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Objective: Stimulator of interferon genes (STING) is a key regulator in initiating

innate immune response from sensing cytosolic DNA. Recent studies have

revealed that the cGAS-STING signaling pathway has a crucial role in tumor

development and progression across cancer types. Herein, we conducted a

meta-analysis to explore the relationship between the immunoexpression of

STING and the survival outcome of patients in various solid tumors. Studies

relevant to the subject were searched from PubMed, Embase, and Web

of Science.

Results: Eleven studies including 2,345 patients were eligible for the analysis.

STING expression in tumor cells was related to improved disease-free survival/

recurrence-free survival (DFS/RFS) (HR = 0.656, 95% CI = 0.455–0.946, p =

0.024) but not with overall survival (OS) (HR = 0.779, 95% CI = 0.534–1.136, p =

0.194). STING expression in stromal cells, however, did not show significant

correlation with DFS/RFS and OS (HR = 0.979, 95% CI = 0.565–1.697, p-

value = 0.940 and HR = 1.295, 95% CI = 0.845–1.985, p = 0.235, respectively).

In a subgroup analysis, STING expression in tumor cells was associated with

better DFS (HR = 0.622, 95% CI = 0.428–0.903, p = 0.012). In tumor cells,

favorable DFS/RFS were also related to studies from univariate analysis and the

gastrointestinal system (HR = 0.667, 95% CI = 0.482–0.923, p = 0.015 and HR =

0.566, 95% CI = 0.330–0.971, p = 0.039).

Conclusions: STING expression in tumor cells is associated with favorable

outcome in solid tumors.

Systematic review registration: https://www.crd.york.ac.uk/prospero/,

registration number: CRD42023427027
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1 Introduction

The ability of cancer cells to evade the immune system has been

regarded as a crucial feature of tumorigenesis and tumor

progression in human malignancies (1, 2). The cyclic GMP-AMP

synthase (cGAS)-stimulator of interferon genes (STING) signaling

pathway, responsible for sensing cytosolic double-strand DNA

(dsDNA) and initiating innate immune response, has been

considered as a potential driver of immune-mediated initiation,

growth, and metastasis in cancer (3, 4). Accumulation of cytosolic

DNA induced by DNA damage activates cGAS, leading to the

production of cGAMP. cGAMP in tumor cells and antigen-

presenting cells (APCs) activates STING, which triggers a cascade

to recruit kinases IKK and TBK1 and leads to phosphorylation of

IRF3 (5–8). Phosphorylated IRF3 acts as a transcription factor and

mediates expression of immune-stimulated genes (ISGs), type 1

interferons (IFNs), and senescence-associated secretory phenotype

(SASP) (3, 9, 10).

Cytokines released from tumor cells and APCs could activate

cytotoxic CD8+ T cells and natural killer (NK) cells to facilitate

tumor clearance (8, 11, 12). Furthermore, the activation of STING

and its downstream cascade increases autophagy, induces

senescence and chronic inflammation, and regulates

differentiation of myeloid-derived suppressor cells (MDSCs) and

tumor-associated macrophages (TAMs) (10, 13–15). Alteration of

the tumor microenvironment by the signaling pathway could either

suppress or promote tumor cells. As a modulator of anti-tumor

immune response, activation of cGAS-STING signaling pathway by

radiation induces interferon production in colorectal cancer (16,

17). In lung cancer, STING promotes activation of lymphocytes or

promotes M2 macrophage to be re-educated as M1 macrophage

(18, 19). STING also enhances CD8+ T-cell recruitment and/or

mediates APC response in glioma, head and neck carcinoma,

melanoma, pancreatic cancer, and prostate cancer (4). Apart from

these anti-tumor effects, STING also has a pro-tumor role. Chronic

STING activation leading to chronic SASP and chronic type I IFN

signaling can cause immune suppression and promote metastasis

(20, 21).

Tumor cells must evade or adapt to the cGAS-STING signaling

pathway to proliferate and survive (22). This facilitates STING protein

as a putative target for cancer therapy. Classic cancer therapies, such as

radiation and chemotherapy, increase DNA damage to promote tumor

clearance through the cGAS-STING signaling pathway (23). However,

persistent stimulation could lead to resistance and diminishing effect

(8). STING has been considered as an ideal adjuvant for immune

checkpoint inhibitors due to its ability to improve T-cell response via

type I IFN (20). Recent studies have shown that activation of STING

increases expression of PD-1 pathway components in murine

carcinomas, and the combination of STING agonist with CTLA-4

and PD-1 antibodies has a survival advantage in mouse tumor models

(24, 25). STING agonists are also being designed for tumor vaccines

and chimeric antigen receptor (CAR) T-cell therapies (26). When

developing STING agonists, the tumor microenvironment should be

vastly considered since prolonged usage of STING agonist could

potentially lead to a pro-tumor effect (27).
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The association between STING and survival outcome has

shown variability in previous studies. Some studies have

suggested that the expression level of STING or STING-related

genes is related to a favorable prognosis, while other studies indicate

that STING expression in tumor or stromal cells is associated with

the worst prognosis (28–33). A pan-cancer study utilizing data from

The Cancer Genome Atlas (TCGA), however, has suggested that

STING mRNA levels are not a prognostic factor for most tumor

types (34). This may reflect the ambivalent nature of the cGAS-

STING signaling pathway, where both anti-tumor and tumor-

promoting mechanisms could be expected (1, 22). Nevertheless, a

systematic review of immunoexpression of STING across solid

tumors has not been addressed.

In this study, therefore, we conducted a meta-analysis to

determine the prognostic significance of STING-positive cells in

solid tumors. The aim of this study is to clarify the prognostic role of

STING expression as a biomarker across multiple tumors and to

verify which cell components (tumor cell or stromal cell) and

survival outcome could be represented as a prognostic marker in

human solid malignancies.
2 Materials and methods

2.1 Publication search strategy

Three electronic databases, PubMed, Web of Science, and

Embase, were searched for relevant publications until 1 June

2023. Search terms were (“STING” or “STING1” or “Stimulator

of interferon genes” or “TMEM173), (“prognosis” or “prognostic”

or “outcome” or “survival”), and (“tumor” or “carcinoma” or

“malignancy” or “malignant tumor”). Each source and collection

period of tumor samples was carefully recorded to avoid studies

with identical patient populations. Investigation was conducted by

two pathologists (YK and GHK), and consensus was reached for

any discrepancies for the cases. This review was reported under the

Preferred Reporting Program for Systematic Reviews and Meta-

Analysis (PRISMA). The protocol was registered on the

International Prospective Register of Systematic Reviews

(registration number: CRD42023427027).
2.2 Inclusion and exclusion criteria

Inclusion criteria for systematic review were as follows: (1)

studies published in English; (2) original articles that report the

correlation between immunohistochemical expression of STING

and outcome; and (3) studies that offer hazard ratio (HR) and 95%

confidence intervals (CIs) directly from the main article or

supplementary material or studies that provide alternative values

that could estimate HR and 95% CIs. The following studies were

excluded from the systematic review: (1) studies that were from

abstracts of conferences, reviews, and comments; (2) studies that

were based on xenograft models or human hematopoietic or

lymphoid malignancies; and (3) studies that had insufficient
frontiersin.org

https://doi.org/10.3389/fonc.2023.1244962
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kim et al. 10.3389/fonc.2023.1244962
pathological or survival data that led to unavailability to extract HR

and 95% Cis.
2.3 Data extraction and quality assessment

Two reviewers independently collected data from eligible

articles according to the criteria. The Newcastle–Ottawa Scale

(NOS) was used to evaluate the quality of each study. Studies

with a score ≥6 out of 9 were defined as qualified for further

analysis. The following parameters were extracted from each study:

surname of first author, year of publication, primary organ, type of

cancer, cell type (tumor cell or stromal cell) assessed for STING

expression, cutoff method for STING-positivity, type of outcome,

and number of analyzed patients. HR and 95% CIs for overall

survival (OS), disease-free survival (DFS), and recurrence-free

survival (RFS) were initially extracted from univariate Cox

analysis when available. If HR and 95% CIs were not available,

they were extracted from multivariate Cox analysis or estimated

from Kaplan–Meier curves using Engauge Digitizer software

(version 9.8, http://markummitchell.github.io/engauge-digitizer/)

and methods provided by Tierney et al. (35).
2.4 Statistical analysis

The correlation between STING expression of tumor cell or

stromal cell of solid tumor and prognosis of patients was measured

via meta-analysis. Meta-analysis of OS and DFS/RFS was conducted

with R programming (version 4.3.0) packages “meta” and “dmetar”.
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Cochran’s Q and I2 were used to determine statistical heterogeneity.

Random-effects model was used due to significant heterogeneity in

most pooled analysis (I2 > 50%). Subgroup analysis was performed

to explore sources of heterogeneity. To assess publication bias, a

graphical funnel plot and Egger’s test were evaluated. Sensitivity

analysis was conducted to find out the effect of a single study to the

pooled analysis. Statistical significance was set at p < 0.05.
3 Results

3.1 Literature search and
study characteristics

A total of 853 studies were found from PubMed, Embase, and

Web of Science after removing duplicate records. The detailed

process of study selection is depicted in Figure 1. A total of 842

studies were excluded because they are not a complete article, they

are irrelevant to the current subject, they lack information about

STING expression and survival outcome, or they only have mRNA

data about STING. In the end, 11 studies fulfilled the selection

criteria and were included for the meta-analysis (30, 31, 33, 35–42).

All eligible studies were retrospective and included STING

expression of tumor cells (Table 1). Four studies also included

STING expression in stromal cells (33, 39, 41, 43). Among these

studies, the study by Biesaga et al. examined STING expression of

all stromal cells while three other studies examined its expression

for immune cells only. Two studies included two independent

cohorts, although each cohort included carcinoma from identical

organs (30, 37).
FIGURE 1

Flowchart of literature search and study selection.
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3.2 STING expression in tumor
cells and survival

The meta-analysis between STING expression in tumor cells

and the prognostic value of DFS/RFS involved seven articles with

eight effect sizes (ESs) (Figure 2A). Pooled analysis demonstrated

that STING-positive tumor cells are associated with better DFS/RFS

in solid malignancies (HR = 0.656, 95% CI = 0.455–0.946, p =

0.024). Eight studies with nine ESs included the correlation between

STING expression in tumor cells and OS (Figure 2B). Unlike DFS/

RFS, OS was not significantly associated with STING expression in

tumor cells (HR = 0.779, 95% CI = 0.534–1.136, p = 0.194).
3.3 STING expression in stromal
cells and survival

Four studies were available for pooled analysis of STING

expression in stromal cells and DFS/RFS (Figure 3A). Analysis

did not show significant correlation between STING-positive

immune cells and DFS/RFS (HR = 0.979, 95% CI = 0.565–1.697,

p-value = 0.940). Pooled analysis of OS also had no association with

STING expression in stromal cells (HR = 1.295, 95% CI = 0.845–

1.985, p = 0.235) (Figure 3B).
3.4 Subgroup analysis

Subgroup analysis was conducted for expression of STING in

tumor cells (Table 2 and Supplementary Figure S1). High STING

expression in tumor cells was associated with good DFS (HR =

0.622, 95% CI = 0.428–0.903, p = 0.012) but not with RFS (HR =

0.868, 95% CI = 0.260–1.057, p = 0.818). Pooled analysis of STING-

positive tumor cells from univariate Cox analysis was associated

with better DFS/RFS (HR = 0.667, 95% CI = 0.482–0.923, p = 0.015)

but those from multivariate analysis were not associated (HR =

0.783, 95% CI = 0.211–2.906, p = 0.714). Inversely, STING-positive

tumor cells were associated with better OS for multivariate studies

(HR = 0.587, 95% CI = 0.424–0.814, p = 0.001), but not univariate

studies (HR = 0.853, 95% CI = 0.517–1.408, p = 0.535). STING-

positive tumor cells of the gastrointestinal system was associated

with improved DFS/RFS (HR = 0.566, 95% CI = 0.330–0.971, p =

0.039), but not with OS (HR = 0.576, 95% CI = 0.185–1.796, p =

0.342). Correlation between OS and STING expression of tumor

cells was not significant despite considering the difference in cutoff

method (HR = 0.730, 95% CI = 0.481–1.109, p = 0.140 and HR =

0.642, 95% CI = 0.297–1.388, p = 0.260 for median and H-

score, respectively).
3.5 Evaluation of publication bias and
sensitivity analysis

Publication bias in the eligible studies was evaluated by a

graphical funnel plot and Egger’s test. Studies with DFS/RFS and
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tumor cells showed potential asymmetry in the funnel plot, but

according to Egger’s test, a significant publication bias was not

suspected (p = 0.828) (Figure 4A). Studies with OS and tumor cells

showed symmetric distribution (p = 0.999 in Egger’s test)

(Figure 4B). Omitting individual ES in DFS/RFS and OS has

demonstrated that robustness of the pooled analysis could be

limited (Figures 4C, D). Identical analyses were shown for the

correlation between STING expression in stromal cells and DFS/

RFS or OS (Supplementary Figure S2).
4 Discussion

The cGAS-STING signaling pathway, triggered by sensoring

dsDNA, activates kinases IKK and TBK1, leading to a cascade that

transcripts pro-inflammatory cytokines including type I IFN, which

recruits cytotoxic T cells and NK cells for tumor cell clearance (44).

Consequently, expression of STING has been suggested as a

therapeutic target as well as a prognostic biomarker in solid tumors.

However, the evaluation of STING immunoexpression in various cell

types, such as tumor cells, T cells, andmacrophages, has shown varying

degrees of association with survival outcome. This study, for the first

time, explores the correlation between STING-positive tumor cells or

stromal cells and prognosis in solid tumors through meta-analysis.

In a pooled analysis, STING expression of tumor cells was

associated with improved DFS/RFS. Subgroup analysis revealed that

excluding studies from multivariate analysis did not impact the

overall association between STING expression and DFS/RFS. A

subgroup analysis of the gastrointestinal system maintained the

correlation between STING expression in tumor cells and DFS/RFS.
Frontiers in Oncology 05
However, a subgroup analysis with a smaller number of studies

(equal to or fewer than three studies) was determined insignificant

with DFS/RFS. In the pooled analysis for stromal STING, the

correlation with survival was not significant. However, it should

be emphasized that only a small number of studies were obtained

compared with that of tumoral STING (four and three for DFS/RFS

and OS, respectively).

STING expression in tumor cells was largely unassociated with

OS in overall pooled analysis and in subgroup analysis. These

results align with previous studies analyzing TCGA data, in which

mRNA expression of STING was mostly unrelated to OS regardless

of carcinoma type (34). Intriguingly, high STING mRNA

expression was associated with worse OS in renal cell carcinomas,

and a similar trend has been observed for immunohistochemical

STING expression in renal cell carcinoma (31). These similarities

suggest that STING mRNA in renal carcinoma strongly

recapitulates STING expression in tumor cells, rather than that in

stromal cells despite estimated tumor purity of renal cell carcinomas

in TCGA only being intermediate (45).

Currently, there is no clear explanation for the discrepancies

shown between DFS/RFS and OS in tumor cells. STING activity has

been identified as a source of suppressor of spontaneous outbreak

from disseminated cancer cells in lung adenocarcinoma (46).

Expression of STING enhances tumor cell clearance by T cells

and NK cells, thereby inhibiting metastasis and tumor relapse.

Considering that a relapse of carcinoma would directly affect DFS

and RFS but not OS per se, it could be hypothesized that the

mechanism of immune recognition and evasion associated with

STING during metastasis contributes to the difference in results

observed between the survival outcomes.
A B

FIGURE 3

Association between STING expression in stromal cells and survival outcome. (A) Forest plot for DFS/RFS. (B) Forest plot for OS.
A B

FIGURE 2

Association between STING expression in tumor cells and survival outcome. (A) Forest plot for DFS/RFS. (B) Forest plot for OS.
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STING is a pivotal regulator of cancer immunity and initiates

innate immune response (47). As an upstream signaling molecule,

various methods for the evaluation of active STING could be

considered. In this study, immunohistochemical expression of

STING was considered as a putative marker for STING

activation. A more direct method would be examining

phosphorylated STING, which consequently activates TBK1 and

recruits IRF3, but to the best of our knowledge, a study that includes

immunohistochemical staining of phospho-STING in tumors has

yet been published (48). Another way to evaluate STING activation

would include assessment of downstream effector molecules.
Frontiers in Oncology 06
STING-related gene signatures were associated with prognosis in

breast, prostate, and colorectal cancers (28, 29, 32). Therefore,

developing alternative protein markers alongside STING could

provide a more comprehensive understanding of STING

activation and its functional implications even in cases when

upstream signaling pathway is compromised by genetic alterations.

There are several limitations in this study. The primary tumor

sites analyzed for DFS/RFS and OS are not identical and, therefore,

may not have an identical impact compared with when all organs

are matched. Subgroup analysis for gastrointestinal systems was

identical to the overall pooled analysis for both survival outcomes.
A B

C D

FIGURE 4

Publication bias and sensitivity analysis for STING expression in tumor cells. (A) Funnel plot for DFS/RFS. (B) Funnel plot for OS. (C) Sensitivity analysis
for DFS/RFS. (D) Sensitivity analysis for OS.
TABLE 2 Subgroup analysis with STING expression in tumor cells.

Type of
survival

Subgroup No. of studies Hazard ratio Lower limit of 95% CI Upper limit of 95% CI p-value

RFS/DFS DFS 5 0.622 0.428 0.903 0.012*

RFS/DFS RFS 3 0.868 0.260 1.057 0.818

RFS/DFS Univariate 5 0.667 0.482 0.923 0.015*

RFS/DFS Multivariate 3 0.783 0.211 2.906 RFS/DFS

RFS/DFS GI system 4 0.566 0.330 0.971 0.039*

OS Univariate 7 0.853 0.517 1.408 0.535

OS Multivariate 2 0.587 0.424 0.814 0.001*

OS GI system 7 0.576 0.185 1.796 0.342

OS Median 3 0.730 0.481 1.109 0.140

OS (Modified) H-score 4 0.642 0.297 1.388 0.260
fro
*p < 0.05.
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Nevertheless, STING expression in tumor cells could have an anti-

tumor and a pro-tumor effect according to specific tumor context,

and therefore, trying to analyze STING expression of all solid

malignancy in a uniform manner might undermine the distinct

role of the cGAS-STING signaling pathway for each tumor.

Another limitation involves the sensitivity analysis revealing

limitations in robustness. However, there was no significant

publication bias despite the relatively small number of studies

available for each pooled analysis of tumor cells. Lastly, our

analysis of STING was restricted to cytoplasmic and membranous

expression, with only one study describing subcellular location

other than cytoplasm and membrane as a region associated with

prognosis (39).

In conclusion, this meta-analysis demonstrated that STING

expression in tumor cells is associated with improved DFS/RFS but

not OS, while in small available studies, STING expression in

stromal cells has no association with survival outcome when

evaluating malignancies from various organs. Further studies

should investigate whether the prognostic value of STING

expression in tumor cells can serve as a viable target for

predicting therapeutic response and guiding personalized

treatment strategies in solid tumors.
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