training set (A–C) and test set (D–F).
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guaranteeing model accuracy (39). The ResNet101 model has been

demonstrated to present strength in the identification of medical

images compared with other convolutional neural networks

(CNNs) (12). Considering that deep learning requires a large

amount of image data to avoid overfitting and improve the

adaptability of the learned model, we first pretrained the base

ResNet101 model on the ImageNet database. Then, we applied

data augmentation methods, such as flipping, cropping, rotation,

and coloring, to conduct the second pretraining in the newly

developed ResNet101 model (mentioned above).

Although our research presented some favorable results, there

were still some limitations that needed to be raised. First, this

research was retrospective and single-center. The number of

enrolled patients was limited in the training and test sets. Multi-

center and prospective studies were expected to validate the

constructed hybrid nomogram further. Second, the hybrid

nomogram is not a fully automated model, as it requires

specialists to undergo manual ROI annotation on the pre-

radiotherapy CT. This process inevitably had some bias

influencing the final radiomics features extraction. Third, this

research constructed a model only based on the pre-radiotherapy

CT. More prognostic information about cervical cancer can be

explored if combined with other types of medical images, such as

pathological images, MRI images, and PET/CT images. Fourth, our

research applied traditional Cox proportional hazards (CoxPH)

analysis to establish a CT-based radiomics nomogram and did not

attempt to compare with the machine learning (ML) methods, such

as random survival forest (RSF) and deep learning (Deepsurv),

which are currently a hot topic. ML did not need to assume that the

influence of all variables on the risk function is linear and presented

strengths in tackling larger sample sizes and high-dimensional data

compared with the traditional statistical methods (40). Our research

needed further improvement in the future.
5 Conclusions

In conclusion, we developed and validated a CT-based hybrid

radiomics nomogram that integrated independent clinical risk

factors, and handcrafted and DL-based radiomics signature to

predict overall survival in cervical cancer patients treated with

concurrent chemoradiotherapy. The hybrid radiomics nomogram

exhibited favorable performance for predicting prognosis and had

the potential for guiding individualized treatment.
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