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bispectrum analysis energy
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ultrasound radiofrequency
signals to detect breast cancer
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School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Background: Ultrasonography is an important imaging method for clinical breast

cancer screening. As the original echo signals of ultrasonography, ultrasound

radiofrequency (RF) signals provide abundant tissue macroscopic and

microscopic information and have important development and utilization value

in breast cancer detection.

Methods: In this study, we proposed a deep learning method based on

bispectrum analysis feature maps to process RF signals and realize breast

cancer detection. The bispectrum analysis energy feature maps with frequency

subdivision were first proposed and applied to breast cancer detection in this

study. Our deep learning network was based on a weight sharing network

framework for the input of multiple feature maps. A feature map attention

module was designed for multiple feature maps input of the network to

adaptively learn both feature maps and features that were conducive to

classification. We also designed a similarity constraint factor, learning the

similarity and difference between feature maps by cosine distance.

Results: The experiment results showed that the areas under the receiver

operating characteristic curves of our proposed method in the validation set

and two independent test sets for benign and malignant breast tumor

classification were 0.913, 0.900, and 0.885, respectively. The performance of

the model combining four ultrasound bispectrum analysis energy feature maps

in breast cancer detection was superior to that of the model using an ultrasound

grayscale image and the model using a single bispectrum analysis energy feature

map in this study.

Conclusion: The combination of deep learning technology and our proposed

ultrasound bispectrum analysis energy feature maps effectively realized breast

cancer detection and was an efficient method of feature extraction and

utilization of ultrasound RF signals.

KEYWORDS

ultrasound radiofrequency signals, bispectrum analysis, breast cancer, deep learning,
weight sharing, attention mechanism, similarity constraint, multiple feature maps
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Introduction

Breast cancer is the most common malignancy among women,

ranking first in the global incidence rate and mortality rate of female

cancer (1). In 2020, there will be around 2.3 million new cases and

685,000 deaths of breast cancer worldwide (2). The incidence of

breast cancer has already surpassed lung cancer and become the

largest cancer in the world (3). Breast cancer screening is helpful in

the early detection of breast cancer. Through early intervention, it

helps reduce the mortality of breast cancer and improve the life

quality of those patients.

Among many imaging diagnostic methods of breast cancer,

such as ultrasonography, magnetic resonance imaging,

mammography, and electronic computed tomography (4),

ultrasonography is an important imaging modality for screening

breast cancer in clinic. It is not affected by the density of breast

tissue (5, 6), easy to operate, relatively inexpensive, radiation-free,

and widely used in the examination of breast cancer. At present,

imaging is widely used in clinical practice and ultrasound

diagnostic of breast cancer mainly relies on traditional ultrasound

images (7, 8), such as grayscale images. Although grayscale images

can clearly display the anatomical structure of the breast and target

lesions, they are obtained after filtering, dynamic range adjustment,

and a series of other post-processing from the original ultrasound

radio frequency (RF) echo signals. In the process of enhancing the

required visual information, it loses some high-frequency

components and other information that may be valuable for

cancer diagnosis. Research has confirmed that different

ultrasound grayscale reconstruction algorithms based on RF

signals have a significant impact on the classification performance

of benign and malignant breast tumors (9). Therefore, using raw RF

signals to construct computer-aided diagnostic system is more

conducive to helping radiologists improve diagnostic efficiency.

Some studies have utilized deep learning techniques to process

medical ultrasound RF signals. Liu et al. (10) used a convolutional

neural network (CNN) to analyze RF signals and distinguish

between benign and malignant thyroid nodules, with an accuracy

of 96.2%. Luo et al. (11) designed a multichannel CNN to process

RF signals and then screen for osteoporosis. Compared with

traditional sound speed screening, the accuracy was significantly

improved, reaching 83.05%. Xiao et al. (12) used the proposed deep

learning method to track the displacement of blood vessel walls

from RF signals, improving the accuracy of vessel wall displacement

tracking. Yoon et al. (13) utilized a deep learning method to
Abbreviations: RF, radio frequency; CNN, convolutional neural network; AUC,

Area under receiver operating characteristic curve; ROC, Receiver operating

characteristic curve; BS_S1, Bispectrum analysis energy feature map of S1

frequency region; BS_S2, Bispectrum analysis energy feature map of S2 frequency

region; BS_S3, Bispectrum analysis energy feature map of S3 frequency region;

BS_A, Bispectrum analysis energy feature map of all the S0 non-overlapping region;

MI, Mutual information; RMSE, Root mean square error; ILSVRC, ImageNet Large

Scale Visual Recognition Challenge; F-ATT, Feature map attention module based

on attention mechanism; SM, Similarity constraint factor; PPV, Positive predictive

value; NPV, Negative predictive value; TP, True positive; FP, False positive; TN,

True negative; FN, False negative.
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efficiently reconstruct B-Mode ultrasound image from RF signals.

Qiao et al. (14) applied the YOLOv3 network to process RF signals

and detect breast calcification.

Many CNN-based computer-aided diagnostic systems have been

employed in the differentiation of benign and malignant breast

tumors (9, 15–17), but there are relatively few studies on deep

learning methods for processing RF signals to achieve breast cancer

detection. Kim et al. (18) used CNN to process multiple parametric

images generated from RF signals for breast benign and malignant

classification. In their research, the highest classification accuracy of

the network models based on entropy images, phase images,

attenuation images, and ultrasound grayscale images were 82.00%,

74.50%, 74.50%, and 79.00%, respectively. The highest accuracy and

recall of combining multiple parametric images were 83.00% and

92.24%, respectively. Compared with the traditional method of only

using ultrasound grayscale image in the network model, the use of

multiple parameter images improved classification accuracy and

recall by 5.5% and 11.6%, respectively. Extracting multiple

parameters from RF signals and establishing a multifeature map

system based on RF signals can help deep learning networks obtain

more abundant sample information from the original echo signals.

In this study, we designed multiple feature maps of RF signals

based on bispectrum analysis and combined them with an end-to-

end neural network framework to extract valuable features for

effective breast cancer detection. We first proposed bispectrum

analysis energy feature maps, which were composed of different

frequency components of RF signals. They were based on high-

order spectral analysis, which has better time-frequency localization

ability than the traditional power spectrum analysis method.

Alqudah et al. (19) showed that the performance of the features

extracted by the high-order spectrum analysis method was better

than that of the low-order feature extraction methods, such as

short-time Fourier transform and wavelet transform. The existence

of higher-order cumulants enables higher-order spectral analysis to

adapt to non-stationary local characteristics, such as spikes and

abrupt changes in signals, when processing non-stationary signals.

Ultrasound RF signals are a typical non-stationary signal, which has

the characteristics of rapid instantaneous phase and frequency

change and concentrated energy distribution and is very suitable

for feature extraction using high-order spectral analysis.

According to the input of multiple feature maps, a weight

sharing deep learning network framework was constructed. An

appropriate backbone network was selected from five typical

networks. Additionally, a feature map attention module and a

similarity constraint module were designed to guide the network

in learning feature maps and features that were advantageous for

classification, accelerate network convergence, and improve the

classification efficiency of breast tumors.
Methods

Patients

We collected 203 cases of breast cancer patients from Ruijin

Hospital, Shanghai Jiao Tong University School of Medicine.
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Initially, 123 patients were collected, of which 73 had benign breast

tumors and 50 had malignant breast tumors. These were divided

into a training set (70%), a validation set (15%), and a test set 1

(15%). An additional independent test set 2 consisted of 80 patients,

with a 50% distribution of benign and malignant breast tumors.

The patient data included continuous multiple frames of

ultrasound RF signals and ultrasound grayscale images. All data

were obtained using the Resona 7 ultrasound equipment of

Mindray™ . Two experienced radiologists examined the

ultrasound grayscale images with marked tumor locations and

selected a key frame of RF data that displayed clear imaging and

encompassed the entire tumor area for each patient.

Pathological results served as the gold standard for

distinguishing benign and malignant breast tumors in this study.

The Ethics Committee of Ruijin Hospital, Shanghai Jiao Tong

University School of Medicine, approved this research.
Bispectrum analysis energy feature maps
of ultrasound RF signals

The high-order spectral analysis method analyzes the spectral

characteristics of a signal by introducing high-order statistics, such

as third-order moments and fourth-order moments, reflecting the

nonlinear characteristics and phase correlation of the signal.

Assuming xbs(nbs) represents a certain RF signals sequence, where

nbs=1,…,256 is the number of samples. Bispectrum of RF signals xbs
(nbs) is defined as third-order cumulant C3 Fourier transform BS,

where the third-order cumulant C3 is (20):

C3(nbs,   kbs,   lbs) = ½x    ∗bs (nbs)xbs(nbs + kbs)xbs(nbs + lbs)�   (1)

Among them, kbs and lbs are time delays, so the bispectrum BS of

the RF signals is:

BS(f 1, f 2) =okbsolbs
C3(nbs,   kbs,   lbs)e

-j 2pf 1kbse-j 2pf 2 lbs (2)

Among them, f1 and f2 represent the horizontal and vertical

frequency axes.

Figure 1 shows the local bispectrum analysis maps of the central

region of six breast tumors. They exhibit differences in distribution

and have regularity. Some patients’maps, like Figures 1A, B display

centralized patterns, whereas others, such as Figures 1C-F show

scattered patterns. The scattered mode indicates a wide frequency

distribution of echo signals. Both scattered and centralized maps

contain various rich distribution patterns. For instance, Figures 1C,

D showcase obvious second harmonic components. In other maps,

although there may not be evident second harmonics, significant

distribution differences exist for other frequency components

around the center frequency. These differences in frequency

component distribution within local bispectrum analysis maps are

closely linked to the internal microstructure of breast tumors,

potentially aiding in breast cancer detection.

Based on the distribution characteristics mentioned above, we

conducted frequency subdivision in the bispectrum analysis map to

design four new features for each RF signal segment xbs(nbs),

representing four different frequency components. Figure 1G
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illustrates the complete bispectrum analysis map with overlaps.

The A0 region in Figure 1H represents the complete bispectrum

analysis diagram, with a non-overlapping region S0 labeled. In

Figure 1I, the diagram is divided into A1, A2, and A3 regions, with

equal divisions in the horizontal direction. The overlap between S0

and A1 forms S1 (a low-frequency non-overlapping region), and the

overlap between S0 and A3 forms S3 (a high-frequency non-

overlapping region). S0 and A2 overlap to form S2, which

encompasses a portion of both low-frequency and high-frequency

components. The S0 region includes all frequency components of

the S1, S2, and S3 regions. By calculating the energy of S1, S2, S3,

and S0 regions, we obtain four new bispectrum analysis energy

features for each RF signal segment xbs(nbs). Subsequently, we

extract these four new bispectrum analysis energy features from all

RF signal segments in the key frame for each patient, resulting in

each patient’s four bispectrum analysis energy feature maps: BS_S1,

BS_S2, BS_S3, and BS_A.

Figures 2A-D display the bispectrum analysis energy feature

maps BS_S1, BS_S2, BS_S3, and BS_A of a benign patient,

respectively. Similarly, Figures 3A-D show the bispectrum

analysis energy feature maps BS_S1, BS_S2, BS_S3, and BS_A

of a malignant patient, respectively. Although visually similar, a

closer examination of image details revealed subtle differences

among the four feature maps for each patient. To quantitatively

analyze these differences and correlations, gray histograms, mutual

information (MI), and root mean square error (RMSE) were

utilized. For a benign patient, Figures 2E, G depicted the

statistical results of gray histograms, MI, and RMSE for the four

bispectrum analysis energy feature maps. The histogram provided

a visual representation of pixel value distribution, with BS_A

being mostly covered by the histograms of BS_S1 (blue

highlighted areas), BS_S2 (rose highlighted areas), and BS_S3

(red highlighted areas). The feature maps after frequency

subdivision exhibited regular pixel distribution characteristics.

The RMSE in Figure 2G indicated the similarity between feature

maps, with higher values suggesting greater distinctiveness and

necessity for classification. The average RMSE between BS_S1

and the other three feature maps was 3.451, whereas the average

RMSE between BS_S3 and the other three feature maps was 2.388.

Both BS_S1 and BS_S3 had higher average RMSE compared

with BS_S2 (1.972) and BS_A (2.067), highlighting their

representativeness and importance. MI in Figure 2F measured the

strength of the relationship between random variables. The average

MI between BS_S1 and the other three feature maps was the highest

at 0.981, followed by BS_S3 at 0.979. This indicated that BS_S1 and

BS_S3 contained the majority of information from the other

feature maps.

In summary, the quantitative analysis results demonstrated that

BS_S1 and BS_S3 provided greater information content and

differences compared with BS_A and BS_S2. Similar observations

were made for malignant patients, where BS_S1 represented the

low-frequency energy and BS_S3 represented the high-frequency

energy. Frequency subdivision contributed to enhanced

information richness and value of bispectrum analysis energy

feature maps, enabling a more comprehensive analysis of

microscopic and macroscopic tissue information.
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Techniques of RF-based deep learning
classification network

Overall design of network framework
We proposed the deep learning method based on bispectrum

analysis energy feature maps of ultrasound RF signals to detect

breast cancer. The overall design of the final deep learning network

framework is depicted in Figure 3. In our proposed deep learning

method, a weight sharing network framework was designed for

input of multiple feature maps. To enhance the importance of

advantageous feature maps in classification tasks, a feature map

attention module was implemented. Additionally, we designed a

similarity constraint factor module to calculate cosine distances and

learn the similarities and differences between different feature maps.

Weight sharing network framework
Weight sharing is crucial for extracting diverse sample features

while minimizing network complexity. It greatly reduces the

number of network parameters and the computational complexity
Frontiers in Oncology 04
during learning. Weight sharing can be manifested in various ways,

such as sharing convolution kernel weights or weights of the entire

network module [18,19]. A well-designed weight sharing structure

enhances network depth, efficiency, and a lightweight architecture.

In this study, we established a four-channel weight sharing deep

learning network that shares weights across the entire backbone

network. Figure 4 illustrates the structural diagram of this weight

sharing network framework. The backbone network was selected

from popular modules such as Swin Transformer, VGG-19,

Inception-v3, ResNet50, and ResNet-101. The network with the

highest performance on the experimental dataset was chosen as the

backbone network of the weight sharing module. The 4-channel

network shares weights, enabling it to learn common features from

all input images while preserving individual characteristics.
Feature maps attention module
To prevent excessive features from hindering network

optimization efficiency in small volume medical data, we

introduced an attention mechanism. This mechanism adaptively
B
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F

G H I

A

FIGURE 1

Construction of bispectrum analysis energy features (A-F) are local bispectrum analysis maps of the central region of six breast tumors. (G) is a
complete bispectrum analysis map of RF signal segment xbs(nbs). A0 region of (H) represents the diagram of the complete bispectrum analysis, and
the non-overlapping region S0 is marked. The S0 region in (I) is divided into three equal parts starting from the origin along the direction of the f2
axis, obtaining the S1, S2, and S3 regions, respectively. The bispectrum analysis energies of the non-overlapping regions of the S1, S2, S3, and S0
regions are calculated respectively to form four new bispectrum analysis energy features of RF signal segment xbs(nbs).
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B C D

E

F

G

A

FIGURE 2

Bispectrum analysis energy feature maps of a benign patient and their differences analysis. (A–D) are four types of bispectrum analysis energy
feature maps of a benign patient with breast tumor. (E) The overlapping histogram results of four bispectrum analysis energy feature maps of BS_S1,
BS_S2, BS_S3, and BS_A. (F) The mutual information (MI) between each two of the four new bispectrum analysis energy feature maps. (G) The root
mean square error (RMSE) between each two of the four new bispectrum analysis energy feature maps.
B C D
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F
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FIGURE 3

Bispectrum analysis energy feature maps of a malignant patient and analysis of their differences. (A-D) are four types of bispectrum analysis energy
feature maps of a malignant patient with breast tumor. (E) The overlapping histogram results of four bispectrum analysis energy feature maps of
BS_S1, BS_S2, BS_S3, and BS_A. (F) The mutual information (MI) between each two of the four new bispectrum analysis energy feature maps.
(G) The root mean square error (RMSE) between each two of the four new bispectrum analysis energy feature maps.
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reconstructs the importance of each feature map, prioritizing the

ones beneficial to the target task. The attention mechanism adjusts

the weighting model based on specific learning tasks, strengthening

relevant content and disregarding irrelevant features. Since the

importance of the four feature maps in classifying benign and

malignant breast tumors varies, it is crucial to assess their

contributions for convenient and rapid tumor classification in

clinical applications. Hence, we designed a feature map attention

module based on attention mechanism (F-ATT), which was

integrated into the weight sharing network framework.

The F-ATT module employed a weight sharing network feature

processing method based on self-attention mechanism. As shown in

equation 3, during the training process, the network adaptively

learned the weight parameters corresponding to the feature vectors

of the four types of feature maps, and then these feature vectors were

weighted and summed. The sum of the weights of the feature

vectors was 1, ensuring that the dimension of the feature values did

not change. Moreover, the size of these weights represented the role

of the feature vector in the final classification. The higher the

weight, the greater the impact on the classification of benign and

malignant breast tumors.

zdl =oK
k=1akhk (3)

Among them, hk represents the vector mapping of the kth

instance in a package, zdl represents the weighted average of its

various instances, and ak represents the weight of each instance

learned by network adaptation; the calculation formula is as follows:
Frontiers in Oncology 06
ak =
expfwT (tanh(VhTk )   ·   sigm(UhTk ))g

oK
j=1expfwT (tanh(VhTj )   ·   sigm(UhTj ))g

(4)

Among them, V、U ∈ RLXM is the point multiplication

operation, wT is the weight vector, and T is the transpose operation.

The activation function is the key to realizing the network non-

linear classification task. The diagram of the attention mechanism

structure established in this study is shown in Figure 4; an activation

unit based on the gate mechanism was used.

Combining the tanh activation function with the sigmoid

activation function can weaken the approximately linear influence

in the tanh activation function. Perform tanh nonlinear activation

and sigmoid nonlinear activation on the feature vectors respectively,

then multiply the output feature values of the two by their

corresponding elements, and then connect them to a fully

connected layer to output the obtained weights. Finally, the

softmax function was used to convert the weights into weight

parameters where each term was positive and the sum was 1.

Through the above feature map selection mechanism, the weight

of feature maps that were not important to the classification task was

reduced, and redundant feature maps were automatically eliminated

to filter out feature maps that contributed to the classification.

The Loss function of the weight sharing backbone network

based on the feature map attention module was Loss_att. The

calculation formula for function is as follows:

Loss _ att = −
1
Nt
oit

½yit · log (pit ) + (1 − yit ) · log (1 − pit )� (5)
FIGURE 4

Overall design of our proposed method of deep learning model framework. Diagram of our proposed method of the deep learning model based on
RF signals bispectrum analysis energy feature maps. Its backbone network is ResNet-50 and includes weight sharing module, feature map attention
(F-ATT) module, and similarity constraint factor (SM) module.
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Among them, yit represents the sample Label of it, pit represents

the probability of a negative prediction, 1 − pit represents the

probability of a positive prediction, and Nt represents the number

of samples.

Similarity constraint factor
Cosine similarity has been effective in addressing high-

dimensional Euclidean distance challenges and has demonstrated

positive outcomes in various practical applications. For instance, in

self-supervised contrastive learning, cosine distance calculation

plays a vital role in achieving unlabeled network learning tasks by

comparing positive and negative sample pairs. In this study, we

employed cosine similarity to construct a similarity constraint

factor module (SM) for bispectrum analysis feature maps. By

calculating the vector angle between feature maps, the module

evaluates their similarity and dissimilarity.

The formula for measuring the distance between positive and

negative sample pairs using cosine similarity is as follows:

cosq   =  
fi · fj

jjfijj    jjfjjj
= f i · f j (6)

Among them, fi and fj represent any two of the feature value

vectors output by the backbone network and have undergone L2

normalization processing.

The input of the SM module was the output of the weight

sharing network module based on four bispectrum analysis energy

feature maps, which was the same as the input of the F-ATT

module. xim and xjm represent the im and jm feature maps. We hoped

that the probability of xim being recognized as im class was as high as

possible, whereas the probability of xjm being recognized as imwas as
Frontiers in Oncology 07
low as possible, achieving the goal of positive concentration and

negative separation. Because the deep learning optimizer was

designed with minimum optimization, the sum of negative

logarithms was used to design the Loss function Loss_sm of the

SM module. Loss_sm is shown in Figure 5, and its calculation

formula is as follows:

Loss _ sm = −oim
log P imxim

� �

−oimojm≠im
log 1 − P(imxjm )

� �
(7)

Among them, P(imxim ) represents the probability that xim is

recognized as class im; P(imxjm ) represents the probability of xjm
being recognized as a class im. The specific derivation and

calculation process of both are detailed in reference (21).
Parameter setting and training process

In this study, the sample’s four maps underwent scaling and

center cropping according to the designed data enhancement rules.

Each input map was initially scaled to 3 × 256 × 256 and then

cropped to 3 × 224 × 224. The training set, validation set, and two

test sets’ data were shuffled randomly and fed into the network for

training. Typically, a batch size of 8 was used when reading images.

The Adam optimizer and the cosine annealing attenuation strategy

were employed, starting with an initial learning rate of 0.002. The

learning rate was adjusted using the CosineAnnealingLR strategy,

with a final learning rate of 1e-4. Training was concluded, and the

results were saved when the validation set’s loss ceased to decrease

and remained stable.
FIGURE 5

Diagnostic performances of different backbone network models. ROC curves of VGG-19, Inception-v3, ResNet-50, ResNet-101, and Swin
Transformer network. The AUC of ResNet-50 (test set 1, 0.819; test set 2, 0.731) was the highest one among all models.
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The model was implemented using a Python-based framework,

utilizing an Intel Xeon Silver 4216 CPU running at 2.10 GHz and an

NVIDIA A10 GPU based on the Nvidia Ampere framework.
Statistical analysis

AUC, accuracy, sensitivity, specificity, positive predictive value

(PPV), and negative predictive value (NPV) were used to evaluate

the classification performance of the model. The calculation

formulas for accuracy, sensitivity, specificity, PPV, and NPV are

shown in equations (8), (9), (20), (11) and (12):

accuracy =
TP+TN

TP + TN + FP + FN
(8)

sensitivity =
TP

TP + FN
(9)

specificity =
TN

TN + FP
(10)

PPV =
TP

TP + FP
(11)

NPV =
TN

TN + FN
(12)

where TP, FP, TN, and FN represent the number of true positive

patients, false positive patients, true negative patients, and false

negative patients in the classification results, respectively.

In addition, this study also established a deep learning

classification model based on ultrasound grayscale image as a

comparative experiment.
Results

Result of backbone network

We first compared the classification performances of the five

backbone models based on four bispectrum analysis energy feature

maps: VGG-19, Inception-v3, ResNet-50, ResNet-101, and Swin

Transformer. We then selected the appropriate backbone network

for the weight sharing network framework as the feature extractor

of RF signals. Figure 5 displays the ROC curves of these backbone

networks on independent test set 1. Among the five networks,

ResNet-50 exhibited the highest performance with an AUC of

0.819, making it the chosen backbone network for the weight

sharing framework in our deep learning model based on

ultrasound multiple feature maps of RF signals.

With ResNet-50 selected as the backbone network, traditional

data augmentation methods were employed to preprocess the four

feature maps and enhance the generalization performance of our

deep learning models. The size of each ultrasound feature map was

adjusted to 3 × 224 × 224. Subsequently, the weight sharing network

module based on pretrained ResNet-50 was trained for each feature

map type, extracting 2,048 × 7 × 7-dimensional feature maps.
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Through averaging and pooling, we obtained 2,048 × 1-

dimensional features from the backbone network.

These 2,048 × 1-dimensional weight features from the four

ultrasound feature maps facilitated weight sharing within the

ResNet-50 network. The front-end processing framework of the

weight sharing module, in conjunction with the F-ATT and SM

modules, constituted our proposed deep learning model based on

the four feature maps of RF signals.
Classification result and
comparative experiments

Table 1 displays the classification result of our proposed deep

learning model based on four bispectrum analysis energy feature

maps. The classification results of the comparison model based on

ultrasound grayscale image and the comparison models using single

bispectrum analysis energy feature map are also shown in Table 1.

Both the comparison model based on grayscale image and

comparison model based on single bispectrum analysis energy

feature map comparison models were all single feature map

input, so their network structures were the same. We modified

the structure of our proposed network model based on four

bispectrum analysis energy feature maps to adapt to single input.

The model still used the ResNet-50 network to extract features from

the input image, resulting in a 2,048 × 1-dimensional feature vector.

The F-ATT module no longer generated feature map coefficients,

but directly processed the 2,048 × 1-dimensional feature vector

above. The final comparison model no longer contained the SM

module due to single image input.

Our proposed deep learning model, incorporating four new

bispectrum analysis energy feature maps based on RF signals,

consistently maintained an AUC of 0.900 or higher on both the

validation set and test set 1. The sensitivity on test set 1 reached

90.00%, indicating the model’s ability to effectively detect malignant

breast tumors and reduce the risk of missed diagnoses. To assess

generalization performance, we introduced an independent test set

2. Even on new data collected on different dates, our proposed

model exhibited strong classification performance, achieving an

AUC of 0.885 for classifying benign and malignant breast tumors,

demonstrating excellent stability.

Among the four comparison models utilizing single bispectrum

analysis energy feature maps, the models employing the low-

frequency energy feature map of BS_S1 and the high-frequency

energy feature map of BS_S3 demonstrated better performance. The

average classification AUC of the model utilizing the BS_S3 feature

map was 0.815 across test set 1 and test set 2. Nonetheless, the

model utilizing all four bispectrum analysis energy feature maps

outperformed the models utilizing a single feature map.

Additionally, the AUC of the comparison model based on

ultrasound grayscale images was 0.713 and 0.694 on the two

independent test sets, respectively. Compared with this, our

proposed model based on four bispectrum analysis energy feature

maps exhibited an increase in AUC of 0.225 and 0.191 on the

respective independent test sets. Our proposed deep learning model

based on ultrasound RF signals demonstrated a higher level of
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differentiation ability between benign and malignant breast tumors

than the deep learning model based on ultrasound grayscale image.
Ablation experiment results

Our proposed model was tailored to the characteristic of

multiple inputs of bispectrum analysis energy feature maps. In

addition to the selection of backbone network of the weight sharing

module, the model also included the F-ATT and SM modules. To

verify the rationality and effectiveness of our model design, we

conducted ablation experiment. The results are shown in Table 2.

When our proposed method did not use weight sharing and F-

ATT and SM modules, it was also the ResNet-50 model as shown in

Figure 5. The classification performance of the model was the lowest

among the four models in the ablation experiment. When our

proposed method removed F-ATT and SM modules and only

retained the weight sharing framework, although there was no

significant improvement, weight sharing reduced the number of

parameters. Compared with the model without weight sharing and

establishing four independent ResNet-50 networks to extract

features from four input feature maps, our proposed method had

weight sharing, with only 25.83% of the former’s parameter count.

When our proposed method used the weight sharing framework

and F-ATT module, and only removed SM modules, the AUC

results of test set 1 and test set 2 increased by 0.044 and 0.165,

respectively. When both weight sharing and F-ATT and SM
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modules were introduced, our proposed method in this study was

formed. Compared with the initial ResNet-50 model, our final

model increased the AUC of the test set 1 and test set 2 by 9.9%

and 25.89%, respectively.
Analysis of the importance of feature maps

In our proposed method based on bispectrum analysis energy

feature maps of RF signals, the F-ATT module dynamically learned

the influence of multiple input feature maps on classification and

adjusted the weights of feature maps based on loss. Figure 6

illustrates the importance coefficients outputted by the F-ATT

module for the four bispectrum analysis energy feature maps

across two independent test sets. Figure 6A represents the

importance of the four bispectrum analysis feature maps on

independent test set 1, whereas Figure 6B represents the

importance of the four bispectrum analysis feature maps on

independent test set 2.

On independent test set 1, the importance coefficients for the

four bispectrum analysis energy feature maps BS_S1, BS_S2, BS_S3,

and BS_A were 0.3513, 0.2073, 0.2368, and 0.2045, respectively. The

BS_S1 feature map primarily captured the bispectrum analysis

energy of low-frequency regions and had the highest importance

coefficient for classifying benign and malignant breast tumors. The

second most important feature map was BS_S3, which focused on

the bispectrum analysis energy of high-frequency regions. The
TABLE 1 Classification performances of our proposed model and various comparative models.

Model Data Type AUC Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Our proposed model

Validation Set 0.913 83.33 80.00 87.50 88.89 77.78

Test Set 1 0.900 77.78 90.00 62.50 75.00 83.33

Test Set 2 0.885 80.00 95.00 65.00 73.08 92.86

BS_S1
feature map

Validation Set 0.800 77.78 80.00 75.00 80.00 75.00

Test Set 1 0.813 77.78 70.00 87.50 87.50 70.00

Test Set 2 0.796 76.25 81.25 68.75 79.59 70.97

BS_S2
feature map

Validation Set 0.825 72.22 90.00 50.00 69.23 80.00

Test Set 1 0.738 66.67 60.00 75.00 75.00 60.00

Test Set 2 0.732 66.25 62.50 71.87 76.92 56.10

BS_S3
feature map

Validation Set 0.875 83.33 90.00 75.00 81.82 85.71

Test Set 1 0.775 77.78 80.00 75.00 80.00 75.00

Test Set 2 0.855 75.00 66.67 87.50 88.89 63.64

BS_A
feature map

Validation Set 0.863 77.78 90.00 87.50 87.50 70.00

Test Set 1 0.725 72.22 70.00 75.00 77.78 66.67

Test Set 2 0.786 73.75 85.42 56.25 74.55 72.00

ultrasound grayscale image

Validation Set 0.750 72.22 60.00 87.50 85.71 63.64

Test Set 1 0.713 61.11 40.00 87.50 80.00 53.85

Test Set 2 0.694 60.00 42.50 77.50 65.38 57.41
fr
AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.
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importance of feature map BS_S1 in the low-frequency region and

feature map BS_S3 in the high-frequency region for classification

was higher than that of feature map BS_A in full-frequency regions.

The BS_S2 feature map encompassed parts of both high-frequency

and low-frequency regions, and its importance for classification was

not as significant as that of BS_S1 and BS_S3. The same trend was

observed on independent test set 2 in Figure 6B, where BS_S1 and

BS_S3 remained the two most important feature maps for

classifying benign and malignant breast tumors.
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Discussion

RF signals, obtained directly from ultrasound diagnostic

equipment without undergoing processing such as envelope

detection and contrast adjustment, offer richer tissue information

compared with traditional ultrasound images. Exploring and

developing the utilization efficiency of RF signals is crucial.

However, due to the presence of noise and interference

components, directly applying traditional machine learning or
A B

FIGURE 6

Importance analysis of four bispectrum analysis energy feature maps. The importance coefficients of the four bispectrum analysis energy feature
maps on (A) independent test set 1 and (B) independent test set 2, outputting by the F-ATT module.
TABLE 2 Classification results of ablation experiment.

ResNet-
50

Weight Sharing
F-
ATT

SM Data Type AUC
Accuracy

(%)
Sensitivity

(%)
Specificity (%)

PPV
(%)

NPV
(%)

√

Validation Set 0.775 72.22 70.00 75.00 77.78 66.67

Test Set 1 0.819 83.33 100.00 62.50 76.92 100.00

Test Set 2 0.703 66.25 70.00 62.50 65.12 67.57

√ √

Validation Set 0.788 72.22 70.00 75.00 77.78 66.67

Test Set 1 0.813 72.22 90.00 50.00 69.23 80.00

Test Set 2 0.731 70.00 72.50 67.50 69.05 71.05

√ √ √

Validation Set 0.825 77.78 70.00 87.50 87.50 70.00

Test Set 1 0.863 77.78 80.00 75.00 80.00 75.00

Test Set 2 0.868 78.75 70.00 87.50 84.85 74.47

√ √ √ √

Validation Set 0.913 83.33 80.00 87.50 88.89 77.78

Test Set 1 0.900 77.78 90.00 62.50 75.00 83.33

Test Set 2 0.885 80.00 95.00 65.00 73.08 92.86
frontie
F-ATT, feature map attention Module; SM, similarity constraint factor module.
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deep learning techniques to RF signals is challenging for achieving

efficient applications. To address this, we devised multiple feature

maps and then modeled them based on deep learning to achieve

efficient feature extraction of RF signals. Our innovative approach

involved designing bispectrum analysis energy feature maps

specifically for ultrasound RF signals. We then proposed a deep

learning method to further process these feature maps, enabling

effective classification of benign and malignant breast tumors.

Ultrasound feature maps provided a more comprehensively

display of the entire tumor’s feature information. Traditional

methods often intercepted signals from regions of interest of

tumors for feature extraction and post-processing. It ignored the

heterogeneity of tumors. The tumor microenvironment usually has

significant differences. Especially malignant tumors have irregular

growth patterns and complex internal structures. The local tumor

region is difficult to represent the overall pathological condition and

the types of tumors. By combining feature maps with deep learning,

multiscale, standardized, and comprehensive tumor feature

extraction was achieved, mitigating the impact of tumor

heterogeneity on classification outcomes. Shao et al. (20) extracted

a large number of features from RF time series, including bispectrum

analysis features, and used Random Forest and Support Vector

Machine classifiers to identify breast cancer. The use of standard

deviation features of bispectrum analysis can achieve the AUC of

86%. In our study, we further explored the bispectrum analysis

features by proposed bispectrum analysis energy feature maps and

designed a deep learning network model to detect breast cancer. The

average AUC of our study on two independent test sets reached

0.893, which is superior to the above machine learning processing

algorithm based on bispectrum analysis features.

The incorporation of bispectrum analysis energy feature maps in

our study introduced high-order moments and refines feature maps

from different-frequency components. These feature maps included

four frequency components, making the extracted feature levels

more abundant. Notably, the four feature maps exhibit varying

importance levels for classification and demonstrate regularity. The

statistical results of overlapping grayscale histograms, MI, and RMSE

showed that the bispectrum analysis energy feature map of BS_S1 in

the low-frequency region and BS_S3 in the high-frequency region

had greater information content and differences for classification

than BS_S2 and BS_A. Analyzing the importance coefficients of the

feature map output by the F-ATT module in our proposed model, it

is evident that both on independent test set 1 and independent test

set 2, feature map BS_S1 in the low-frequency region and feature

map BS_S3 in the high-frequency region also hold higher

importance for classification compared with feature map BS_A in

the full-frequency region. Moreover, this observation is also

supported by the results of the comparison models based on a

single bispectrum analysis energy feature map. In Table 1, the

average AUC values of the comparison model using the single

feature map of BS_S1 and the comparison model using the single

feature map of BS_S3 on two independent test sets were 0.805 and

0.815, respectively. They were also higher than that of the other two

comparison models using single feature maps of BS_S2 and BS_A,

respectively. Importantly, although there were differences in the

importance of four feature maps for classification, utilizing all four
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feature maps yields superior classification performance compared

with using any single feature map. In addition, the AUC values of

our proposed deep learning model based on four bispectrum analysis

energy feature maps on two independent test sets were higher than

that of the deep learning model based on grayscale images. Overall,

the bispectrum analysis energy feature maps with frequency

subdivision provide ample and high-quality frequency information

that contributes significantly to breast cancer classification.

In this study, we proposed novel ultrasound images and

processed them by the deep learning method for breast cancer

detection. There are also many studies that investigated various

modes of ultrasound images by deep learning for classification tasks.

Qian et al. (22) developed an explainable deep learning system

trained on 10,815 multimodal breast ultrasound images, achieving

an AUC of 0.955 for predicting BI-RADS scores for breast cancer.

Byra et al. (9) used VGG-19, Inception-v3, and ResNet V2 CNN

models to process ultrasound grayscale images reconstructed by

different algorithms and classify benign and malignant breast

tumors, reaching a maximum AUC of 0.857. Zeimarani et al. (23)

proposed a novel breast ultrasound grayscale image classification

method based on deep convolutional neural networks. After

applying image enhancement and regularization, the accuracy and

AUC were improved to 92.01% and 0.972, respectively. Koh et al.

(24) designed CNN to process ultrasound grayscale image for

differentiating thyroid nodules. Their results demonstrated the

diagnostic performances of CNN-based method comparable with

expert radiologists for differentiating thyroid nodules on grayscale

image. Kim et al. (18) employed CNN to process multiple parameter

images generated from RF signals for benign and malignant breast

tumor analysis, including grayscale, entropy, attenuation, and phase

images. The highest accuracy and sensitivity were 83.00% and

92.24%, respectively. A specially designed deep learning

architecture can fully explore the feature information that is

helpful for classification in various modes of ultrasound images.

The deep neural network established based on multiple ultrasound

feature maps has better adaptability and development value.

With the design of feature maps, the selection of backbone

network, SM module, and the addition of feature map importance

screening and sorting module F-ATT, our proposed deep learning

method ultimately achieved effective classification for benign and

malignant breast tumors. Ablation experiments further investigated

the performance and contribution of different modules, affirming the

rationality of the deep learning model architecture when processing

RF signals. Utilizing deep learning for processing various feature

maps of ultrasound RF signals proved to be an efficient and reliable

method, expected to become a conventional signal processing

approach. In this study, the various modules designed for

multifeature maps of RF signals had varying degrees of

contribution to the classification target. The results of the

validation set indicated that the SM module contributed the most

to the improvement of classification results. The average sensitivity of

two independent test sets reached 92.50%, reducing the occurrence of

missed diagnosis. Weight sharing demonstrated significant

contributions to model lightweighting. For multi-input feature

maps, weight sharing reduced parameters and computational costs

without compromising network performance. Previous studies, such
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as Zheng et al. (25) and Aich et al. (26), also highlighted the benefits

of weight sharing, achieving similar performance while reducing

parameters. In addition, the F-ATT module in our proposed

method facilitated clear and intuitive learning of the importance

levels of each feature map for the designated classification task,

enhancing visualization. Comparing the importance of four

bispectrum analysis feature maps and ultrasound grayscale images,

we observed that the low-frequency component had the greatest

impact on classification, followed by the high-frequency component,

both being more important than the full-frequency component. This

study showcased the advantages of frequency refinement processing

in bispectrum analysis. Furthermore, the inclusion of the F-ATT

module in the weight sharing ResNet-50 network improved

evaluation indicators, including AUC, accuracy, specificity, and

PPV, on the validation and two test sets. The self-attention

mechanism not only improved classification results but also

adjusted feature map importance, reducing redundancy and

achieving a lightweight and efficient model.

To ensure reliable classification of benign and malignant breast

tumors, we evaluated the network performance on two independent

test sets, although the data were from a single center. To enhance

the generalization capabilities, our future steps involve collecting

data from multiple centers. Furthermore, we aim to develop

additional feature maps based on RF signals, conduct extensive

performance analysis, and further enhance the classification of

breast tumor benign and malignant cases.

In summary, our study introduced novel bispectrum analysis

energy feature maps with frequency subdivision for ultrasound RF

signals. Through our designed deep learning framework, we

achieved effective differentiation of benign and malignant breast

tumors, enhancing the utilization efficiency of ultrasound RF signals.
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