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Lung cancer (LC) is a heterogeneous disease with high malignant degree, rapid

growth, and earlymetastasis. The clinical outcomes of LC patients are generally poor

due to the insufficient elucidation of pathological mechanisms, low efficiency of

detection and assessmentmethods, and lack of individualized therapeutic strategies.

Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA

(lncRNA), and circular RNA (circRNA), are endogenous regulators that are widely

involved in themodulation of almost all aspects of life activities, from organogenesis

and aging to immunity and cancer. They commonly play vital roles in various

biological processes by regulating gene expression via their interactions with DNA,

RNA, or protein. An increasing amount of studies have demonstrated that ncRNAs

are closely correlated with the initiation and development of LC. Their dysregulation

promotes the progression of LC via distinctmechanisms, such as influencing protein

activity, activating oncogenic signaling pathways, or altering specific gene

expression. Furthermore, some ncRNAs present certain clinical values as

biomarker candidates and therapeutic targets for LC patients. A complete

understanding of their mechanisms in LC progression may be highly beneficial to

developing ncRNA-based therapeutics for LC patients. This review mainly focuses

on the intricate mechanisms of miRNA, lncRNA, and circRNA involved in LC

progression and discuss their underlying applications in LC treatment.

KEYWORDS

lung cancer, microRNAs, long non-coding RNAs, circular RNAs, biomarker,
therapeutic target
Introduction

Lung cancer (LC) is considered a major obstacle to increasing life expectancy

worldwide (1). Globally, LC cases and deaths are rising rapidly. In 2020, GLOBOCAN

estimated more than 2.2 million new LC cases occurred (2). LC has become a serious global

health concern, bringing significant pain and economic burdens to patients and their
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1256537/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1256537/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1256537/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1256537&domain=pdf&date_stamp=2023-09-08
mailto:xiangao2016@163.com
mailto:xuejq@qdu.edu.cn
https://doi.org/10.3389/fonc.2023.1256537
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1256537
https://www.frontiersin.org/journals/oncology


Liu et al. 10.3389/fonc.2023.1256537
families. According to pathological characteristics, LC is mainly

classified into two subtypes: small cell lung cancer (SCLC) and non-

small cell lung cancer (NSCLC) (3, 4). The clinical outcomes of LC

patients are commonly poor due to their unobvious early symptom,

lack of efficient prognostic evaluation method, and insufficient

understanding of pathogenesis (5, 6). Therefore, elucidating the

regulatory mechanisms of LC progression may greatly benefit

patients in the adjustment of therapeutic strategies and the

identification of valuable biomarkers or targets.

Non-coding RNAs (ncRNAs) are functional RNA transcripts

that have no protein-coding capacity (7–9). According to their

biological functions, ncRNAs are mainly grouped into

housekeeping ncRNA and regulatory ncRNA (10). Housekeeping

ncRNAs (e.g., ribosomal RNA) are stably expressed in eukaryotic

cells. Their products are essential for maintaining the basic life

activity of cells (11). Regulatory ncRNAs are key players in almost

all biological processes (12). Based on their structural features,

ncRNAs are further categorized into microRNA (miRNA) (13),

long non-coding RNA (lncRNA) (14), circular RNA (circRNA)

(15), small interfering RNA (16), and PIWI-interacting RNA (17).

They participate in the regulation of various biological processes,

including transcription, development, and immunity, by altering

specific gene expression (18–20). Therefore, their dysregulation is

closely correlated with various diseases, such as brain disease,

diabetes, and cancer (21–27) NcRNA dysregulation has been

reported to contribute to almost all aspects of LC development,

including apoptosis, cell cycle, metastasis, and autophagy, as well as

cell stemness (28–31). However, investigations of LC-related

ncRNAs are still lacking.

In this review, we mainly present the modes of action of

miRNA, lncRNA, and circRNA and their regulatory mechanisms

involved in the initiation and development of LC. We also explore

the underlying utilization of these ncRNAs in LC clinical treatment.
Types of ncRNA

NcRNAs (e.g., miRNAs, lncRNAs, and circRNAs) are essential

regulators in various physiological and pathological processes, such

as regeneration, development, immunopathogenesis, intracerebral

hemorrhage, and LC (32–36).
MiRNA

MiRNAs are well-studied small ncRNAs, with a single-stranded

structure of 19–25 nucleotides (37). Approximately 2300 miRNAs

are found in human cells, and they can serve as post-transcriptional

regulators to modulate over 60% of the protein-coding genes (38,

39). The canonical function of miRNAs is to regulate specific gene

expression by influencing messenger RNA (mRNA) stability (40).

In general, miRNAs suppress gene expression by directly

interacting with partially complementary sequences in their target

mRNAs (41). The method of gene inhibition relies on the

complementary extent between miRNA and target mRNA. Exact

matching commonly results in mRNA degradation, whereas partial
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matching induces translational suppression (42). Moreover,

miRNAs recognize and mediate mRNA degradation and/or

translational inhibition by recruiting the miRNA-induced

silencing complex consisting of Argonaute proteins and GW182

(43). The near-seed or non-seed regions of miRNAs are also

required for miRNA-mediated modulation of gene expression

(44). In addition, nuclear miRNAs are found to mediate the

silencing or activation of transcriptional genes (45–47).
LncRNA

LncRNAs are the largest type of ncRNAs and comprise 81.8% of

the total ncRNAs (48, 49). They exhibit highly specific lineage,

spatiotemporal, and tissue/cell-dependent patterns, but their

abundance, stability, and conservation are less than mRNA (50,

51). LncRNAs are essential modulators that participate in almost

every step of gene expression (52, 53). Their canonical mechanism

of action is to inhibit target gene expression by binding to miRNA

and imposing an additional post-transcriptional regulation level.

LncRNAs can also induce transcription factors (TFs) away from

chromatin by serving as molecular sinks, thereby altering gene

expression (54). Furthermore, some studies suggest that they

function as scaffolds to form scaffolding complexes with effectors,

resulting in the alteration of gene expression (55). LncRNAs can

also guide the ribonucleoprotein complex to the promoters of

downstream target genes, thereby altering the transcriptional

activity of genes (56). In addition, lncRNAs also alter gene

expression through influencing mRNA processing, maturation,

and stability (53).
CircRNA

CircRNAs are single-stranded ncRNA molecules generated

from the pre-mRNA back-splicing process and possess a

covalently closed-loop structure (57). The closed ring structure

can protect circRNAs from exonuclease-mediated degradation,

resulting in their stable existence in various subcellular structures

(58). CircRNAs are key modulators in many biological processes,

including gene transcription, protein translation, immune response,

and carcinogenesis, as well as chemoresistance (59–61). The most

widely investigated role of circRNAs is to weaken their effect on

target mRNAs by serving as miRNA sponges, ultimately resulting in

the alteration of correlated gene expression. These circRNAs

commonly possess multiple miRNA response elements (62, 63).

CircRNAs also participate in biological processes by influencing the

functions of proteins (64–66). Furthermore, EIciRNAs are found to

facilitate the RNA polymerase II-mediated transcription of their

parental genes by binding to U1 small nuclear ribonucleoproteins

(33). CircURI1 regulates the AS of multiple migration-related genes

by directly interacting with hnRNPM, leading to the inhibition of

gastric cancer metastasis (67). In addition, a small part of

endogenous circRNAs, which contain open reading frames, have

been shown to translate into peptides or proteins (68). However,

their potential functions are still unclear.
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NcRNA expression in LC

Differentially expressed ncRNAs play crucial roles in LC

occurrence and development (69). Zhang et al. revealed 190

differentially expressed miRNAs between pleural effusion induced

by lung adenocarcinoma (LUAD) and pleural effusion induced by

tuberculosis, including 99 highly expressed miRNAs and 91 low

expression miRNAs. These miRNAs probably influenced the

production of pleural effusion via tumor immune response (70).

In another study, Zeng et al. distinguished 24 aberrantly expressed

miRNAs between NSCLC patients with tumor shrinkage of ≤30%

after radiotherapy and patients with tumor shrinkage of 30%–50%,

11 (6 upregulated and 5 downregulated) between patients with

tumor shrinkage of ≤30% and patients with tumor shrinkage

of ≥50%, and 35 between patients with tumor shrinkage of 30%–

50% and patients with tumor shrinkage of ≥50% (71). Furthermore,

by comparing the plasma of LUAD patients with benign pulmonary

nodule patients, Tong et al. confirmed 1762 differentially expressed

lncRNAs in LUAD patients, 946 in lung squamous cell carcinoma

patients, and 298 in SCLC patients (72). Huang et al. revealed 177

highly expressed lncRNAs and 215 low expression lncRNAs in the

exosomes of LUAD pleural effusion compared with that of benign
Frontiers in Oncology 03
pleural effusion (73). In addition, Cai et al. performed high-

throughput sequencing and identified 598 differentially expressed

circRNAs between LUAD patients with bone metastasis and

patients without bone metastasis, among which 238 were

upregulated and 360 were downregulated (74).
NcRNA and cancer-related pathways
in LC

Recent studies suggest that the crosstalk between ncRNA and

oncogenic signaling pathway is involved in LC initiation and

development (75–77) (Figure 1). A better understanding of

ncRNA action in targeting cancer-related signaling pathways may

be of great benefit to the prevention and treatment of LC.
PI3K/AKT pathway

The PI3K/AKT signaling pathway is a conserved signaling

cascade involved in various biological processes, including

growth, differentiation, metabolism, and survival. The aberrant
A

B
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E

F
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H

C

FIGURE 1

Modulation of ncRNAs on cancer-related signaling pathways in LC. NcRNAs are involved in LC progression by targeting the MAPK (A), WNT/b-
catenin (B), PI3K/AKT (C), STAT3 (D), Notch (E), p53 (F), NER (G), NF-kB (H) signaling pathways.
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activation of this pathway contributes to LC progression (78).

MiRNAs play vital roles in LC progression by targeting the PI3K/

AKT signaling pathway. For example, in a study by Niu et al.,

miRNA let-7c-3p was found to inactivate the PI3K/AKT signaling

pathway through downregulating PIK3CA, thereby suppressing

proliferation and migration in NSCLC cell lines H460 and A549

(79). Furthermore, Shi et al. showed that miR-514b-5p facilitated

NSCLC progression by downregulating SGTB and enhancing the

PI3K/AKT signaling pathway (80). LncRNAs and circRNAs are also

key regulators of the PI3K/AKT signaling pathway during LC

progression. For example, high expression of LASTR was

observed in both LUAD and lung squamous cell carcinoma

(LUSC) samples. LASTR overexpression increased the levels of

transforming growth factor alpha by sponging miR-137, thereby

activating the PI3K/AKT signaling pathway and ultimately leading

to the facilitation of LC progression (81). Liu et al. demonstrated

that circGRAMD1B enhanced the activity of the PI3K/AKT

pathway by increasing SOX4 levels via sequestering miR-4428,

resulting in the facilitation of LUAD progression (82).
MAPK pathway

The MAPK signaling pathway is a highly conserved pathway that

plays an important role in maintaining cellular behaviors and

processes, including epithelial-to-mesenchymal transition (EMT),

apoptosis, and migration (83). NcRNA dysregulation has been

demonstrated to participate in LC progression by modulating the

MAPK signaling pathway. For example, exosomal miRNA let-7c-5p

and miR-181b-5p was found to repress EMT in bronchial epithelial

cells (BEAS-2B) by suppressing the MAPK signaling pathway,

thereby inhibiting the invasion of BEAS-2B cells (84). Besides, Shi

et al. showed that miRNA let-7a overexpression significantly

suppressed the activity of the MAPK signaling pathway by

downregulating Ras, p-Raf1/Raf1, and p-MEK1/MEK1 via targeting

Rsf-1 in LC cells, resulting in the repression of cell proliferation after

radiotherapy (85). Furthermore, Zhu et al. demonstrated that the

levels of LINC00649 expression were remarkably increased in LUSC

cells, and its upregulation facilitated the occurrence and development

of LUSC. Mechanistically, LINC00649 activated the MAPK signaling

pathway by enhancing the transcription and stability of MAPK6 via

recruiting TATA-box binding protein associated factor 15 in LUSC

cells, resulting in the promotion of LUSC progression (86). Wang

et al. discovered that lncRNA PCAT19 increased MAP2K4 levels by

binding to miR-25-3p, thereby repressing the MAPK signaling

pathway and LC progression (87). Moreover, our previous study

discovered that circ-ZKSCAN1 increased the levels of FAM83A via

sequestering miR-330-5p, leading to the inactivation of the MAPK

signaling pathway and subsequent facilitation of NSCLC

progression (88). In addition, Zhuang et al. revealed that circ-

RAD23B increased MAP4K3 levels by sequestering miR-142-3p,

thereby enhancing the activity of the MAPK signaling pathway and

promoting NSCLC progression (89). Hu et al. discovered that

circCNN2 activated the MAPK signaling pathway through

upregulating E2F TF 1 via sponging miR-184, thereby promoting

LUSC progression (90).
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Wnt/b-catenin pathway

The Wnt/b-catenin signaling pathway governs various

physiological processes, such as embryo development and tissue

homeostasis, and its aberrant activation is tightly linked with cancer

progression (91). Some ncRNAs (e.g., miR-1275, miR-199, MIR4435-

2HG, and FLVCR1-AS1) have been demonstrated to contribute to LC

progression through the Wnt/b-catenin signaling pathway (92–97).

Furthermore, multiple lncRNAs and circRNAs can regulate the Wnt/

b-catenin signaling pathway by serving as competing endogenous RNA

(ceRNA) for miRNAs in LC. Liu et al. showed that lncRNA RP11-

79H23.3 knockdown enhanced the activity of the Wnt/b-catenin
signaling pathway in NSCLC cells by sequestering miR-29c, resulting

in the facilitation of LC progression (98). Yang et al. revealed that

circ_0017109 knockdown decreased FZD4 levels by releasingmiR-671-

5p, resulting in the enhancement of the Wnt/b-catenin signaling

pathway and subsequent facilitation of NSCLC progression (99). In

addition, circCDR1 was found to activate the Wnt/b-catenin signaling

pathway by interacting with SRSF1, thereby facilitating PM2.5-induced

LC development (100).
Notch pathway

The Notch signaling pathway is involved in the regulation of

multiple biological processes, such as cell fate determination,

embryo formation, and organism homeostasis (101). The

dysregulation of the Notch signaling pathway contribute to many

aspects of LC progression, including uncontrolled proliferation,

cancer cell stemness, and TME (102). Ji et al. found that miR-34a

inactivated the Notch signaling pathway by downregulating Hes-1,

Notch-1, and Survivin, resulting in the suppression of cell growth

and invasiveness and facilitation of apoptosis in NSCLC cells (103).

Xue et al. showed that miR-200 modulated the crosstalk of LUAD

cells with adjacent cancer-associated fibroblasts (CAFs) by targeting

Jagged1 and Jagged2 (Notch ligands), thereby activating the Notch

signaling pathway in CAFs and subsequently repressing LUAD

metastasis (104). Furthermore, exosomal AGAP2-AS1 activated the

Notch signaling pathway in LC cells by upregulating Notch2 via

sequestering miR-296, leading to the enhancement of cell malignant

behaviors (105). SNHG11 upregulated Notch3 by sponging miR-

193a-5p, thereby activating the Notch signaling pathway and

subsequently facilitating LUAD progression (106). In addition,

circ_0000190 was found to counteract the repression of luteolin

on LC progression by activating the Notch-1 signaling pathway via

sponging miR-130a-3p (107).
Other pathways

NcRNAs can also play a role in regulating LC progression

through other signaling pathways. Multiple ncRNAs (e.g., miR-

520a-3p, lncRNA MIR503HG, and circ_cMras) have been shown

to suppress LC development by inactivating the NF-kB pathway,

whereas some other ncRNAs (e.g., miR-135b and lncRNA SNHG5)

can promote LC progression by enhancing the NF-kB pathway (108–
frontiersin.org

https://doi.org/10.3389/fonc.2023.1256537
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1256537
112). Furthermore, lncRNA H19 enhanced the STAT3 signaling

pathway by increasing STAT3 levels via sequestering miR-17,

thereby promoting the progression of NSCLC (113).

Hsa_circ_0002874 repressed the p53 signaling pathway by

upregulating MDM2 (the E3 ubiquitin ligase of p53) via sponging

miR-1273f, thereby enhancing the PTX resistance of NSCLC cells

(114). In addition, hsa_circ_0001946 suppressed cisplatin resistance

in NSCLC cells by modulating the NER signaling pathway (115).

NcRNA in LC proliferation
and apoptosis

Uncontrolled proliferation and escape from apoptosis are the

most defining characteristics of tumor cells. However, the

regulatory network involved in proliferation and apoptosis

remains unclear and need to be further clarified (116). NcRNAs

has been demonstrated to be vital regulators of the two cellular

processes in LC. Luo et al. discovered that the levels miRNA-144-5p

were significantly increased in LUAD, and its upregulation

suppressed proliferation and promoted apoptosis in LUAD cells

by targeting CDCA3 (117). Han et al. showed that miR-4491 was

remarkably upregulated in NSCLC cells. Its overexpression

facilitated proliferation and repressed apoptosis in NCI-H1650

cells through targeting TRIM7 (118). LncRNAs and circRNAs can

also modulate LC proliferation and apoptosis via serving as ceRNAs

for miRNA. For example, lncRNA-UCA1 was found to upregulate

VEGF-A via sequestering miR-383, thereby facilitating proliferation

and inhibiting apoptosis in HCC-78 cells (119). Circ_0000520

increased the levels of breast cancer-overexpressed gene 1 via

sequestering miR-512-5p, resulting in the facilitation of

proliferation and induction of apoptosis in LC cells (120).

Some cell cycle-related proteins are identified as downstream

targets of ncRNAs (121), indicating that ncRNAs may participate in

the modulation of the proliferation and apoptosis in LC through

influencing cell cycle process. For instance, Huang et al. discovered

that let-7c-5p overexpression arrested cells in G0/G1 phase by

targeting cell division cycle 25A, resulting in the repression of

proliferation and the promotion of apoptosis in LUAD cells (122).

Wang et al. revealed that lnc-TMEM132D-AS1 induced M2/G-phase

cell cycle arrest, facilitated proliferation, and repressed apoptosis in

NSCLC cells by upregulating CD39 via sponging miR-766-5p (123).

In addition, circPIM3 was found to increase TNFAIP8 levels by

sponging miR-338-3p, thereby repressing apoptosis and promoting

cell cycle progress and proliferation in taxol-resistant A549 and PC9

cells (124). Taken together, these findings strongly suggest that

ncRNAs play pleiotropic roles in LC progression.
NcRNA in LC invasion and metastasis

The invasion and metastasis of tumor cells are major causes

of cancer recurrence and mortality (125, 126). Therefore,

elucidating the potential mechanisms involved in invasion and

metastasis is essential for developing therapeutic strategies to

ameliorate prognosis for LC patients. NcRNAs have been proven
Frontiers in Oncology 05
to serve as key modulators that mediate invasion and metastasis

in LC. For example, miR-96-5p was found to activate the MAPK

signaling pathway by targeting domain-binding protein 2, leading

to the repression of invasion and metastasis in LC cells (127).

MiR-520a-3p decreased NF-kB p65 levels by targeting AKT1,

thereby inactivating the NF-kB pathway and ultimately

suppressing cell invasion and metastasis in NSCLC cells

(128). Moreover, lncRNA TEX41 suppressed the PI3K/AKT

signaling pathway by increasing Runx2 expression, leading to

the facilitation of invasion, metastasis, and autophagy in

LUAD cells (129). Circ_0000376 silencing decreased PDPK1

expression by releasing miR-545-3p, thereby repressing

invasion and metastasis in NSCLC cells (130).

EMT is a biological process of cellular morphological alterations

in which epithelial cells obtain mesenchymal characteristics. Recent

studies suggest that ncRNA dysregulation endows LC cells with

invasive and metastatic characteristics by altering EMT (84, 131,

132). Exosomal miR-181b-5p and let-7c-5p was found to inhibit the

EMT process in BEAS-2B cells by modulating the MAPK signaling

pathway, resulting in the enhancement of migratory and invasive

ability in BEAS-2B cells (84). Moreover, Yang et al. showed that

lncRNA PCAT6 significantly repressed the migration, invasion, and

EMT of A549 and H1975 cells by increasing EGFR expression via

sequestering miR-545-3p (131). Liu et al. revealed that circSCN8A

suppressed invasion, metastasis, and EMT in NSCLC cell lines.

Mechanistically, circSCN8A increased the levels of ACSL4 by

sponging miR-1290, thereby repressing NSCLC progression (132).

Collectively, as the key modulators of invasion and metastasis

during LC progression, ncRNAs have presented great value as

target candidates in LC treatment.
NcRNA in LC angiogenesis

Angiogenesis denotes the development of new vessels from

existing ones, by which tumor cells acquire sufficient material

supplement for their growth (133). Targeting angiogenesis is

considered a promising strategy in cancer treatment. NcRNAs are

modulators of angiogenesis in LC. Gan et al. found that let-7d-5p

expression was remarkably increased in LC cells treated with

Trametes robiniophila, and its upregulation inhibited

angiogenesis and tumor growth in LC by targeting NAP1L1

(134). Chang et al. demonstrated that exosomal miR-197-3p from

LUAD cells could facilitate the angiogenesis of HUVECs by directly

downregulating TIMP2/3 (135). Furthermore, Pan et al. discovered

that LANCL1-AS1 upregulation dramatically repressed the

angiogenesis of NSCLC cells by upregulating glia maturation

factor gamma via sponging miR-3680-3p (136). Wang et al.

revealed that ZNRD1-AS1 upregulation increased tensin 1 levels

by sponging miR-942, thereby suppressing LC angiogenesis (137).

In addition, circ_0043256 upregulation remarkably repressed

angiogenesis in LC cells by upregulating KLF2 via absorbing miR-

1206 (138). In-depth investigations are needed to further clarify the

ncRNA action in angiogenesis, which may bring significant

advantage for the development of theoretical basis in LC treatment.
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NcRNA in LC tumor microenvironment

Tumor microenvironment (TME) is a highly complicated

ecosystem that contains tumor cells, nontumoral cells, and

various cytokines and chemokines generated by them. The

continuous interaction between tumor cells and TME contributes

to carcinogenesis, metastasis, and drug resistance (139). NcRNAs

are involved in LC development through targeting the cellular

components of TME, such as CAFs and tumor-associated

macrophages (TAMs) (140–145). Liu et al. discovered that CAF-

derived exosomal miR-200 inhibited morphological and metastatic

characteristics of NSCLC cells by downregulating ZEB1 (140).

Enukashvily et al. showed that satellite lncRNA knockdown

reduced cell aging and attenuated inflammatory CAF phenotype

in human lung fibroblasts (141). Furthermore, Li et al. revealed that

LINC01798 remarkably increased ITGA8 levels through absorbing

miR-17-5p, resulting in the alteration of TME and stemness in

LUAD cells (142). As the main immune cell population in the TME,

TAMs play vital roles in shaping the TME (143). NSCLC cell-

derived exosomal miR-181b was found to enhance TAM M2

polarization through the activation of the STAT3 signaling

pathway (144). Moreover, Wu et al. demonstrated that

LINC01094 activated the transcription of CCL7 by facilitating the

shuttling of SPI1 from cytoplasm to nucleus, resulting in the

accumulation of M2 TAMs and the dissemination of LUAD cells

(145). In addition, exosomal circFARSA was found to polarize

TAMs to anM2 phenotype by enhancing the activation of the PI3K/

AKT pathway. NSCLC cells co-cultured with TAMs transfected

with circFARSA exhibited enhanced EMT and metastasis (146).
NcRNA in LC tumor stemness

Cancer stem cell (CSC) belongs to a specific type of self-renewal

cells, which is considered the major factor contributing to metastasis,

chemoresistance, and recurrence in cancer (147). Elucidating the

detailed mechanism involved in the modulation of CSC functions

may bring significant benefit to the development of individualized

treatment of LC patients. NcRNAs are key regulators of stemness in

LC cells (148–151). Moro et al. discovered that miR-486-5p facilitated

apoptosis and decreased viability in CD133+ lung CSCs by

inactivating the PI3K/AKT pathway, leading to the inhibition of

the tumor-initiating roles of these cells (148). Liu et al. demonstrated

that miR-1246 knockdown attenuated the stemness of LC cells by

directly targeting TRIM17 (149). Furthermore, the overexpression of

ADAMTS9-AS1 was found to significantly increase NPNT

expression by sequestering miR-5009-3p, thereby repressing the

stemness of LUDA-CSCs (150). Lu et al. revealed that TDRG1 was

remarkably increased in lung CSCs compared with parental LC cells.

TDRG1 overexpression enhanced the stemness of lung CSCs by

upregulating Sox2 (stemness marker) via binding to its mRNA (151).

In addition, circRACGAP1 enhanced stemness and metastasis in

NSCLC cells via promoting SIRT3-mediated RIF1 deacetylation
Frontiers in Oncology 06
(152). Collectively, these studies suggest that ncRNAs are key

modulators of stemness in LC cells. However, their regulatory

mechanisms remain not fully understood, which need to be

further elucidated.
NcRNAs in LC chemoresistance

Chemotherapy is a well-established treatment method for distinct

cancer types and can significantly extend patients’ life spans, but the

development of chemoresistance limits its further utilization and

ultimately results in patients’ death (153). NcRNA dysregulation is

closely correlated with the emergency of chemoresistance in LC

treatment (154). Our previous study showed that miR-608 was

remarkably downregulated in NSCLC samples. MiR-608

overexpression in NSCLC cells facilitated doxorubicin-induced

apoptosis by targeting TFAP4 (155). Vinciguerra et al. discovered

that miR-301a was dramatically decreased in cisplatin-resistant

NSCLC cells. The overexpression of miR-301a downregulated

GLIPR1 by targeting Fra-2, thereby improving cisplatin resistance in

NSCLC cells (156). Besides, miR-936 was significantly downregulated

in NSCLC cells, and its overexpression inactivated the Galphaq Rho

GTPase pathway by targeting GPR78, resulting in the repression of

cisplatin resistance in NSCLC cells (157). Furthermore, Yu et al.

demonstrated that lncRNA LOC85009 inhibited ATG5-induced

autophagy by decreasing the stability of upstream TF 1 via

sequestering ubiquitin-specific proteinase 5, thereby triggering cell

apoptosis and suppressing docetaxel resistance in LUAD cells.

Interestingly, exosomal LOC85009 derived from LUAD cells

enhanced docetaxel sensitivity in docetaxel-resistant cells (158). Liu

et al. discovered that DDX11-AS1A was remarkably increased in

LUAD, and its upregulation attenuated paclitaxel sensitivity in LUAD

cells through promoting DNA damage repair (159). In addition,

CircPIM3 decreased taxol sensitivity and inhibit apoptosis in taxol-

resistant NSCLC cells. Mechanistically, circPIM3 upregulated tumor

necrosis factor-alpha-induced protein-8 via absorbing miR-338-3p,

thereby enhancing taxol resistance in NSCLC cells (124).

NcRNA and tobacco smoking in LC

Tobacco smoking is considered the major risk factor of LC that

generates long-lasting and progressive impairment to the lung

tissue (160). Some ingredients in tobacco have been shown to

contribute to tumorigenesis and progression of LC by promoting

malignant behaviors of cancer cells and inducing chronic

inflammation (161, 162). However, the exact mechanisms of

tobacco smoking in LC remain largely unknown. Recent studies

suggest that ncRNAs play vital roles in pathogenesis of tobacco

smoking-induced LC (163–165). Tobacco-specific nitrosamine 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a well-

studied strong carcinogen. Kalscheuer et al. discovered that the

levels of miR-101, miR-126*, miR-199 and miR-34 were

significantly downregulated in male rats treated with NNK,

indicating the potential value of these miRNAs as diagnostic
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biomarker for early LC development. Functional analysis revealed

that NNK exerted its oncogenic role by increasing cytochrome P450

(CYP) 2A3 levels via downregulating miR-126* (163). Chen et al.

showed that NNK treatment decreased lncRNA AC007255.8

expression by inducing its promoter hypermethylation, resulting

in the promotion of proliferation and the suppression of apoptosis

in human bronchial epithelial Beas-2B cells (164). Furthermore,

Hua et al. demonstrated that circ_0035266 regulated the

inflammatory responses of Beas-2B cells to NNK and

lipopolysaccharide (LPS) by altering the secretion of IL-6 and IL-

8. Mechanistically, circ_0035266 overexpression upregulated

DDX3X by sponging miR-181d-5p, thereby facilitating IL-6 and

IL-8 secretion and ultimately resulting in the enhancement of

inflammatory responses of cells to NNK and LPS (165). They also

found that circ_0035266 knockdown significantly repressed the

proliferation, cell cycle process, and migration of Beas-2B cells

treated with NNK and LPS (166). Nicotine is a primary alkaloid

derived from tobacco plants. Liu et al. revealed that the levels of

miR-218 were remarkably decreased in NSCLC cells treated with

nicotine and its downregulation facilitated the expression of CDK6,
Frontiers in Oncology 07
leading to the promotion of cell proliferation (167). Zhao et al.

showed that the nicotine-induced upregulation of LINC00460

promoted the proliferation and migration of NSCLC cells and the

inhibition of cell apoptosis (161). In addition, Zong et al.

demonstrated that lncRNA CCAT1 was significantly upregulated

in human bronchial epithelial (HBE) cells treated with cigarette

smoke extract (CSE). CCAT1 overexpression activated the ERK

signaling pathway by sponging miR-152-3p, resulting in the

enhancement of inflammation in CSE-treated HBE cells (168).

Collectively, these findings strongly suggest that ncRNAs are key

regulators in tobacco smoking-induced LC progression.

Understanding their exact mechanisms in tobacco smoking

-associated LC may provide novel insights in the development of

individualized treatment of tobacco-using patients with LC.

In summary, ncRNAs can play pleiotropic roles in almost all

aspects of LC occurrence and development, such as EMT, apoptosis,

angiogenesis, TME, stemness, and chemoresistance (Figure 2). The

key functions of ncRNAs in the development of LC malignant

characteristics endow them with great clinical application value in

LC treatment.
FIGURE 2

Role of ncRNAs in malignant behaviors of LC cells. NcRNAs participate in the regulation of LC malignant behaviors, including cell apoptosis,
proliferation, cell cycle, invasion, metastasis, EMT, TAM, stemness, angiogenesis, and chemoresistance.
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Clinical implications of ncRNA in LC

NcRNA in LC diagnosis and prognosis

Currently, most LC patients have poor clinical outcomes because

of the lack of effective early diagnosis and prognostic assessment

means (33). Multiple proteins (e.g., PSA, CA-125, and CYFRA 21-1)

have been applied in LC treatment by serving as biomarkers.

However the unsatisfactory accuracy and reliability restrict their

further utilization (169). NcRNAs have exhibited differently

expressed patterns, high stability and specificity, and detectability

(170–172). These specific features endow them with great value as

noninvasive biomarkers for LC patients (Tables 1, 2). Wang et al.
Frontiers in Oncology 08
performed an in-depth meta-analysis and discovered that the area

under the curve (AUC) value for miR-21 in distinguishing LC was

0.87, with 77% sensitivity and 86% specificity. Moreover, highmiR-21

levels were remarkably associated with overall survival (OS) in LC

patient (170). Wu et al., found that miR-340 was dramatically

downregulated in plasma from NSCLC patients, whereas miR-

450b-5p were upregulated. The AUC values for circulating miR-

340 and miR-450b-5p in distinguishing NSCLC were 0.740 and

0.808, respectively. Furthermore, lower miR-340 and higher miR-

450b-5p were significantly correlated with prognosis in NSCLC (171).

LncRNAs and circRNAs have also been utilized in LC clinical

research. Yuan et al. discovered that the plasma levels of CRNDE and

TA73-AS1 were significantly increased in NSCLC tissues. Their AUC
TABLE 1 NcRNAs as diagnostic or prognostic biomarkers in LC.

LC
subtypes

NcRNA subtypes Samples Techniques Expression
patterns

Biomarker
types

Potential values Reference

NSCLC miRNA miR-21-5p Blood
mononuclear
cells

RT-qPCR Up Diagnosis 100% sensitivity and
55.3% specificity.

(173)

miR-30 Serum RT-qPCR Down Diagnosis
Prognosis

AUC = 0.802, 76.0%
sensitivity and 75.9%
specificity. The OS of
miR-30 low expression
patients was shorter
than high expression
patients (p < 0.05).

(174)

miR-7-5p A549, H358,
H520, and
SPC-A1

qPCR Down Prognosis Low miR-7-5p
expression was closely
associated with poor
prognosis of NSCLC
patients (p = 0.014).

(175)

miR-155, miR-
222

Serum qPCR Up Diagnosis High levels of miR-
155 and miR-222 are
closely correlated with
worse prognosis in
NSCLC patients (p =
0.014).

(176)

miR-184 Serum
exosomes

qPCR Up Diagnosis
Prognosis

AUC = 0.927, 87.61%
sensitivity and 84.02%
specificity. The levels
of miR-184 in serum
exosomes is
significantly correlated
with prognosis in
NSCLC (p < 0.05).

(13)

miR-223 Serum ddPCR Up Diagnosis AUC = 0.753. (177)

miR-339-3p Serum RT-qPCR Up Diagnosis AUC = 0.616. (178)

miR-21, miR-23a Plasma qRT-PCR Up Prognosis The expression of
miRNA-21 and
miRNA-23a was
higher in plasma from
NSCLC patients with
distant metastasis
compared with
patients without
metastasis (p <
0.0001).

(179)

(Continued)
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TABLE 1 Continued

LC
subtypes

NcRNA subtypes Samples Techniques Expression
patterns

Biomarker
types

Potential values Reference

miR-629 Serum RT-qPCR Up Prognosis High serum miR-629
NSCLC patients
suffered poorer OS
and DFS than those in
the low serum miR-
629 patients.

(180)

miR-92a Tissue PT-PCR Up Prognosis MiR-92a levels were
significantly correlated
with prognosis in
NSCLC (p = 0.036).

(181)

lncRNA TA73-AS1,
CRNDE

Plasma qRT-PCR Up Diagnosis AUC for TA73‐AS1
was 0.822; AUG for
CRNDE was 0.815;
High expression of the
two plasma lncRNAs
are associated with
worse TFS in NSCLC
patients.

(172)

SLC9A3-AS1 Serum RT-qPCR Up Diagnosis
Prognosis

AUC = 0.74. High
SLC9A3-AS1 levels
were correlated with
shorter OS (p = 0.033)
and RFS (p = 0.031).

(182)

HOTAIR Tissue FISH Up Diagnosis AUC = 0.801, 52.3%
sensitivity and 86.9%
specificity.

(183)

RP5-977B1 Serum
exosomes

qRT-PCR Up Diagnosis
Prognosis

AUC = 0.8899. High
RP5-977B1 levels were
significantly correlated
with poor prognosis in
NSCLC (p = 0.036).

(184)

ELFN1-AS1 Tissue RT-qPCR Up Prognosis High ELFN1-AS1
levels were
significantly correlated
with OS in NSCLC (p
= 0.021).

(185)

circRNA circFOXP1 Serum qRT-PCR Up Diagnosis AUC = 0.88. (186)

hsa_circ_0069313 Serum
exosomes

qRT-PCR Down Diagnosis AUC = 0.749. (187)

hsa_circ_0023179 Serum qRT-PCR Up Diagnosis AUC = 0.831, 77%
sensitivity and 86%
specificity.

(188)

hsa_circ_0070354 Serum qRT-PCR Up Diagnosis
Prognosis

AUC = 0.660, 52.63%
sensitivity and 76.29%
specificity. High
hsa_circ_0070354
levels in NSCLC were
significantly correlated
with poor prognosis (p
< 0.001).

(189)

circRNA_001846 Serum qRT-PCR Up Diagnosis AUC = 0.872, 78.2%
sensitivity and 81.1%
specificity.

(190)

SCLC miRNA miR-92a-2 Plasma qRT-PCR Up Diagnosis AUC = 0.761, 56%
sensitivity and 100%
specificity.

(191)

Plasma qRT-PCR Up (192)

(Continued)
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TABLE 1 Continued

LC
subtypes

NcRNA subtypes Samples Techniques Expression
patterns

Biomarker
types

Potential values Reference

miR-375, miR-
92b

Diagnosis
Prognosis

AUC for miR-375 was
0.766; AUC for miR-
92b was 0.791; The
two miRNAs were
closely correlated with
reduced progression-
free survival in SCLC.

miR-92a-2* Tissue qRT-PCR Up Prognosis Higher miR-92a-2*
levels were correlated
with poor survival in
SCLC.

(193)

lncRNA KCNQ1OT1 SCLC cell
lines H69AR
and H69

RT-qPCR Up Prognosis High KCNQ1OT1
levels were
significantly correlated
with poor prognosis in
SCLC.

(194)

CCAT2 Tissue qRT-PCR Up Prognosis High level of CCAT2
was associated with
short OS of SCLC
patients (p = 0.007).

(195)

AK09398 Tissue qRT-PCR Up Prognosis High level of AK09398
was associated with
poor OS and PFS in
SCLC (p < 0.001).

(196)

circRNA cESRP1 SCLC cell qRT-PCR and
FISH

Down Prognosis cESRP1 expression
was associated with
OS in SCLC patients
(p = 0.0017).

(197)

FECRs Serum
exosome

qRT-PCR and
FISH

Up Prognosis Exosomal FECR1
levels were closely
correlated with shorter
survival in SCLC (p =
0.038).

(198)
F
rontiers in Onc
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TABLE 2 NcRNAs as diagnostic or prognostic biomarkers in different types of NSCLC.

NSCLC
subtypes

NcRNA subtypes Samples Techniques Expression
patterns

Biomarker
types

Potential values Reference

LUAD miRNA miR-30d-5p Serum RT-qPCR Down Prognosis High of miR-30d-5p
was closely correlated
with longer RFS in
LUAD (p = 0.02).

(199)

miRNA-30a-5p Serum qRT-PCR Down Prognosis AUC = 0.902. Low
levels of miR-30d-5p
were closely correlated
with worse clinical
outcomes in LUAD.

(200)

miR-125b-5p Tissue Bioinformatics Down Prognosis AUC = 0.768. Low
levels of miR-125b-5p
were closely associated
with poor OS and DFS
in LUAD (p < 0.0001).

(201)

miR4732-5p,
miR451a, miR486-
5p, and miR139-
3p

Serum
exosome

qRT-PCR UP Diagnosis AUC = 0.8554, 91.07%
sensitivity and 66.36%
specificity.

(19)

(Continued)
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TABLE 2 Continued

NSCLC
subtypes

NcRNA subtypes Samples Techniques Expression
patterns

Biomarker
types

Potential values Reference

lncRNA CASC11 Tissue,
plasma

qRT-PCR UP Diagnosis
Prognosis

CASC11 exhibited
diagnostic value in
LUAD (p < 0.0001).
High CASC11 levels
were closely correlated
with poor prognosis in
LUAD (p < 0.05).

(202)

IPW Tissue, cell Bioinformatics,
qRT-PCR

Down Prognosis High levels of miR-370
were closely correlated
with shorter OS in
LUAD (p = 0.045).

(203)

SIGLEC17P Tissue Bioinformatics,
qRT-PCR

Down Prognosis AUC = 1.000 (p <
0.01). LUAD patients
with high SIGLEC17P
levels exhibited good
OS (p = 0.0009) and
RFS (p = 0.0053).

(204)

circRNA hsa_circ_101555,
hsa_circ_008068

Tissue,
plasma

qPCR Up Diagnosis AUC for
hsa_circ_101555 was
0.708 (76.67%
sensitivity and 60.00%
specificity); AUC for
hsa_circ_008068 was
0.624 (63.33%
sensitivity and 53.33%
specificity).

(205)

hsa_circ_0001492,
hsa_circ_0001439,
hsa_circ_0000896

Serum,
serum
exosome

qRT-PCR Up Diagnosis The AUC value of the
combination of
exosomal
hsa_circ_0001492,
hsa_circ_0001439, and
hsa_circ_0000896 was
0.805.

(206)

LUSC miRNA miRNA-126-3p Tissue qRT-PCR Down Diagnosis
Prognosis

AUC = 0.6748 (p =
0.018). LUSC patients
with low miRNA-126-
3p levels exhibited
poor OS (p = 0.0004).

(207)

miR-486-5p Tissue,
ell

Bioinformatics,
qRT-PCR

Down Diagnosis AUC = 0.9082 (95%
CI: 3.47-1.03; p =
0.0003).

(208)

miR-1 Tissue Bioinformatics Down Diagnosis AUC = 0.9096, with
71% sensitivity and
88% specificity.

(209)

lncRNA TTTY16,
POU6F2-AS2,
CACNA2D3-AS1

Tissue Bioinformatics Up Prognosis The AUC value for the
three lncRNAs
correlated with 3-year
survival was 0.629 in
LUSC patients.

(210)

LINC02323 Tissue Bioinformatics Up Prognosis LUSC patients with
high LINC02323 levels
exhibited poor OS (p =
0.0089).

(211)

circRNA hsa_circ_0014235,
hsa_circ_0025580

qRT-PCR Up Diagnosis The AUC values of
hsa_circ_0014235 and
hsa_circ_0025580 were
0.8254 and 0.8003 in
LUSC patients,
respectively.

(212)
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values in distinguishing NSCLC were 0.822 and 0.815, separately.

Moreover, their plasma levels were also closely correlated with poor

tumor-free survival in NSCLC (172). Zhang et al. showed that

NPSR1-AS1 was much higher in LUAD samples compared with

benign samples. The AUC value for high NPSR1-AS1 in the diagnosis

of LUAD was 0.904, with a 95% CI ranging from 0.881 to 0.927.

Furthermore, the levels of NPSR1-AS1 exhibited positive correlation

with OS in LUAD patients (213). Zou et al. demosntrated that AUC

for serum circERBB2 in distinguishing NSCLC was 0.871, which was

higher than CYFRA21-1 (0.693) and CEA (0.861). Moreover, LC

patients with low circERBB2 levels had higher 36-month cumulative

survival rate than patients with high circERBB2 levels (p < 0.05)

(214). In addition, Li et al. showed that high levels of hsa_circ_001010

and hsa_circ-ZNF609 was negatively correlated with OS and DFS,

whereas low levels of hsa_circ-CRIMI1, hsa_circ-EPB41L2, and

hsa_circ_0072309 was positively associated with OS and DFS in

LUAD. The four circRNAs also exhibits great potential in

distinguishing LUAD (215).
NcRNA in LC treatment

As the key regulators of LC progression, ncRNAs have

displayed huge therapeutic potential (133). Targeting oncogenic

ncRNAs represents a highly feasible solution for patients to improve
Frontiers in Oncology 12
LC interventions. Chu et al. showed that miR-96-5p levels were

dramatically increased in LC tissues, and its upregulation altered the

expression of Bax, MMP9, and Bcl-2 through downregulating

domain-binding protein 2, thereby facilitating invasion and

proliferation in H1299 cell lines (127). In another study by Lv

et al., lncRNAMNX1-AS1 was remarkably increased in LC samples,

and its downregulation repressed the proliferation, migration,

invasion, and sphere-forming abilities of LC CSCs by activating

myosin IG (216). Furthermore, Sun et al. revealed that circ_0000376

knockdown decreased PDPK1 levels by releasing miR-545-3p,

thereby suppressing NSCLC progression (130). Upregulating

tumor-suppressive ncRNAs in cancer cells could be another

effective strategy in LC treatment. For example, miR-1

overexpression repressed cell growth and oncogenic signaling in

SCLC cells by targeting CXCR4. Consistent with this, intracardiac

injection of miR-1 SCLC cells in mice exhibited a reduction in

distant tissue metastasis (217). Furthermore, Gao et al.

demonstrated that lncRNA FAM138B suppressed cel l

proliferation and invasion by targeting miR-105-5p in NSCLC

cells (218). Song et al. revealed that circANKRD28 overexpression

enhanced cisplatin sensitivity in NSCLC cells through increasing

SOCS3 levels via absorbing miR-221-3p (219). To summarize,

therapeutic strategies that directly target ncRNAs or use ncRNAs

will bring significant benefit to the development of individualized

treatment of LC patients.
FIGURE 3

Clinical applications of ncRNAs in LC. The dysregulated ncRNAs are identified from LC patient samples using RNA sequencing and bioinformatics. In vitro
and in vivo studies are performed to further clarify the underlying mechanisms of these ncRNAs involved in LC progression. Large patient cohorts are
used to validate their potential as diagnostic and prognostic biomarkers. Novel ncRNA-based therapeutic strategies are developed for LC patients.
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Conclusion

LC, the most commonly diagnosed type of cancer in respiratory

system, severely shortens patients’ life expectancy. The pathogenesis of

LC is very complex and still unclear. Clarifying the regulatory

mechanisms involved in LC progression is extremely urgent for

developing efficient therapies of LC patients. Recent studies have

identified a large amount of differently expressed ncRNAs (e.g.,

miRNAs, lncRNAs, and circRNAs) in LC. These ncRNAs play vital

roles in LC progression by influencing almost all biological processes,

such as cell invasion, autophagy, CSCs, and chemoresistance (28–30).

Moreover, the differently expressed ncRNAs are easily examined in

body fluids (e.g., serum and lymph) of LC patients, and their

differentiated expression patterns are also closely correlated with

some pathological characteristics, including tumor-free survival, OS,

and DFS (172, 215). These unique characteristics mean that ncRNAs

are valuable candidates of non-invasive biomarker and target in LC

treatment (Figure 3). However, some challenges (e.g., ununified

standardization strategies, unknown side effects, and insufficient

patient size) still exist, which should be addressed before applying

ncRNAs in LC clinical treatment. Nevertheless, recent studies strongly

suggest that ncRNAs are effective biomarkers and promising targets for

LC patients. Future investigations should focus on elucidating the exact

functions of ncRNA in LC pathogenesis and developing novel ncRNA-

based therapeutic strategies.
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