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Gastrointestinal cancer is a common malignancy with high mortality and poor

prognosis. Therefore, developing novel effective markers and therapeutic targets

for gastrointestinal cancer is currently a challenging and popular topic in

oncology research. Accumulating studies have reported that N6-

methyladenosine is the most abundant epigenetic modification in eukaryotes.

N6-methyladenosine plays an essential role in regulating RNA expression and

metabolism, including splicing, translation, stability, decay, and transport. FTO,

the earliest demethylase discovered to maintain the balance of N6-adenosine

methylation, is abnormally expressed in many tumors. In this review, we discuss

the molecular structure and substrate selectivity of FTO. we focus on the role of

FTO in gastrointestinal tumor proliferation, migration, invasion, apoptosis,

autophagy, immune microenvironment, and its molecular mechanisms. We

also discuss its potential in the treatment of gastrointestinal cancers.
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Introduction

Gastrointestinal cancer (GIC), which includes esophageal cancer (EC), gastric cancer

(GC), colorectal cancer (CRC), pancreatic cancer (PC), liver cancer (LC), and biliary tract

cancer (BTC) (1), is a significant cause of cancer-related mortality and remains a leading

challenge in cancer treatment (2). Despite the integrated treatment of chemoradiotherapy

(CRT) and modern surgical techniques, the overall 5-year survival rate of patients with

advanced GIC is under 15%, owing to rapid disease progression, metastasis, and CRT

resistance (3). However, immunotherapy based on checkpoint inhibitors has shown an

excellent tumor-suppressive effects in clinical studies, offering a bright prospects in cancer

treatment (4).

Anti-programmed cell death protein 1/programmed cell death ligand 1 (anti-PD-1/

PD-L1) and anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) are the most
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commonly used tumor immunotherapy approaches (4). Low

cytotoxicity, long-term tumor regression, and prevention of

recurrence make this novel treatment strategy a promising

candidate for cancer treatment (4, 5). Immune checkpoint

inhibitors (ICIs) have transformed the treatment landscape for

various cancers, including GIC. However, only 20-25% of patients

respond to ICIs (5), indicating the urgent need to identify effective

biomarkers to screen patients who may benefit from ICIs.

N6-methyladenosine (m6A), as the most abundant post-

transcriptional modification of RNA, plays an important role in

various malignant tumors (6, 7). FTO, a member of the a-

ketoglutarate-dependent dioxygenase family, regulates cellular energy

metabolism. Multiple malignant tumors are associated with FTO

dysregulation, which is involved in various pathological processes (8,

9). In a landmark study, overexpression of FTO promoted leukemia

progression and inhibited all-trans-retinoic acid-induced acute myeloid

leukemia (AML) differentiation by reducing m6A levels in ASB2 and

RARA mRNA (10). Subsequently, several researchers demonstrated

that FTO overexpression induced GIC in humans. FTO stabilized

MYC mRNA by reducing m6A methylation in GC cells, thereby

promoting GC development (11). FTO regulated mRNA stability

through demethylation of G6PD/PARP1, promoting CRC

progression and chemotherapy resistance (12). Many clinical studies

have reported that targeting FTO can significantly improve the

prognosis of patients with GC, CRC, and other GIC (13–17). These

results suggested that FTO inhibition may be an effective treatment

strategy for GIC.

Specifically, the role of FTO in the tumor immune

microenvironment has attracted interest. Su et al (18). have shown

that highly expressed FTO can inhibit the immune activity of T

lymphocytes by increasing the expression of the immunosuppressive

checkpoint molecule/gene “LILRB4”, thereby promoting the

progression of leukemia stem cells. This review focuses on how FTO

promotes the progression of gastrointestinal malignancy and regulates

the expression of immune checkpoints and immune cells activity.
Introduction to FTO

FTO is first identified in the Genome-wide Association Study

(GWAS) on obesity and type 2 diabetes (8, 19). It encodes the FTO

protein belonging to the Fe2+ and 2-oxoglutarate (2OG)-dependent

AlkB dioxygenase family (20–22). Human FTO is 410.50 KB long,

including eight introns and nine exons, and is located on

chromosome 16Q12.2 (23). Regarding the protein molecular

structure, FTO consists of two domains, a catalytic N-terminal

domain (NTD, residue 32-326) and a C-terminal domain (CTD,

residue 327-498) (8, 24). NTD consists of a double-stranded b-helix
fold called the jelly-roll motif (residues 201-322). The three

conserved residues in this motif serve as catalytic domains

containing metal ion. The hydrogen bonds formed by N205,

Y295, R316, S318, and R322 stabilize N-oxalylglycine (NOG), a

bidentate ligand (8, 25). CTD is primarily composed of a-helix.
Notably, one three-helix bundle interacts extensively and closely

with the NTD, and mutations in specific amino acids involved in

these interactions (F114D or C392D) significantly reduce the
Frontiers in Oncology 02
physiological activity of FTO, suggesting that the CTD plays a

vital role in stabilizing the conformation and catalytic function of

the NTD (8, 26). FTO uses cofactors 2OG and Fe2+ to catalyze m6A

removal and progressively generates N6-hydroxymethyl adenosine

and N6-formyl adenosine (27). Han et al (24). revealed the substrate

specificity of the FTO protein by analyzing its crystal structure and

found that the single nucleotide 3-meT/3-meU contained all the

basic structural determinants for FTO to recognize its substrate.

Zhang et al. (25) further revealed the activity preference of FTO for

cap m6A over internal m6A in ssRNA and m1A in tRNA or loop-

structured RNA over m1A in linear ssRNA by studying RNA

sequences and tertiary structures. FTO affected snRNA m6A and

m6Am levels and mediated tRNA m1A demethylation in various

cells (28). However, due to the large heterogeneity of different

species, as well as tissue and cell specificity, the function of m6A still

needs further investigation (29–31).

At the cellular level, FTO is located in both the nucleus and

cytoplasm, possibly shuttling between the two cellular

compartments via a mechanism mediated by one of the exportin

2(XPO2) proteins (32, 33). Previous studies have shown that FTO

binds to unmethylated double-stranded DNA and performs

essential physiological functions (24). Wei et al. (34) found that

FTO mediated m6A demethylation of long dispersing element-1

(LINE1) RNA in mouse embryonic stem cells, regulating the

abundance of LINE1 RNA and local chromatin state, and thereby

modulated the transcription of LINE1-containing genes. Further

research has shown that FTO had a high affinity for m6A in mRNA

and showed highly efficient and reversible demethylation activity

(35). FTO plays a crucial role in the post-transcriptional regulation

of RNA in splicing, nuclear production, degradation, and

translation because of its extensive presence and dynamic coding

(23, 36–38).
FTO and GIC

Recent studies have shown that FTO is closely associated with

proliferation, metastasis, invasion, apoptosis, chemotherapy

resistance, and glucolipid metabolism of gastrointestinal tumor

cells. In this study, we summarize the latest findings on FTO in

GIC (Table 1).
FTO and EC

EC is among the top ten most common malignancies

worldwide, ranking as the sixth most common cancer according

to the 2020 tumor-related mortality rates (52, 53). Over 600,000

individuals worldwide are diagnosed with EC annually. The 5-year

survival rate of EC is less than 20% (54). Esophageal squamous cell

carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are two

common histological subtypes (55). FTO is overexpressed at the

cellular and tissue levels of ESCC, and is significantly associated

with poor clinical prognosis (39–41, 56).

Based on the detailed molecular mechanism, FTO can reduce the

stability of SIM2 mRNA by reducing its m6A abundance, promoting
frontiersin.org

https://doi.org/10.3389/fonc.2023.1241357
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ren et al. 10.3389/fonc.2023.1241357
the proliferation of ESCC cells and inhibiting cell apoptosis (39). In

contrast, FTO positively regulated the mRNA and protein expression

of MMP13, thus promoting the proliferation and migration of ESCC

cells (40). However, it is still unclear whether FTO regulated the

expression level of MMP13 in an m6A-dependent manner; therefore,

the interaction between the two molecules needs further research.

Methylation of lncRNAs by FTO is rare. Recent studies have shown

that FTO mediated m6A demethylation of LINC00022 to increase its

RNA stability, thereby promoting its expression in a YTHDF2-

dependent manner. Furthermore, LINC00022 promoted the decay

of the P21 protein through the ubiquitin-proteasome pathway (UPP)

(41) (Figures 1A-C).
FTO and GC

Multiple clinical and bioinformatics studies have shown that

FTO is significantly overexpressed at the cellular and tissue levels of
Frontiers in Oncology 03
GC and acts as an oncogenic gene to promote the progression of GC

(13–16). The Cox proportional risk model showed that FTO

expression, histological grade, TNM stage, invasion depth, and

lymph node metastasis significantly correlated with the overall

survival (OS) rate of patients with GC. Furthermore, FTO

expression and TNM stage were independent prognostic

indicators of OS in patients with GC (13). Wang et al. (14) found

that FTO promoted ITGB1 mRNA expression by enhancing its

stability in an m6A-dependent manner. Notably, FTO promoted

the malignant progression of GC cells through the ITGB1-

FAK pathway.

Furthermore, FTO enhanced the degradation of Caveolin-1

mRNA by reducing its m6A level, which regulated mitochondrial

fission/fusion and metabolism. Finally, FTO promoted GC cell

proliferation, migration, and invasion (42). WNT/b-catenin and

PI3K/AKT/mTOR signaling pathways are critical regulators of

essential biological functions in malignant tumors, including cell

proliferation, metabolism, angiogenesis, and epithelial-
TABLE 1 The key role of FTO in GIC.

cancer role targets Mechanism function refs

ESCA Oncogene SIM2 FTO reduced the stability of SIM2 mRNA by reducing the m6A methylation
level of SIM2.

proliferation
apoptosis

(39)

Oncogene MMP13 FTO positively regulated the mRNA and protein expression levels of MMP13. proliferation
migration

(40)

Oncogene LINC00022 FTO increased LINC00022 mRNA stability. proliferation (41)

GC Oncogene ITGB1
FAK

FTO promoted ITGB1 mRNA expression, and enhanced the phosphorylation of
FAK

migration invasion (14)

Oncogene Caveolin-1 FTO enhanced the degradation of Caveolin-1 mRNA proliferation,
migration, invasion

(42)

Oncogene mTORC1
DDIT3

FTO negatively regulated DDIT3 in an m6A-dependent manner autophage apoptosis (43)

Oncogene Wnt And PI3K/Akt
signaling pathways

FTO activated Wnt and PI3K/Akt signaling pathways proliferation
migration invasion

(44)

Oncogene MYC FTO stabilized MYC mRNA by removing the m6A modification proliferation
migration invasion

(11)

CRC Oncogene G6PD
PARP1

FTO regulated the expression level of G6PD/PARP1 through m6A proliferation (12)

Oncogene MZF1 FTO promoted MZF1 expression in an m6A-dependent manner proliferation
migration
apoptosis

(45)

Oncogene ATF4 FTO-induced ATF4 promoted pro-survival autophagy pro-survival
autophagy

(46)

PLC Oncogene PKM2 FTO led to the demethylation of PKM2 mRNA, promoting its mRNA
production and accelerating its translation process

proliferation
apoptosis

(47)

Oncogene NANOG
SOX2
KLF4

FTO significantly promoted the expression of NANOG, SOX2 and KLF4 in HCC
cells by mRNA demethylation

HCC cells stemness (48)

Oncogene ERa Reduced FTO can increase the m6A level of estrogen receptor alpha (ERa)
mRNA, thereby reducing the protein translation of ERa

proliferation (49)

PAAD Oncogene c-MYC FTO improved the stability of c-MYC expression proliferation (50)

Oncogene TFPI-2 FTO inhibited the stability of TFPI-2 mRNA through the m6A reader YTHDF1 proliferation,
migration, invasion

(51)
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mesenchymal transformation (EMT) (57–59). FTO promoted the

proliferation, migration, and invasion of GC cells, possibly by

activating WNT/b-catenin and PI3K/AKT/mTOR signaling

pathways (44). However, this study only analyzed the correlation

between FTO and key molecule protein expression in the signaling

pathway. Therefore, the mechanism underlying FTO-mediated

regulation of WNT/b-catenin and PI3K/AKT/mTOR signaling

still needs further investigation. FTO stabilized MYC mRNA by

removing m6A modifications, ultimately promoting the

proliferation, migration, and invasion of GC cells. Notably, this

study verified the upstream regulatory mechanism of FTO and

found that HDAC3 promoted the expression of FTO and MYC by

degrading FOXA2 (11) (Figures 1D-H).

FTO not only plays an important role in the development of

GC, Feng et al. (43) found that FTO-mediated activation of

mTORC1 and DDIT3 up-regulation was involved in the

improved chemosensitivity of GC induced by omeprazole.
FTO and CRC

One study showed that FTO mediated intracellular ROS

balance by regulating the expression of G6PD and maintained

genomic instability by regulating the expression of PARP1.

Notably, FTO regulated the expression of G6PD/PARP1 through

m6A manner. Targeting FTO can significantly inhibit cancer cell

growth and improve sensitivity to chemotherapy (12). FTO

enhanced the expression of MYC by removing m6A
Frontiers in Oncology 04
modifications, thereby inducing proliferation, migration, and

inhibiting the apoptosis of CRC cells (45, 60). Glutaminolysis

inhibition upregulated FTO to reduce m6A modification of

activating transcription factor 4 (ATF4) mRNA. FTO-induced

ATF4 expression promoted pro-survival autophagy in CRC cells

(46) (Figures 2A-C).
FTO and LC

FTO is upregulated in patients with hepatocellular carcinoma

(HCC) and promotes HCC cells proliferation and migration. From

a clinical perspective, FTO was an independent prognostic factor for

HCC (17). Mechanistically, FTO led to the demethylation of PKM2

mRNA, promoting its mRNA production and accelerating its

translation. FTO inhibited cell apoptosis and promoted

proliferation through PKM2 demethylation (47). Notably, FTO

enhanced HCC cell stemness in an m6A-dependent manner. The

specific molecular mechanism was that a high level of AMD1 can

increase the level of SPD in HCC cells, thus modifying the scaffold

protein IQGAP1 and enhancing the interaction between IQGAP1

and FTO. This interaction can enhance the phosphorylation of FTO

and reduce its ubiquitination, thus increasing FTO expression.

Furthermore, FTO significantly promoted the expression of

NANOG, SOX2, and KLF4 in HCC cel ls via mRNA

demethylation (48). Gao et al. (49) found that FTO promoted

cholangiocarcinoma (CCA) proliferation through the ERa/miR-16-

5P/YAP1 signaling pathway (Figures 2D-F).
B C D E F G HA

FIGURE 1

The Role of FTO in EC (A-C) and GC (D-H). A: Mechanically, FTO reduced the stability of SIM2 mRNA by reducing the m6A methylation level of
SIM2; Phenotypically, FTO promoted proliferation and inhibited apoptosis. B: Mechanically, FTO positively regulated mRNA and protein expression
levels of MMP13; Phenotypically, FTO promoted proliferation and migration. (C): Mechanically, FTO increased LINC00022 mRNA stability;
Phenotypically, FTO promoted proliferation. (D): Mechanically, FTO promoted ITGB1 mRNA expression, and enhanced the phosphorylation of FAK.
Phenotypically, FTO promoted proliferation and invasion. (E): Mechanically, FTO enhanced the degradation of Caveolin-1 mRNA. Phenotypically,
FTO promoted proliferation, migration, and invasion. (F): Mechanically, FTO negatively regulated DDIT3 in an m6A-dependent manner.
Phenotypically, FTO inhibited apoptosis. (G): Mechanically, FTO activated Wnt and PI3K/Akt signaling pathways. Phenotypically, FTO promoted
proliferation, migration, and invasion. (H): Mechanically, FTO stabilized MYC mRNA by removing the m6A modification. Phenotypically, FTO
promoted proliferation, migration, and invasion.
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FTO and PC

FTO is overexpressed in pancreatic adenocarcinoma (PAAD) cells

and is critical for cancer progression (61). Regarding its underlying

mechanism, FTO improved the stability of c-MYC expression, thereby

promoting cell proliferation (50). Furthermore, FTO inhibited the

expression of TFPI-2 mRNA through the m6A reader YTHDF1,

leading to the down-regulation of TFPI-2 expression and ultimately

promoting the proliferation, colony formation, sphere formation,

migration, and invasion of PAAD cells, as well as tumor growth in

vivo (51) (Figures 2G, H).

Single nucleotide polymorphisms (SNPs) are biomarkers of

susceptibility to malignant tumors (62–64). The FTO rs9939609

polymorphism was associated with lung, kidney, and breast cancer

(65, 66). Recent studies on FTO gene polymorphisms and PC have

shown that the SNP of FTO, especially the FTO rs9939609

polymorphism, was significantly correlated with the occurrence of

PC, suggesting that rs9939609 may be a potential biomarker for the

early diagnosis of PC or a gene therapy target (67–70).

Potential immunomodulatory effects
of FTO

Currently, immunotherapy is at the forefront of cancer treatment.

However, patients with GIC usually do not benefit as much as patients
Frontiers in Oncology 05
with other solid malignancies such as lung cancer and melanoma (3,

71). Advances in ICIs, especially anti-PD-1/PD-L1, and anti-CTLA-4,

have enabled revolutionary progress in the treatment of malignant

tumors (72). Recently, FTO has been confirmed to be closely related to

the expression of multiple immune checkpoints in malignant tumors,

making it a novel target with great potential.
FTO modulates the immune
microenvironment in CRC

Nobuhiro et al. (73) reported a positive correlation between the

high expression of FTO and PD-L1 in CRC cells. In order to elucidate

the underlying mechanism by which FTO regulated PD-L1 expression,

FTO was knocked down in the presence of IFN-g, the main stimulator

of PD-L1 expression. The absence of FTO decreased PD-L1 expression

in an IFN-g independent manner. An RNA immunoprecipitation assay

showed that m6A modified PD-L1 mRNA in CRC cells and the FTO

bound to PD-L1mRNA. In summary, m6Amodification regulated the

expression of PD-L1 in CRC cells, providing a novel approach for

regulating PD-L1 expression via FTO modification.

Microsatellites are repeated DNA motifs widely distributed in the

genome (74). If two or more replicates are altered, the tumor is defined

as high-microsatellite instability (MSI-H); if only one mutation

sequence is found, the tumor is considered to have low-microsatellite

instability (MSI-L). A microsatellite located in a protein-coding region
B C D E F G HA

FIGURE 2

The Role of FTO in CRC (A-C), PLC (D-F), and PAAD (G, H). (A): Mechanically, FTO regulated the expression level of G6PD/PARP1 through m6A;
Phenotypically, FTO promoted proliferation. (B): Mechanically, FTO promoted MZF1 expression in an m6A-dependent manner; Phenotypically, FTO
promoted proliferation/migration and inhibited apoptosis. (C): Mechanically, FTO-induced ATF4 promoted pro-survival autophagy. (D): Mechanically,
FTO led to the demethylation of PKM2 mRNA, promoting its mRNA production and accelerating its translation process. Phenotypically, FTO
promotes proliferation and inhibits apoptosis. (E): Mechanically, FTO significantly promoted the expression of NANOG, SOX2 and KLF4 in HCC cells
by mRNA demethylation. Phenotypically, FTO promoted HCC cell stemness. (F): Mechanically, reduced FTO can increase the m6A level of estrogen
receptor alpha (ERa) mRNA, thereby reducing the protein translation of ERa. Phenotypically, FTO promoted proliferation. (G): Mechanically, FTO
improved the stability of c-MYC expression. Phenotypically, FTO promoted proliferation. (H): Mechanically, FTO inhibited the stability of TFPI-2
mRNA through the m6A reader YTHDF1. Phenotypically, FTO promoted proliferation, migration, and invasion.
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is called a coding microsatellite (cMS). Therefore, cMS mutations, also

known as those encoding MSI (cMSI), are considered key events in the

development of MSI cancer (75, 76).

The mutation rate of U79260 (FTO) mRNA in colon cancer was

very high, indicating high specificity for CRC cells. Frameshift peptide

11 (FSP11), a HLA-A0201-restricted peptide, was rooted in a (−1)

mutation of THE T (15) channel in the U79260 gene. The peptide

FSP11 sensitized the CD8+ T cells of peripheral blood for a specific

release of IFN-g and coordinated recognition in the context of HLA-

A0201. Furthermore, the obtained T cell cultures selectively attacked

cancer cells expressing potential mutations along with HLA-A0201

(77). MSI-H-induced FSP was a promising tumor-specific antigen that

may be suitable for clinical applications in future tumor therapies (78).

In addition to immunotherapy interventions for patients with MSI-H

tumors, this opens up significant possibilities for preventive vaccination

even for carriers of hereditary non-polyposis colorectal cancer

(HNPCC) mutations (77–79) (Figure 3).
Frontiers in Oncology 06
FTO modulates the immune
microenvironment in oral squamous
cell carcinoma

Arecoline is a primary carcinogen of oral squamous cell

carcinoma (80, 81); however, its carcinogenic mechanism remains

unclear (80). Li et al. (82) found that arecoline-induced FTO and

MYC expression promoted the up-regulation of PD-L1 in oral

squamous cell carcinoma cells. Specifically, FTO improved the

stability of PD-L1 mRNA in an m6A-dependent manner, and

MYC promoted PD-L1 transcription. PD-L1 upregulation

enhanced cell proliferation, migration, and resistance to T-cell

death. Therefore, arecoline plays a pro-cancer role by regulating

FTO/MYC/PD-L1 signaling, which may be a strategy for

immunotherapy (Figure 4). The mechanism by which FTO

regulates PD-L1 needs further study.
FIGURE 3

FTO regulated the tumor immune microenvironment in m6A-dependent manner and gene mutation in CRC. FTO increased PD-L1 mRNA
expression levels in an IFN-g independent manner. The HLA-A0201-restricted peptide FSP11 was derived from a (−1) mutation of U79260(FTO) gene.
The peptide FSP11 sensitized peripheral CD8+ T cells for specific release of IFN-g.
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FTO modulates the immune
microenvironment in LC

ICIs and thermal ablation (TA) have been extensively used to

treat HCC (83). TA is known to release tumor-associated antigens

(TAAs), which activate the anti-tumor immune response and

initiate the infiltration of T cells (84). However, significant

obstacles to incorporating ICIs with TA include the insufficient

internalization of tumor antigens and the immaturity of tumor-

infiltrating dendritic cells (TIDCs), which result in a poor immune

response to tumor progression (83, 85). To address this problem,

Xiao et al. (85) synthesized a novel nanomaterial in which the FTO

inhibitor (FB23-2) was wrapped in the pores of mesoporous

polydopamine (MPDA) nanoparticles, maleimide was used as an

antigen catcher, and mannose as the active TIDCs-targeting ligand

was fixed to the MPDA surface via a polyethylene glycol (PEG)

ligand. Nanomaterials injected into the tumor captured TAAs

released during TA and were then ingested by TIDCs via a

mannose-mediated targeting effect. FB23-2 and TAAs co-
Frontiers in Oncology 07
delivered to TIDCs were expected to help ICBs inhibit tumor

progression by increasing m6A methylation, enhancing T-cell

infiltration, and generating immune memory (Figure 4).
FTO modulates macrophage
activation

Macrophages are among the most abundant normal cells in the

tumor immune microenvironment (86, 87). Macrophages that

infiltrate the tumor microenvironment are often identified as

tumor-associated macrophages (TAMs) (87). Macrophages alter

their metabolic pathways, leading to their differentiation into

inflammatory macrophages(M1) or regulatory macrophages (M2)

subtypes in response to various cytokines (88). Given the important

role of TAMs polarization in tumor development, it is important to

study the effects of epigenetics on TAMs polarization.

Studies on the role and mechanism of FTO in macrophage

polarization have shown that FTO significantly promoted M1 and
FIGURE 4

FTO regulated the tumor immune microenvironment in OC and HCC. FTO improved the stability of PD-L1 mRNA in an m6A-dependent manner,
and MYC promoted PD-L1 transcription. TAAs and FB23-2 co-delivered to TIDCs were expected to help ICBs inhibit HCC progression by increasing
m6A methylation, enhancing T-cell infiltration, and generating immune memory.
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M2 polarization (86). FTO inhibition decreased the phosphorylation

levels of IKKa/b, IkBa, and P65, key genes of the NF-kB signaling

pathway (86). It has been confirmed experimentally that STAT1 was

an important molecule for the polarization of M1, and the levels of

STAT6 and PPAR-g represented the polarization degree of M2 (86,

89). Further studies showed that STAT1 expression level was

significantly down-regulated in M1 macrophages after FTO

inhibition, while PPAR-g and STAT6 expression levels were

inhibited in M2 macrophages. From the molecular mechanism,

FTO inhibition promoted the decay of PPAR-g and STAT1

mRNA. Furthermore, the expression and stability levels of STAT1

and PPAR-g mRNA were significantly enhanced when m6A reader

YTHDF2 was inhibited. The results suggested that FTO activated the

NF-kB signaling pathway and promoted macrophage polarization by

increasing the mRNA stability of PPAR-g and STAT1 (86) (Figure 5).
Changes in macrophage activation and stiffness often represent

significant pathological changes in tissues (90). For example,

inflammatory tissue and tumors are often stiffer than healthy

tissue (91, 92). Hu et al. (93) studied the potential role of FTO in

macrophage activation and stiffness perception. FTO knockout

(KO) macrophages reduced inflammatory responses by increasing
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m6A levels in Socs1 mRNA. YTHDF1 was identified as an m6A

reader that recognized Socs1 mRNA and enhanced its stability,

facilitating its translation (Figure 5).

According to recent studies on FTO and macrophages, FTO

played an essential role in macrophage activation. Therefore, to

fur ther s tudy how FTO affec t s the tumor immune

microenvironment through macrophages, we need to co-culture

tumor cells and macrophages based on FTO knockdown or

overexpression and observe functional changes in macrophages.
FTO as a therapeutic target

Given the critical role of FTO in tumor genesis and

development, the development of small molecule inhibitors of

FTO is a promising research direction. With the continuous

understanding of FTO abnormal expression and its pathological

mechanisms, as well as the clarification of the crystal structure of

FTO (8, 24), developing small molecule compounds targeting FTO

is possible (94). Several FTO inhibitors have been identified, and

their therapeutic efficacy has been verified in various malignancies.
FIGURE 5

FTO promoted M1 and M2 macrophage activation. FTO promoted the polarization of M1 macrophages by improving STAT1 mRNA stability and
enhancing the phosphorylation of IKKa/b, IkBa and P65. FTO promoted the polarization of M2 macrophages by enhancing the stability of PPAR-g
mRNA and increasing the expression of STAT6. FTO KO macrophages can reduce inflammatory responses by increasing m6A levels in Socs1 mRNA.
YTHDF1 was identified as an m6A reader that recognizes Socs1 mRNA and enhances its stability, thus facilitating its translation.
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FB23, a novel MA-derived inhibitor, is nearly 140 times more

active than MA at inhibiting FTO enzymatic activity (95). FB23-2

significantly inhibited proliferation and promoted differentiation

and apoptosis of AML cells in vitro. Furthermore, FB23-2

drastically suppressed the progression of AML cells in

xenotransplanted mice (95, 96). The function of FTO-04, a potent

inhibitor of FTO, has also been demonstrated in glioma stem cells

(GSC). Specifically, FTO-04 impaired the self-renewal of GSC-

derived neural spheres but had no significant effect on healthy

human neural stem cells (97).

The role of FTO inhibitors in regulating the tumor immune

microenvironment is gaining attention. CS1 and CS2, two potent and

selective FTO inhibitors, were found to have more satisfactory

antitumor efficacy than FB32. Furthermore, CS1 and CS2 inhibited

the self-renewal of leukemia-initiating cells and suppress immune

infiltration by decreasing LILRB4 mRNA stability (18). Moreover,

Dac51 was a recently discovered analog of FB23, that can

weaken glycolytic metabolism and promote tumor tissue

infiltration of CD8+T cells by inhibiting FTO, thus producing

significant anti-tumor effects in melanoma (98). In summary, we

believe that through continued efforts in the future, better quality

FTO-targeted inhibitors will be discovered and applied clinically,

bringing new hope for tumor immunotherapy.
Discussion and future direction

Further exploration of the molecular mechanisms by which

FTO regulates the tumor immune microenvironment, such as

immune checkpoint expression, glucose metabolism and MSI, has

valuable potential for clinical applications in guiding the selection of

individualized treatment methods. Based on recent studies, small

molecules or drugs targeting FTO may be effective in treating

various malignancies. However, no direct FTO inhibitors have

been approved for clinical use. Understanding how FTO affects

tumor immunity should help clarify which patients with FTO-

induced malignancies are most likely to respond to specific

treatments, such as direct FTO inhibitors and FTO suppression

combined with immunotherapy.

As the first discovered m6A demethylase, FTO has gained

popularity in epigenetic research owing to its important roles in

metabolism, tumors, and other physiological functions. To the best

of our knowledge, the role and mechanism of FTO in tumor genesis

and development have not yet been thoroughly studied. The

important role of FTO in the tumor immune microenvironment

still has a vast space to explore. Specifically, FTO inhibition reduced

the expression of PD-1, CXCR4, and SOX10, which suggested that

the combination of FTO inhibition with anti-PD-1 blockade may

reduce the resistance to immunotherapy in melanoma (99). FTO

regulated another important immune checkpoint, LILRB4, in

leukemia cells (18). Bioinformatic analysis of FTO showed that

the expression levels of other immune checkpoints, such as CTLA4,

were significantly associated with m6A levels in multiple tumors

(100, 101). Therefore, whether FTO can modulate other immune

checkpoints in an m6A-dependent manner is an exciting research
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topic. MSI is a common gene mutation in malignant tumors and

plays a vital role in many tumors (102). MSI of FTO can produce a

mysterious polypeptide, FSP11, which promoted the infiltration of

CD8+T cells, thereby affecting tumor progression (77). We already

know that MSI is a pivotal predictor of immunotherapeutic regimen

efficacy. Zhao et al. (103)extracted the MSI data from TCGA

database. The results showed that the MSI significantly correlated

with FTO expression in testicular germ cell tumors. Simultaneously,

MSI was negatively associated with invasive breast carcinoma,

thyroid carcinoma, head and neck squamous cell carcinoma, lung

squamous cell carcinoma, stomach adenocarcinoma, prostate

adenocarcinoma, cutaneous melanoma, and diffuse large B-

cell lymphoma.

Of note, FTO affected tumor progression by regulating the

efficiency of glucose metabolism (98, 104–106). For example, R-

2HG, a specific FTO inhibitor, inhibited glycolysis by down-

regulating the express ion of two glycolytic enzymes,

phosphofructokinase platelets and lactate dehydrogenase B.

Furthermore, R-2HG exhibited strong antitumor activity based on

the inhibition of glucose metabolism (104).

In most studies, FTO is overexpressed and plays a carcinogenic

role, whereas in a few studies, FTO may also play a tumor suppressor

role. Ruan et al. (107) studied the physiological role of FTO in the

hypoxic environment of CRC and found that hypoxia induced FTO

degradation via the ubiquitination-proteasome pathway. FTO

inhibition increased m6A methylation of MTA1 mRNA, which was

recognized by the m6A “reader” IGF2BP2, and maintained RNA

stability/protein expression, thereby accelerating cancer metastasis

and progression. Regarding tumor initiation, FTO has a protective

effect on chemically induced HCC development. FTO may target

cullin4A (Cul4A) mRNA and degrade Cul4A protein levels, thereby

blocking cell proliferation (105).Huang et al. (106) found that FTO

inhibited the expression of APOE through m6A modification

mediated by IGF2BP2 and may inhibit the glycolytic metabolism of

PTC by regulating the IL-6/JAK2/STAT3 signaling pathway, thus

inhibiting tumor growth. Zhuang et al. (108) found that low FTO

expression in human clear cell renal cell carcinoma (ccRCC) was

associated with increased tumor severity and poor patient survival.

FTO increased PGC-1a expression by reducing m6A levels in PGC-1

amRNA transcripts, thereby restoring mitochondrial activity,

inducing ROS production and oxidative stress, and inhibiting

ccRCC growth. These conflicting results may be caused by

individual differences in tumor patients, high heterogeneity of

different cell lines of the same tumor, different experimental

methods and equipments, and other potential biases.

Here, we summarize and discuss recent findings on the

relevance of FTO in tumor immune microenvironment.

Furthermore, we gain a deeper understanding of the molecular

mechanisms by which FTO promoted GIC occurrence and

development. Given the key role of FTO in GIC, targeting FTO

as a therapeutic strategy is reasonable. Several studies have shown

that FTO significantly affected the efficacy of tumor chemotherapy

(12, 109, 110). Finally, we highlight targeting FTO strategies that

may improve therapeutic outcomes for GIC, including

combined immunotherapy.
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Conclusion

m6A is considered the most common epigenetic modification of

RNA and plays an essential role in malignant cell proliferation,

migration, invasion, and apoptosis. As the earliest demethylase

discovered, FTO may initiate and maintain cancer through

intrinsic carcinogenic signaling pathways and the immune

microenvironment of tumor cells. In this review, we describe

various mechanisms by which FTO regulates immune

checkpoints and immune cells. Therefore, we believe that FTO

can be used as biomarkers and adjuvant immunotherapy targets

for GIC.
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