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Introduction: Linear accelerator (linac) incorporating a magnetic resonance

(MR) imaging device providing enhanced soft tissue contrast is particularly

suited for abdominal radiation therapy. In particular, accurate segmentation

for abdominal tumors and organs at risk (OARs) required for the treatment

planning is becoming possible. Currently, this segmentation is performed

manually by radiation oncologists. This process is very time consuming and

subject to inter and intra operator variabilities. In this work, deep learning

based automatic segmentation solutions were investigated for abdominal

OARs on 0.35 T MR-images.

Methods: One hundred and twenty one sets of abdominal MR images and

their corresponding ground truth segmentations were collected and used for

this work. The OARs of interest included the liver, the kidneys, the spinal cord,

the stomach and the duodenum. Several UNet based models have been

trained in 2D (the Classical UNet, the ResAttention UNet, the EfficientNet

UNet, and the nnUNet). The best model was then trained with a 3D strategy in

order to investigate possible improvements. Geometrical metrics such as

Dice Similarity Coefficient (DSC), Intersection over Union (IoU), Hausdorff

Distance (HD) and analysis of the calculated volumes (thanks to Bland-

Altman plot) were performed to evaluate the results.

Results: The nnUNet trained in 3D mode achieved the best performance,

with DSC scores for the liver, the kidneys, the spinal cord, the stomach, and

the duodenum of 0.96 ± 0.01, 0.91 ± 0.02, 0.91 ± 0.01, 0.83 ± 0.10, and 0.69

± 0.15, respectively. The matching IoU scores were 0.92 ± 0.01, 0.84 ± 0.04,

0.84 ± 0.02, 0.54 ± 0.16 and 0.72 ± 0.13. The corresponding HD scores were

13.0 ± 6.0 mm, 16.0 ± 6.6 mm, 3.3 ± 0.7 mm, 35.0 ± 33.0 mm, and 42.0 ±

24.0mm. The analysis of the calculated volumes followed the same behavior.
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Discussion: Although the segmentation results for the duodenum were not

optimal, these findings imply a potential clinical application of the 3D nnUNet

model for the segmentation of abdominal OARs for images from0.35 TMR-Linac.
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1 Introduction

For several years, linear accelerators (Linacs) with integrated

Magnetic Resonance Imaging (MRI) has made MR-guided

radiotherapy (MRgRT) possible, offering an alternative image quality

for the treatment planning and delivery compared to traditional X-ray-

based imaging (1, 2). MRI provides superior contrast for soft tissues,

making it more suitable for imaging the abdominal organs (3).

Consequently, the clinical use of MR-Linacs has been particularly

focused on stereotactic body radiation therapy (SBRT) of abdominal

tumors (4–7). Indeed, MR imaging allows to get directly a precise

delineation of target volumes and organs at risk (OARs) without

complementary exams. The MR imaging is also acquired daily with

the same sequence and parameters as the simulation image for

treatment adaptation. Nevertheless, the position and the shape of

several abdominal organs are not fixed since they are submitted to

different movements related to breathing, cardiovascular and

gastrointestinal activity (8). Since MR imaging uses non-ionizing

radiation, it can be conducted multiple times during the treatment to

monitor patient movements (gating process) or to adjust OAR and

target variations between treatment sessions (adaptive radiotherapy

process). This enhances both the safety and quality of the treatment (1).

These processes are especially relevant in the context of abdominal

SBRT since the healthy tissues are highly radiosensitive (9, 10).

In our institution, MR-guided abdominal SBRT (including gating

and adaptive RT) is performed with the MRIdian (Viewray Inc.,

Oakwood Village, USA) 0.35 T MR-Linac since 2019 (11, 12). The

success of these treatments and the reduced toxicity highly rely on the

exact definition of the different OARs (13, 14). Radiation oncologists

generally follow the established guidelines to define the volume of

interest (15–17). The common practice is to manually draw the

contours of different organs on the MR images. Nevertheless, an

inter and intra observer variability is often pointed out, especially

according to the level of expertise (18) and this is a very time

consuming step in the radiotherapy (RT) workflow (19, 20).

The development of artificial intelligence (AI) has already begun to

reshape our world, offering unprecedented advancements in the health

care sector. Particularly, deep learning (DL) techniques represented by

Convolutional Neural Networks (CNN) have been widely applied in

the field of medical imaging segmentation. Originating from a cell

segmentation challenge, UNet network (21), with its main structure

based on the encoder-decoder structure, is currently the most popular
02
automatic segmentation method in the field of multi-organ

segmentation (22). Many researchers have made improvements based

on this foundational network that have been applied to abdominal

segmentation. For example, Oktay et al. (23) applied attention

mechanisms (originally used for natural language processing) to the

UNet, which improved the accuracy of pancreas segmentation for CT

(Computed Tomography) images. Sabir et al. (24) improved the

segmentation of liver tumors for CT images using the ResUNet, by

combining the attention mechanism, residual blocks and the UNet,

together. Besides, the EfficientNet uses fixed coefficients to scale the

network’s depth, width and resolution. It improves performance while

reducing computational expense (25). Khalil et al. (26) replaced the

backbone of the UNet with the EfficientNet and subsequently improved

the performance segmentation of the OARs for abdominal CT images.

Despite the success of these UNet-based neural networks, the

search for neural network hyperparameters and preprocessing or

post-processing techniques still require a high level of knowledge

and experience (27, 28). To face this problem, a fully automated

segmentation framework designed for medical imaging called the

nnUNet has been developed (28). The network structure and the

training strategy can be automatically adjusted based on different

data. Since its introduction, the nnUNet has achieved state-of-the-

art results on many medical segmentation datasets from different

medical imaging techniques. For instance, it achieved the first place

in the 2019 Kidney and Kidney Tumor Segmentation (KiTS19)

competition and fourth place in the Combined (CT-MR) Healthy

Abdominal Organ Segmentation (CHAOS) challenge (29–31).

Within the realm of radiotherapy, AI has shown its capacity to aid

radiation oncologists in tumor diagnosis and treatment (32, 33). For

instance, Kawula et al. employed the 3D UNet for segmenting clinical

target volume and OARs in the pelvic area, using MR images obtained

from 0.35 TMR-Linacs, underscoring the potential of AI applications in

MRgRT (34). In this context, we decided to investigate the automatizing

of abdominal OARs segmentation on 0.35 T MR-Linac images in order

to optimize the treatment workflow and its quality. The performances of

the Classical UNet, the ResAttention UNet, the EfficientNet with the

EfficientNet-b4 as its encoder and the nnUNet were investigated for the

prediction of abdominal OARs from 0.35 T MR-Linac images. This

work specifically focused on five OARs: the liver, the kidneys, the spinal

cord, the stomach and the duodenum. The objective of this work was to

find the most accurate automatic organ contouring model using the

proposed DL techniques based on dedicated metrics.
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2 Materials and methods

2.1 Data acquisition and preprocessing

A total of 121 series of abdominal axial MR images have been

collected from 77 patients treated for liver cancer and 44 patients treated

for pancreas cancer. The images have been acquired with our 0.35 T

MRIdianMR-Linac (Viewray Inc., OakwoodVillage, USA) device using

a balanced steady-state free precession (SSFP, T2/T1-weighted)

sequence during breath-hold. Five OARs have been considered for

this study: liver, kidneys, spinal cord, stomach and duodenum. The

delineations used for each treatment were also collected and reviewed by

one expert radiation oncologist to be considered as the ground truth in

this work. The updates includedmissing data or incorrect segmentation.

Specifically, in the treatment of liver cancer, the radiation oncologists

might only segment the kidney on the side closest to the liver tumor.

The kidney on the other side was also segmented. Similarly, when the

stomach is far from the liver tumor, they might only segment the half of

the stomach closest to the tumor. The entire stomach was segmented.

Additionally, the segmentation of the spinal cord by the radiation

oncologists is often too coarse, typically several times its normal size.

Although these segmentation ambiguities do not affect clinical

treatment, they can impact the training process of the neural network.

In consequence, these segmentations have been refined.

The characteristics of the MR images from the 121 patients are

displayed in Table 1. Due to the poor homogeneity of the magnetic field

at the extremities of the field of view, as shown in Figure 1, higher levels

of artefacts and distortion tend to be seen in these areas. Consequently,

the corresponding 2D slices were discarded and the remaining 2D slices

of the same patient were kept. Specifically, for images containing 80 2D

slices, the first 3 slices and the last 3 slices were removed. For images

with 140 2D slices, the first 19 slices and the last 47 slices were discarded.

To ensure that the data input into the neural network has a consistent

shape, the images were resampled from their original dimensions to a

standardized size of 288 × 288 pixels. For images of size 310 × 360, their

size was first cropped to a size of 310 × 310, and employed then bilinear

interpolation was employed to resample them to a resolution of 288 ×

288. For images measuring 310 × 310, bilinear interpolation was used to

resample them to a size of 288 × 288. The nearest neighbor interpolation

method was employed for resampling the corresponding masks. The

second preprocessing technique involved was a limiting filtering to

remove near-zero values from the background. Due to significant

variations in brightness within certain images, the CLAHE (Contrast

Limited Adaptive Histogram Equalization) method was employed to

augment the contrast. Additionally, this method assists in diminishing

noise intensity, obviating the need for alternative standardization

techniques (35). Two pairs of images showing the difference before

and after the preprocessing are displayed in Figure 2.
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2.2 Data augmentation

Neural networks are prone to overfit when training images are

insufficient (27). Data augmentation can increase the training

samples by making minor modifications to the existing data. The

techniques detailed in Table 2 and illustrated in Figure 3 were used

in order to further augment our dataset. Among them, ‘grid

distortion’ applies a grid over the image and then introduces

random shifts to the grids’ edges. In contrast, ‘elastic transform’

starts by generating a random displacement field and then uses it to

deform the image (36). Some techniques such as horizontal flipping

provides images that are aberrant anatomically. However, on a

relatively scarce dataset, it is preferable to do data augmentation

with data that are not anatomically possible rather than not doing

data augmentation. This process adds some noise in the data, and

then, reinforces the network even if it appears not to be logically.

The Albumentations library was used to augment our data. This

library has been reported as a fast and flexible implementation (36).
2.3 Automatic segmentation models: UNet
and variations

Four types of the UNet have been used in this study: the Classical

UNet, the ResAttention UNet, the EfficientNet UNet and the nnUNet

(21, 23–26). As depicted in Figure 4, the UNet employs an encoder-

decoder structure with skip connections. Blue rectangles denote feature

maps, and white rectangles indicate direct duplicates of the feature

maps on the left. The encoder on the left is responsible for feature

extraction, and the decoder on the right decodes the encoded

information. With information acquired from the skip connections,

the UNet can directly utilize spatial data for prediction. By integrating

the ResNet as its backbone and adding an attention mechanism, a

model called the ResAttention UNet can be derived. Similarly, when

the encoder of the UNet is replaced with the EfficientNet, another

variation of the UNet named the EfficientNet UNet can be defined.

For the classical UNet, the ResAttention UNet and the EfficientNet

UNet, the following parameters have been used: training batch size to 16,

the AdamWoptimizer, an initial learning rate of 0.001. The learning rate

was reduced to a minimum of 0.000001 using the reduce learning on

plateau strategy, which divides the original learning rate by 5 when there

is no improvement after eight consecutive epochs. The 5-fold cross-

validation was used in the training set. The first three models require

extensive experimentation by experienced researchers to identify the

optimal hyperparameters. In this context, the nnUNet diverges from this

approach not by altering the UNet architecture, but by automating the

search for its training parameters. Initially, it processes the dataset to

generate dataset fingerprints, which include characteristics such as image
TABLE 1 Characteristics of images for the 121 patients.

Number
of patients

Image height (number
of pixels)

Image width (number
of pixels)

Pixel
size (mm²)

Slice thickness (mm) Number
of Slices

5 310 360 1.6 × 1.6 3.0 140

116 276 276 1.5 × 1.5 3.0 80
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size andmodality. Subsequently, it auto-configures parameters like batch

size and patch size based on a set of rules. These parameters are then

automatically integrated with pre-established blueprint parameters,

including learning rate and loss functions, to generate pipeline

fingerprints. The resulting pipeline fingerprints serve as the training

specifications for the UNetmodel. The nnUNet, after analyzing our data,

determined all the required parameters for training in both 2D and 3D

modes, and then used these parameters to train the neural network. The

nnUNet has integrated parameter search tasks, so it is not necessary to

define loss functions, optimizers, and other hyperparameters like when

training our first three models. Then for the training of the nnUNet, the

source code provided by the authors was utilized. For each model, the

same method of random splitting was employed to divide the dataset

into a training set and a test set, containing 110 patients and 11 patients,

respectively. Python 3.10 and PyTorch 2.0 were used to train the models.
2.4 Post-processing method

In the example in the Figure 5, the segmentation results for the liver

and kidneys contain someminor noise that is not connected to themain

segmented structure. To solve this problem, post-processing technique

based on 3D connected regions is commonly used in medical image

segmentation and has yielded satisfactory results (29, 37). This method

was applied to all the considered organs in our study. Specifically, for

organs such as the liver, the spinal cord, the duodenum and the
Frontiers in Oncology 04
stomach, the largest connected region was retained. For the kidneys,

both the largest and the second largest connected regions were kept.
2.5 Evaluation method

2.5.1 Geometrical comparison
To evaluate the model performances, the Dice Similarity Coefficient

(DSC) (Equations 1), Intersection over Union (IoU) coefficient

(Equations 2), and Hausdorff distance (HD) (Equations 3) were

calculated in 3D mode. The DSC and IoU coefficients allow us to

determine the similarity of two sets based on the extent of their overlap.

Their respective formulae are as follows:

DSC =
2 * Overlap Volume

Total Volume

=
2 * Overlap Volume

Predicted Volume + Ground truth Volume
(1)

IoU =
Overlap Volume
Union Volume

=
Overlap Volume

Predicted Volume + Ground truth Volume�Overlap Volume

(2)

The HD is employed to evaluate the distance between two

volumes. Its formula is as follows:
B

C D

A

FIGURE 1

Examples of axial MR images from different exams. (A) is the image we kept, and (B–D) were removed. Specifically, (B, C) are only half exposed,
while half of (D) is not clear.
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HD = max sup inf d(x, y), sup inf d(x, y)
x ∈ Ay∈B          y ∈ Bx∈A        

0
@

1
A (3)

In this equation: A and B represent the two sets of 3D points

being compared. d(x,y) is the distance between points x and y.

sup inf
x∈Ay∈B

d(x, y) calculates the largest of the smallest distances from

each point in A to B. For each point x in A, it finds the nearest point
Frontiers in Oncology 05
in B (which is the minimum distance, represented by inf
y∈B

d(x, y)).

Then it finds the largest of these minimum distances (represented

by sup
x∈A

). Similarly, sup inf
y∈Bx∈A

d(x, y) calculates the largest of the smallest

distances from each point in B to A. The HD allows us to highlight

local outliers. In order to eliminate the impact of a very small subset

of the outliers, the 95th percentile of the Hausdorff distances

(95HD) has also been considered.
B

C D

A

FIGURE 2

Examples of images before and after preprocessing (A, C) are the original images, (B, D) are the transformed images. We can see that the contrast of
the images is enhanced. It can be observed that, after preprocessing, the originally rectangular image (A) has been cropped and transformed into a
square one (B).
TABLE 2 This table lists the augmentation techniques used in our method, their application probabilities to images before neural network input, and
the associated parameters for each.

Augmentation Probability of use Parameters Description

Horizontal Flip 0.5 – Flip the picture horizontally

Shift scale rotate 0.5 shift limit = 0.0625
scale limit = 0.05
rotate limit = 10

Randomly apply affine transformations

Grid distortion 0.5 grid number = 5
distort limit = 0.05

Grid deformation of images

Elastic transform 0.5 alpha affine = 50
alpha = 1
sigma = 50

Elastic deformation of images
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FIGURE 3

Examples of original images and the associated data augmentations. Gridlines are added to the image to better illustrate the results of the data
augmentation. It can be observed that after grid distortion, the spacing between lines in the image has become non-uniform. After elastic
transformation, the straight lines in the image appear curved.
FIGURE 4

The structure of UNet. Modified from (21).
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Despite variations in pixel sizes across patients, our

methodology ensures a consistent and robust calculation of the

HD. Initially, the HD was computed using pixel units. Then, the

specific pixel sizes of each MRI were considered. As illustrated in

Table 3, which showcases HD values for all organs across all

patients in the test set, the HD results for the patient 3 (with

different pixel size) is aligned closely with those of other patients,

indicating minimal impact of pixel size variations on our analysis.

2.5.2 Volume comparison
The correlation coefficient (r) and the Bland-Altman plot were

used to analyze the automated predicted organ volume and

compare it to the one obtained with the manual ground truth.

Contrary to geometrical metrics, considering an anatomical

parameter such as the volume allows us to reach an usable metric

in clinical practice. The correlation coefficient (r) shows how closely

the volumes obtained with the manual ground truth and the
Frontiers in Oncology 07
predicted results are related, and consequently characterizes the

stability of the model. On the other hand, the Bland-Altman

diagram focuses on the agreement between these two

measurements by calculating the average and standard deviation

of the differences of both values and points out possible bias. This

study of agreement can be displayed by a specific graph called the

Bland-Altman plot (38, 39).
3 Results

The geometrical performances of the different models are

displayed for each organ in Table 4. For each investigated model

(the Classical UNet, the ResAttention UNet, the EfficientNet UNet,

and the nnUNet trained in both 2D and 3D modes), the DSC, IoU

and HD mean values of the test set have been calculated in 3D with

the corresponding standard deviation.
BA

FIGURE 5

Example of the segmentation results for the liver and kidneys. (A) displays the result before the post-processing. (B) displays the result after the post-
processing. The liver is in blue and the kidneys in pink.
TABLE 3 HD of the organs of all patients in the test set, where the pixel size of the third patient was different from that of the others.

Patient # HD (mm)

Liver Kidney Spinal Cord Duodenum Stomach

1 12.5 12.3 3.8 98.5 99.6

2 9.8 16.5 3.8 21.9 11.9

3 11.3 7.2 3.1 45.8 23.4

4 13.4 13.7 5.1 11.4 33.0

5 30.7 30.9 5.1 12.3 9.2

6 7.6 14.5 3.8 22.1 26.9

7 11.5 19.3 5.1 53.0 100.8

8 12.1 21.0 4.2 30.1 8.7

9 12.1 13.7 4.2 69.2 28.0

10 12.4 7.0 4.8 56.2 22.2

11 13.8 14.5 2.4 51.8 17.8
f
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An improvement of the results is observed through these

geometrical metrics for each organ by complexifying the UNet

network. The nnUNet trained in 2D mode outperformed other 2D

networks across all organs. As all the models have been trained with

2D strategy, considering the results in 2D, only the nnUNet was also

been trained with 3D strategy. There is further improvement when

the nnUNet was trained in 3D mode. The behavior of the 3D

nnUNet results is illustrated in Figures 6, 7. For the liver, the

kidneys and the spinal cord, the mean DSC is particularly high (>

0.91) with a very limited standard deviation (< 0.02). For the

stomach, the mean DSC is lower, but remains at a relatively

satisfying level (0.83). For the duodenum, the mean DSC is even

lower and the values are below 0.69. Similar tendencies have been

observed for the IoU and the HD. Moreover, the tested neural

network underperfomed for the duodenum and the stomach

considering the HD. This may be attributed to the difficulty of

the neural network in discerning the boundaries of the duodenum

and the stomach.

Further volumetric analysis has been done for 3D nnUNet

based on the correlation coefficient and the Bland-Altman plot

(available in Supplementary Material) and the results are

summarized in Table 5. For liver, kidneys and spinal cord, a high

level of correlation and a good agreement between the considered

volumes confirms the stability and the accuracy of the model. For
Frontiers in Oncology 08
the duodenum and the stomach, the correlation coefficient is very

low demonstrating nonsystematic behavior of the model. This is

also illustrated with the high level of the standard deviation of the

mean difference for both organs. However, according to the results

of the Bland-Altman pots, the agreements remain acceptable

compared with the mean absolute volume of the organ.
4 Discussions

In 2D, we found that the nnUNet outperformed the Classical

UNet, the ResAttention UNet and the EfficientNet UNet for the

segmentation of all the OARs. Notably, according to our knowledge,

the nnUNet was used for the first time to do organ segmentation in the

abdomen using a 0.35 TMR-Linac. Additionally, the 3D version of the

nnUNet is more effective than the 2D version. It was not necessary to

compare the 3D versions of all the networks as the ranking of the

methods in 3D conforms to the one in 2D in most of the medical

imaging segmentation tasks (22). We have observed that these models

share the same limits in the segmentation of OARs and the results

varied across different organs. Specifically, their performance in

segmenting the duodenum and stomach was slightly inferior

compared to their accuracy in delineating the liver, kidneys and

spinal cord. Indeed, it is challenging to distinguish the junction
TABLE 4 DSC, IoU, HD and 95HD values of the different tested models on the five OAR.

Model Name Metrics Liver Kidney Spinal Cord Duodenum Stomach

Classical UNet

DSC 0.92 ± 0.02 0.77 ± 0.06 0.87 ± 0.02 0.39 ± 0.13 0.59 ± 0.12

IoU 0.86 ± 0.04 0.64 ± 0.08 0.77 ± 0.03 0.25 ± 0.10 0.43 ± 0.11

HD (mm) 23.0 ± 7.5 26.0 ± 11.0 6.2 ± 3.5 45.0 ± 15.0 45.0 ± 22.0

95HD (mm) 8.9 ± 3.7 16 ± 8.3 5.9 ± 4.9 32.0 ± 13.0 30.0 ± 22.0

ResAttention UNet

DSC 0.94 ± 0.02 0.82 ± 0.05 0.87 ± 0.02 0.39 ± 0.13 0.67 ± 0.09

IoU 0.88 ± 0.03 0.70 ± 0.07 0.77 ± 0.04 0.25 ± 0.10 0.52 ± 0.10

HD (mm) 21.0 ± 6.1 26.0 ± 15.0 6.0 ± 3.7 45.0 ± 14.0 42.0 ± 24.0

95HD (mm) 7.0 ± 2.4 15.0 ± 14.0 4.1 ± 2.9 34.0 ± 12.0 27.0 ± 23.0

EfficientNet UNet

DSC 0.95 ± 0.01 0.88 ± 0.04 0.86 ± 0.03 0.43 ± 0.11 0.75 ± 0.09

IoU 0.90 ± 0.02 0.78 ± 0.07 0.76 ± 0.04 0.28 ± 0.09 0.61 ± 0.10

HD (mm) 17.0 ± 6.8 18.0 ± 8.0 5.5 ± 3.0 44.0 ± 15.0 43.0 ± 27.0

95HD (mm) 5.4 ± 2.5 8.2 ± 5.0 6.0 ± 4.9 32.0 ± 13.0 27.0 ± 25.0

nnUNet 2D

DSC 0.95 ± 0.02 0.91 ± 0.02 0.90 ± 0.03 0.53 ± 0.25 0.82 ± 0.09

IoU 0.91 ± 0.04 0.83 ± 0.04 0.83 ± 0.04 0.40 ± 0.24 0.70 ± 0.12

HD (mm) 16.0 ± 11.0 16.0 ± 7.7 4.3 ± 2.1 46.0 ± 27.0 42.0 ± 31.0

95HD (mm) 6.6 ± 6.6 6.5 ± 4.1 4.3 ± 4.5 36.0 ± 26.0 26.0 ± 30.0

nnUNet 3D

DSC 0.96 ± 0.01 0.91 ± 0.02 0.91 ± 0.01 0.69 ± 0.15 0.83 ± 0.10

IoU 0.92 ± 0.01 0.84 ± 0.04 0.84 ± 0.02 0.54 ± 0.16 0.72 ± 0.13

HD (mm) 13.0 ± 6.0 16.0 ± 6.6 3.3 ± 0.7 42.0 ± 24.0 35.0 ± 33.0

95HD (mm) 3.8 ± 0.7 6.3 ± 3.8 2.2 ± 0.3 32.0 ± 23.0 23.0 ± 30.0
f

Each value is presented with its standard deviation. The values in bold correspond to the best performances.
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between the stomach and the duodenum in MR images. As a

consequence, a significant variability in the ground truth could

impact the training and affect the prediction. We tried to highlight

this issue by asking two radiation oncologists to contour independently

the stomach and the duodenum of 11 patients. The DSC results

between both radiation oncologists are displayed in Table 6 and an

example is shown in Figure 8. These results highlight the important

variation in the segmentation task, especially for the duodenum.
Frontiers in Oncology 09
Nevertheless, one can observe that the DSC between both radiation

oncologists for the cumulative volume of stomach and duodenum is at

a very satisfying level and greater or equal to 0.8, reinforcing the

assumption that the limit between both organs is difficult to determine

and highly depends on the level of experience. Consequently, it is

difficult to ensure that the ground truth used for the deep learning

training represents the real organs and thus, that the models are able to

detect them properly. By consolidating the duodenum and stomach
FIGURE 6

2D image examples of the display of the segmentation done by the 3D nnUNet. The segmented organs liver, kidneys, spinal cord, stomach and
duodenum are in red, green, blue, cyan and yellow. The ground truth of each organ is in purple.
BA

FIGURE 7

Examples of the 3D display of the segmention done by the 3D nnUNet. (A) The ground truth. (B) The obtained segmention with the nnUNet 3D. The
liver, kidneys, spinal cord, stomach and duodenum are in blue, pink, red, cyan and green.
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predictions in the nnUNet 3D as a single structure, as illustrated in

Table 7, an enhancement in prediction accuracy was observed

compared to when these organs were considered independently. This

suggests that the challenge in segmenting the duodenum and stomach

lies in distinguishing their boundaries. The nnUNet DSC results for the

duodenum and the stomach were better than those obtained from the

radiation oncologists. The superior DSC results from the nnUNet can

be attributed to the model’s consistency, which outperforms the inter-

observer variability caused by different human observers.

Most automatic abdominal segmentation models in the

literature focus on CT imaging. However, there are also studies

on MR images, acquired either for diagnostic purposes or with an

MR-Linac device. Fu et al. (40) used a CNN-based correction 3D

network to segment abdominal organs on a 0.35 T MR-Linac.

Compared with their approach, our segmentation of the duodenum

was better (DSC: 0.69 vs 0.65), while the results for other organs
Frontiers in Oncology 10
were similar. Chen et al. (41) utilized a 2D UNet, replacing the

UNet’s encoder with a Densely-connected Block, and analyzed

images obtained from a 3.0 T MR device by inputting images

from three different views: transversal, coronal, and sagittal. Their

segmentation results for the duodenum and the stomach surpassed

ours. Amjad et al. (42) used multi-sequence MR images acquired

from 3.0 T MR device for training to segment abdominal organs,

achieving better segmentation results for the kidneys, the

duodenum and the stomach. These improvements might be

attributed to their utilization of a diagnostic MR device avoiding
TABLE 6 DSC results for segmentation of the duodenum, the stomach,
and combine the two organs as one organ by two different
radiation oncologists.

Patient
#

Duodenum Stomach Duodenum
+ Stomach

1 0.39 0.66 0.87

2 0.55 0.83 0.88

3 0.33 0.70 0.84

4 0.35 0.81 0.88

5 0.48 0.86 0.86

6 0.71 0.87 0.88

7 0.66 0.92 0.86

8 0.68 0.87 0.86

9 0.45 0.76 0.86

10 0.43 0.78 0.88

11 0.44 0.73 0.80

Mean DSC 0.50 0.80 0.86
FIGURE 8

Manual segmentation of the duodenum. Segmentation of the same
MR images by two different radiation oncologists.
TABLE 7 DSC results for segmentation of the duodenum, the stomach,
and combine the two organs as one organ by the ground truth and the
result of nnUNet 3D.

Patient
#

Duodenum Stomach Duodenum
+ Stomach

1 0.49 0.68 0.91

2 0.81 0.87 0.91

3 0.64 0.79 0.89

4 0.87 0.90 0.90

5 0.83 0.91 0.91

6 0.64 0.84 0.91

7 0.39 0.65 0.85

8 0.81 0.93 0.89

9 0.69 0.85 0.89

10 0.83 0.91 0.90

11 0.72 0.81 0.88

Mean DSC 0.70 0.83 0.89
TABLE 5 Quantitative comparison of organ volumes: ground truth and
nnUNet 3D segmentation results.

Organ Correlation
Coefficient

(r)

Volume
Difference

(cm3)
mean ±
standard
deviation

Mean from the
Ground

Truth (cm3)

Liver 0.99 0.07 ± 33.02 1164.65

Kidneys 0.95 3.30 ± 24.76 201.76

Spinal
Cord

0.97 -0.02 ± 0.90 11.28

Duodenum 0.46 -14.00 ± 37.39 70.99

Stomach 0.36 4.43 ± 31.66 123.22
Metrics include correlation coefficient, mean volumetric difference, and standard deviation, as
derived from Bland-Altman plots.
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MR-Linac possible artefacts (43), offering a higher magnetic field

strength with a better image contrast and a training based on several

MR contrasts.

It can take more than 20 minutes for a radiation oncologist to

delineate the five OARs manually without the help of a deep learning

model. In contrast, the nnUNet model we trained is able to

automatically predict the five OAR in 16 seconds on a NVIDIA

V100 32GB GPU. The predicted segmentation results for the five

organs of the nnUNet allows us to consider it for clinical use, including

a step for expert review post-prediction. While the predictions from

the model still sometimes require refinement by radiation oncologists,

the integration of this technology substantially reduces their workload

and enhances the efficiency of radiation therapy (22). This time saving

could be especially relevant during online adaptive radiotherapy for

abdominal tumor on MR-Linacs, where the duration of the procedure

is a crucial factor (44). The online implementation of DL-based

automatic segmentation could help to improve this kind of treatment.

In addition, several limitations and perspectives have been

identified in our study. First, the default training process of

nnUNet was used without any fine-tuning, although further

optimization could potentially enhance the results. Second, the

ground truth definition of several organs could be improved by

crosschecking the segmentation of different experts. Finally, owing

to data limitations, only five organs for the prediction could be

selected, but many other critical organs, such as the colon, bowel

and esophagus could be included. Considering that less than 10% of

the dataset for testing is controversial and an increase of the dataset

would resolve this limitation.
5 Conclusion

In this study, we investigated the automatic segmentation of

abdominal OARs on 0.35 T MR-Linac images using several UNet

based model variations. The 3D nnUNet gave the best results

achieving encouraging performance for a clinical use. The use of

this kind of model could be of high interest especially for online

adaptive radiotherapy to save time and limit operator variability.

Several limitations have been pointed out in order to improve the

prediction, especially the ground truth segmentation definition

and validation.
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