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Application of artificial
intelligence in endoscopic
gastrointestinal tumors

Yiping Xin, Qi Zhang, Xinyuan Liu, Bingqing Li,
Tao Mao and Xiaoyu Li*

Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
With an increasing number of patients with gastrointestinal cancer, effective and

accurate early diagnostic clinical tools are required provide better health care for

patients with gastrointestinal cancer. Recent studies have shown that artificial

intelligence (AI) plays an important role in the diagnosis and treatment of patients

with gastrointestinal tumors, which not only improves the efficiency of early

tumor screening, but also significantly improves the survival rate of patients after

treatment. With the aid of efficient learning and judgment abilities of AI,

endoscopists can improve the accuracy of diagnosis and treatment through

endoscopy and avoid incorrect descriptions or judgments of gastrointestinal

lesions. The present article provides an overview of the application status of

various artificial intelligence in gastric and colorectal cancers in recent years, and

the direction of future research and clinical practice is clarified from a clinical

perspective to provide a comprehensive theoretical basis for AI as a promising

diagnostic and therapeutic tool for gastrointestinal cancer
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Introduction

Recently, artificial intelligence(AI) technology has been successfully adopted in health

care diagnostics, which is the branch of computer science (1). It is used to attempt to learn

and solve problems by emulating human-like mind and cognition (2).Machine learning

(ML) and deep learning(DL) can be considered subsets of AI. ML-based approaches refer

to the scientific studies of algorithms and statistical models that can perform complex tasks

after manually extracting features (3). The algorithm can learn independently using

multiple datasets without explicit instructions, which is at the forefront of AI and data

science (4). In this statistical method of fitting models to data, the models are trained and

learned using databases to make predictions based on new data (5). DL is a particular ML

approach that developed through the advancement of artificial neural networks (ANN) and

specialized in deep neural networks. A classification and recognition system for focal

images can be constructed without complex image-processing algorithm (6).The algorithm
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can also learn and utilize interaction factors between data inputs to

predict its target (4). Convolutional neural network (CNN) is the

main DL algorithm used for image recognition and image

processing (7, 8). After identifying and extracting specific features

from the original images, the CNN uses mathematical convolution

operations to perform endoscopic diagnosis, which has been

reported as a successful image classification computing system

(9, 10).(Figure 1).

In recent years, the image recognition ability of AI has become

increasingly advanced (7), and DL has been widely applied in

diagnostic imaging in various medical fields (11–13). Compared

to traditional ANN, the DL algorithm significantly enhances the

width and depth of the network. It consists of digitized inputs that

can extract information from shallow, intermediate, and deep layers

of images, and output layer, which is used for classification and

processing lesion images at the backend (2, 14). Deep learning

architecture has high detection, classification and segmentation

capabilities. Therefore, it is particularly suitable for image

quantization. With adequate learning, clinicians can achieve high

accuracy and rapidity of AI when assessing gastrointestinal tumors,

thereby improving clinical efficiency and reducing costs for patients

and clinical teams (15).
Gastric cancer

Gastric cancer (GC) remains an important cancer worldwide

and was responsible for over one million new cases in 2020 and an

estimated 769,000 deaths, ranking fifth in incidence and fourth in

mortality globally of all cancers (16). Statistically, the relative 5-year

survival rate of patients with GC is <40% (17, 18), which is

attributed to the late onset of symptoms and delayed diagnosis

(19). Early gastric cancer (EGC) has a high endoscopic cure rate and

the 5-year survival rate exceeds 90% (20, 21). Therefore, timely and

accurate diagnosis of EGC through endoscopy is a key strategy for

improving survival rates. The AI-based diagnosis system has high

diagnostic accuracy, which can monitor and distinguish cancer
Frontiers in Oncology 02
from non-neoplastic lesions in a timely manner and predict the

invasion depth through gastroscopy images. The application of AI

in endoscopic gastric cancer is shown in Table 1.
Detection of gastric cancer

EGC are often present in the background of gastric mucosal

inflammation and are difficult to identify by endoscopists. The use of

a CNN-based AI to detect GC in endoscopic images was first

reported by Hirasawa et al (22).The model required a significantly

shorter time for diagnosis than endoscopists and correctly diagnosed

71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%,

resulting in a positive predictive value(PPV) of 30.6%. Wu et al. (23)

constructed a system using DCNN to detect EGC without blind

spots. After validating the 200 endoscopic images, the sensitivity and

specificity were comparable, and the accuracy was significantly

higher. They also used it on unprocessed videos to proactively

track suspicious cancerous lesions without blind spots. Luo et al.

(24) developed and validated GRAIDS using a large cohort of more

than one million images from different tiers of hospitals, with a

diagnostic accuracy of 91.5% to 97.7%. GRAIDS can support non-

expert endoscopists to a level similar to that of experts, suggesting the

effectiveness of combining of AI and endoscopists. At that time, it

was the largest study in the field of AI-guided cancer detection based

on upper gastrointestinal endoscopic images worldwide.

Image-enhanced endoscopy (IEE) uses narrow-band spectrum

or blue laser imaging to enhance micro-vessels patterns as well as

color differences of gastric mucosa and structural features to

improve diagnostic accuracy (37). Magnifying-IEE(M-IEE) has

satisfies diagnostic ability for GC, however, its high cost of

equipment and strict requirements for endoscopists limit its

popularity (38).Weak magnifying-IEE(WM-IEE) has wide utility

and relatively lower cost than M-IEE, providing a significant option

for diagnosis of high-risk lesions (39). Since EGC shows only subtle

mucosal changes, narrow-band imaging (NBI) has been reported to

be a powerful tool for characterizing gastric mucosal lesions because

it can use narrow light source to enhance visualization of the surface

micro-vessels (40). In particular, magnifying NBI(ME-NBI) is a

powerful optical technology with accurate real-time diagnostic

performance in EGC. The application of CNN in ME-NBI

diagnosis is a potential solution to improve the optical diagnosis

(41–43). Li et al. (25) established a CNN model on 2088 images for

analyzing gastric mucosal lesions observed by ME-NBI and

achieved an accuracy of 90.91% in 341 still images. The

diagnostic sensitivity of CNN was significantly higher than that of

the experts. Similarly, Horiuchi et al. (26) verified the performance

of AI for ME-NBI using 174 videos to enable real-time diagnosis of

EGC and the system demonstrated an area under the curve (AUC)

of 0.8684.The diagnostic performance was equivalent to or better

than that of 11 endoscopic experts. A CNN computer-aided system

was constructed by Ueyama et al. (27)based on ME-NBI images and

achieved a high diagnostic accuracy of 98.7% among homogeneous

systems and AUC of 99%. The most important difference was that

the images processed by water immersion technique with maximal

magnification in this study were optimal for AI-assisted diagnostics.
FIGURE 1

The relationship of artificial intelligence classification.
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As the first study to evaluate AI using a multicenter validation

cohort, Hu et al. (28) trained and tested a model using 1777 ME-

NBI images from the database and achieved accuracies of 77% and

76% in the internal and external test cohorts, respectively. It can not

only effectively improve the diagnostic performance of endoscopists

of different levels, but also delineate lesion boundaries. He et al. (38)

proposed a system to diagnose EGC by M-IEE and validated its
Frontiers in Oncology 03
effectiveness using multicenter static images from six hospitals, real-

time videos, and a prospective clinical trial. This showed the great

potential for the diagnosis of EGC in clinical practice. A deep CNN

(DCNN) converts one level of representation into a more abstract

level for prediction (7). A real-time DCNN system was developed to

diagnose EGC using 21785 NBI images and 20 videos, with the

largest sample size at the time (29). It showed a generalized
TABLE 1 The application of AI in endoscopic gastric cancer.

Authors
(year)

Study
design

Aim Data Results of AI

Training set Validation set

Hirasawa
et al.(2018)

(22)

Retrospective Detection of GC 13,584 images 2296 images with
77 GC lesions

Sensitivity:92.2%,PPV:30.6%

Wu
et al.(2019)

(23)

Retrospective Detection of EGC
without blind spots

9151 images for EGC
and 24549 images for

blind spots

200 images Accuracy:92.5%,Sensitivity:94.0%,Specificity:91.0%,
PPV:91.3%,NPV:93.8%

Luo
et al.(2019)

(24)

Retrospective
and

prospective

Detection of upper
gastrointestinal cancer

157207 images 910598 images Accuracy:95.5%(internal validation set),92.7%(prospective
set),91.5-97.7%(external validation sets),Sensitivity:94.2%,

PPV:81.4%,NPV:97.8%

Li
et al.(2020)

(25)

Retrospective Detection of EGC 2088 images 341 images Sensitivity:91.18%,Specificity:90.64%,Accuracy:90.91%

Horiuchi
et al.(2020)

(26)

Retrospective Detection of EGC 2570 images 174 videos AUC:0.8684,Accuracy:85.1%,Sensitivity:87.4%,
Specificity:82.8%,PPV:83.5%,NPV:86.7%,

Ueyama
et al.(2020)

(27)

Retrospective Detection of EGC 5574 images 2300 images AUC:99%,Accuracy:98.7%,Sensitivity:98%,Specificity:100%,
PPV:100%,NPV:96.8%

Hu
et al.(2020)

(28)

Retrospective Detection of EGC 170 cases 125 cases AUC:0.808 in the internal test cohort and 0.813 in the
external test cohort,Accuracy:77.0%,
Sensitivity:79.2%,Specificity:74.5%

Tang
et al.(2022)

(29)

Retrospective Detection of EGC 13151 images 8634 images and
20 videos

AUC:0.888-0.951,Accuracy:93.2%

Horiuchi
et al.(2020)

(30)

Retrospective Qualitative diagnosis
of GC

2570 images 258 images Accuracy:85.3%,Sensitivity:95.4%,Specificity:71%,
PPV:82.3%,NPV:91.7%

Namikawa
et al.(2020)

(31)

Retrospective Qualitative diagnosis
of GC

18410 images 1459 images Sensitivity:99.0%,Specificity:93.3%,PPV:92.5%

Kim
et al.(2020)

(32)

Retrospective Qualitative diagnosis
of GC

905 images 212 images Sensitivity:83.0%,Specificity:75.5%,Accuracy:79.2%

Zhu
et al.(2019)

(33)

Retrospective Prediction the invasion
depth of GC

790 images 203 images AUC:0.94,Sensitivity:76.47%,Specificity:95.56%,
Accuracy:89.16%,PPV:89.66%,NPV:88.97%

Yoon
et al.(2019)

(34)

Retrospective Detection of EGC and
prediction the invasion

depth of GC

6923 images 4616 images Sensitivity:91.0%,Specificity:97.6% and AUC:0.981 for EGC
detection,Sensitivity:79.2%,Specificity:77.8% and AUC:0.851

for prediction of tumor depth

Nagao
et al.(2020)

(35)

Retrospective Prediction the invasion
depth of GC

13628 images 2929 images Sensitivity:84.4%,Specificity:99.4%,Accuracy:94.5%,
PPV:98.5%,NPV:92.9%(WLI),Accuracy:94.3%(NBI),

Accuracy:95.5%(Indigo)

Goto
et al.(2022)

(36)

Retrospective Prediction the invasion
depth of GC

500 images 200 images Accuracy:77%,Sensitivity:76%,Specificity:78%,F1:0.662
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diagnostic performance with an AUC of 0.947 on the internal

validation dataset and 0.888–0.951 on the four external validation

datasets. Notably, the system significantly enhanced the

performance of senior (89.4%, 95% CI, 87.9–90.7%) and junior

(84.9%, 95% CI, 83.4–86.3%) endoscopists. These experimental

studies have promoted the development of AI technology, which

has the potential for future clinical applications.

Randomized controlled studies of target population with

appropriate inclusion and exclusion criteria are necessary to

validate the diagnostic accuracy of AI. In addition to EGC, it is

necessary to ensure the diagnosis of hard-to-detect GC, such as

early undifferentiated cancers and gastritis-like cancers (44).

Furthermore, most studies used DL to identify GC with WL or

M-IEE, whereas few concentrated on WM-IEE (45, 46). In clinical

practice, guidelines recommend the use of multimodal light sources

with chromoendoscopy and white-light imaging (WLI) endoscopy,

instead of a single light source (47), which underscores the

importance of accurate diagnosis and risk stratification in

these patients.
Qualitative diagnosis of gastric cancer

It is sometimes difficult to distinguish benign lesions from EGC,

and the PPV of biopsy using conventional endoscopy with WLI is

only 3.2-5.6%. Horiuchi et al. (30) applied a CNN system to

differentiate EGC from gastritis with 151 EGC and 107 gastritis

images based on ME-NBI. The accuracy, sensitivity, and specificity

of the system were 85.3%, 95.4%, and 71.0%, respectively. To

evaluate the applicability for the classification of GC and gastric

ulcer, Namikawa et al. (31) developed an AI-based system by adding

4453 gastric ulcer images to the original AI. The overall accuracies

of the advanced and original AI were 95.9% and 45.9%, respectively,

indicating a high level of recognition and classification. A CNN

model based on ultrasound endoscopic (EUS) images distinguished

gastrointestinal stromal tumors (GIST) from non-GISTs with 83.0%

sensitivity, 75.5% specificity, and 79.2% accuracy (32). Therefore, it

complemented the clinical practice of EUS in the diagnosis of

gastric mesenchymal tumors. The application of AI to

differentiate cancer from non-cancerous changes could potentially

reduce the number of unnecessary biopsies.
Prediction the depth of gastric
cancer invasion

EGC refers to GC confined to the mucosa or submucosa,

regardless of the presence of lymph node metastasis (48) and is

classified into intramucosal cancer (T1a) and submucosal invasive

cancer (T1b). Endoscopic resection has become the treatment of

choice for EGC because of minimally invasive and superior cost-

effectiveness (49–51). One of the most important preoperative

criteria for curative endoscopic resection is tumor invasion depth.

Absolute indication for endoscopic surgery is a differentiated-type

adenocarcinoma without ulcerative findings (UL0), in which

the invasion depth is clinically diagnosed as T1a and the diameter
Frontiers in Oncology 04
is ≤ 2 cm (49, 52, 53). As undifferentiated-type intramucosal

adenocarcinoma of diameter < 2cm is also an absolute indication

for endoscopic submucosal dissection (ESD) (54), accurate

prediction of infiltration depth based on endoscopy images is a

key to screen patients for endoscopic resection.

Conventional endoscopy is an effective method for T staging of

EGC (55, 56), and EUS can distinguish between the different layers

of the stomach wall and reveal the peri-gastric lymph nodes (57).

However, influenced by endoscopists and images, EUS has no

substantial effect on pretreatment T-staging of EGC patients (58,

59). Therefore, with increasing interest in the field of medical

imaging, there is a requirement for a more detailed classification

and higher accuracy AI system.The first investigation of the depth

of GC invasion depth using a computer-aided system based on 902

images with 10-fold cross-validation method (60). The diagnostic

accuracies were 77.2%, 49.1%, 51.0% and 55.3% for T1, T2, T3, and

T4 stages, respectively, and the accuracy was 68.9% and 63.6% for

T1a and T1b stages of EGC, respectively. Recent years, Zhu et al.

(33) reported that their CNN system developed with 790 images

could differentiate the depth of M, SM1, and SM2 from all GCs,

with an accuracy of 89.16% and specificity of 95.56%. In a study

simultaneously detected GC and invasion depth with AI, Yoon et al.

(34) reported the sensitivity and specificity of tumor depth as 79.2%

and 77.8%, respectively. They also analyzed factors that influence AI

diagnosis, such as whether undifferentiated-type histology is

correlated with low T-stage prediction accuracy. Using 16577

selected endoscopic images from different angles and distances for

each lesion, the system developed by Nagao et al. (35) could

diagnose invasion depth with an accuracy of 94.4%. Notably, the

impact of WLI, NBI and Indigo on the ability to predict invasion

depth was compared for the first time.

Zhu and Nagao reported that it is easier to diagnose the depth of

invasion in advanced gastric cancer in clinical practice. Therefore,

developing systems to improve the diagnostic ability for EGC would

be more beneficial. Goto et al. (36) constructed an AI classifier for

differentiating intramucosal and submucosal GC and devised a

diagnostic method based on cooperation between AI and

endoscopists. A total of test images showed that the accuracy,

specificity, and F1 measure based on cooperation were 78.0%,

80.0%, and 0.776, respectively, and that the accuracy of using F1

measure was higher than that of using AI or endoscopists alone.
Colorectal cancer

Colorectal cancer (CRC) is the third most frequently diagnosed

cancer and the second most common cause of cancer-related deaths.

More than 1.9 million new CRC cases and 935,000 deaths were

estimated in 2020, accounting for approximately one in ten cancer

cases and deaths (16). Colonoscopy plays an important role in

screening and preventing CRC (61, 62). Adenomatous polyps are

the most important precursor lesions and CRC usually develops from

sporadic mutation-accumulating adenomatous polyps in a relatively

predictable stepwise sequence (63). Colonoscopy can be used to detect

and remove these lesions via polypectomy, thereby significantly

reducing the incidence and mortality risk of CRC (64, 65).
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Evidence suggests that colonoscopy can reduce the risk of death from

CRC by 67% (66) and the incidence of late-stage CRC by 70% (67).

Adenoma detection rate (ADR) is defined as the proportion of at

least one histologically identified colorectal adenoma or

adenocarcinoma when performing colonoscopy (68). CRCs

detected after a prior colonoscopy or during the interval between

surveillance colonoscopies are known as interval CRC or post-

colonoscopy CRC (PCCRC). ADR is a proxy for colonoscopy

quality indicator and has been inversely correlated with the risk of

PCCRC (69–73). The incidence of PCCRC is estimated to be as high

as 3.5 per 1,000 screened person (74). Each 1.0% increase in ADR

correlated with a 3.0% decrease in the risk of PCCRC (69) and a 5%

decrease in the risk of fatal interval CRC (75). It is also reported that

58% of PCCRC could be categorized as “possible missed lesion, prior

examination inadequate,” which emphasized the importance of

careful colonoscopy examination (76). In fact, the adenoma

missing rate (AMR) of WLI colonoscopy ranges from 6% to 41%

(77–79), depending on various polyps and surgical characteristics.

For example, smaller polyps, flat polyps (77, 80), and left colonic

location (79) may be associated with an increased AMR. The ability

to examine the colorectal mucosa to the maximum extent possible

and accurately identify neoplastic lesions depend mainly on the

mastery of technical and cognitive skills (81). A potential solution to

mitigate the variability in both endoscopic detection and histological

prediction is to apply computerized image analysis to deliver

computer decision-support solutions.

Moreover, accurate in vivo differentiation can reduce

unnecessary endoscopic resections, complications, physician

burden, and medical costs (82). Studies using full-spectrum

colonoscopy (FUSE), which provides a 330° angle of view, showed

an AMR between 7.0% (83) and 20.5% (78). AI can compensate for

differences in endoscopists’ diagnostic ability due to limitations in

experience, visual perception, and other human factors (84). Several

computer-aided diagnostic systems have been developed and applied

clinically to evaluate the benefits of improving ADR (85). The data

suggest that application of CNNmay lead to “resect and discard” and

“detect and leave” strategies in real time, which will avoid

unnecessary non-neoplastic polyp removal and improve

colonoscopy efficiency and cost-effectiveness. The two significant

roles of AI in CRC screening are computer-aided detection (CADe)

and computer-aided diagnosis or differentiation (CADx). Using

complex algorithms or CNN, CADe is used to detect lesions,

whereas CADx characterizes lesions by performing optical

biopsies, reducing the need for histopathological evaluation to

some extent (86). Therefore, CADe can help endoscopists reduce

missed polyps and augment performance, whereas CADx can

interpret polyp histology more accurately (87). The application of

AI in endoscopic colorectal cancer is shown in Table 2.
Computer-aided detection system

CADe systems have been developed to increase ADR and

adenomas by providing real-time visual information on

previously unrecognized polyps (91). Being a standardized second

observer, the system can help avoid any missed diagnoses of visible
Frontiers in Oncology 05
lesions that briefly appear in the field of vision (106) and has been

proven to increase polyp detection with high accuracy and

consistency (107–109).

Misawa et al. (88) developed an original CNN-based CADe

using 411 colonoscopy videos with a sensitivity and specificity of

90% and 63%, respectively, for 50 polyp and 85 non-polyp videos.

This compensates for the shortcomings of static images and

insufficient samples in previous systems. A subsequent study

reported the first real-time application of CNN-based CADe to

identify and locate polyps by Urban et al. (89), which showed 96%

cross-validation accuracy and an AUC of 0.991 on 8641 images.

Notably, four expert reviewers identified 17 additional polyps with

CNN compared with eight additional polyps without assistance.

Another real-time CAD system CAD EYE trained with linked color

imaging technology focused on sessile serrated lesions and achieved

the detection rate of 100% (90). The first prospective, randomized

controlled trial was conducted by Wang et al. (91) to investigate its

effect on ADR. The CADe system significantly increased the mean

number of adenomas per patient (0.53 vs. 0.31, p<0.001) and ADR

(29.1% vs. 20.3%, p<0.001) than standard colonoscopy, which was

mainly attributed to the detection of a greater number of small

polyps. In another prospective randomized controlled trial, Su et al.

(92) designed a CADe that was able to not only detect colorectal

polyps but also measure withdrawal time to improve the

performance of endoscopists. The CAD-assisted group had a

significantly higher ADR (29% vs. 17%, p < 0.001), a prolonged

exposure time (7.03 minutes vs 5.68 minutes, P <0.001), and

adequate bowel preparation(87.34% vs 80.63%, P =0.023).Yamada

et al. (93) developed a system using a supervised DNN and validated

it using a dataset of 705 still images of 752 lesions and 4135 still

images of noncancerous tissue. The system achieved sensitivity and

specificity of 97.3% and 99.0%, respectively, and speed of 21.9 ms/

image on average. To overcome the operational bias in previous

non-blinded trial, Wang et al. (94) used a double-blind design to

evaluate the effectiveness of the system. The ADR was significantly

greater in the CADe group than in the sham group, with 165 of 484

patients(34%) versus 132 of 478 patients(28%) having an

adenoma detected.

Repici et al. (95) performed a multicenter, randomized trial to

evaluate the safety and efficacy of CADe, known as GI Genius from

Medtronic. With 685 subjects randomly assigned (1:1), the ADR

was higher in the CADe group (54.8%) than in the control group

(40.4%) without increasing withdrawal time. In a later study, a

random trial was performed with colonoscopists (96). When the

data from the above two studies were merged, the application of

CADe and colonoscopy indication were correlated with the ADR,

and experience seemed to play a secondary role. Because the AMR

obtained from tandem colonoscopy is a better indicator than the

ADR of how endoscopists performed, Wang et al. (97) compared

the specific AMR of CADe colonoscopy with that of routine white-

light colonoscopy. The overall AMR was lower with CADe

colonoscopy (13.89% vs. 40.00%, P<0.0001), which mean that

routine CADe may reduce the incidence of interval CRC. A

prospective study conducted by Ishiyama et al. including 1836

patients (98) showed the ADR was higher in the CADe group

than in the control group (26.4% vs. 19.9%, OR, 1.32; 95%CI, 1.12–
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1.57), but there was no significant increase in the advanced

neoplasia detection rate (3.7% vs. 2.9%). Another multicenter

prospective study firstly took user friendliness into account and

presented data on the safety and user experience of Discovery

system from Pentax (99). In order to yield better representations of

polyp lesions, CADDIE system constructed with novel hybrid 2D/

3D network can realize training with smaller static images (110).

After testing on 95 videos and 1833 polyp images, it achieved an

improvement across all performance metrics included temporal
Frontiers in Oncology 06
consistency, showing better generalization performance and

increased suitability for clinical application.
Computer-aided diagnosis system

With continuous improvement of the quality of endoscopic

imaging systems, optical diagnosis is increasingly applied to the

histological prediction of colorectal polyps. However, tissue biopsy
TABLE 2 The application of AI in endoscopic colorectal cancer.

Authors
(year)

Study design Algorithm
type

Data Results

Training set Validation set

Misawa
et al.(2018) (88)

Retrospective CADe 411 short videos 135 short videos Sensitivity:90.0%,Specificity:63.3%,Accuracy:76.5%

Urban
et al.(2018) (89)

Retrospective CADe
with CNN

8641 hand-
labeled images

20
colonoscopy videos

Sensitivity:97.0%, Accuracy:96.0%,AUC:0.991

Neumann
et al. (90)

Prospective CADe 2001 images 240 polyp videos Sensitivity:100%,

Wang
et al.(2019) (91)

Prospective CADe / / ADR of CAD 29.1% vs control 20.3%

Su
et al.(2020) (92)

Prospective CADe
with DCNN

/ / ADR of CAD 28.9% vs control 16.5%

Yamada
et al.(2019) (93)

Retrospective CADe 139961 images 4840 images Sensitivity:97.3%, Specificity:99.0%,ROC:0.9752

Wang
et al.(2020) (94)

Double-blind
randomised study

CADe / / ADR of CAD 34% vs control 28%

Repici
et al.(2020) (95)

Randomized CADe 2684
polyp videos

341 patients ADR of CAD 54.8% vs control 40.4%

Repici
et al.(2022) (96)

Prospective CADe / / ADR of CAD 53.3% vs control 44.5%

Wang
et al.(2020) (97)

Prospective CADe / / AMR of CAD 13.89% vs routine 40.00%

Ishiyama
et al.(2022) (98)

Prospective CADe / / ADR of CAD 26.4% vs control 19.9%

Soons et al. (99) Prospective CADe 10467 images 45 videos PDR(polyp detection ratio):55.6%,ADR:28.9%

Chen
et al.(2018)

(100)

Retrospective CADx 2157 images 284 images Sensitivity:96.3%, Specificity:78.1%,PPV:89.6%,NPV:91.5%

Byrne
et al.(2019)

(101)

Retrospective CADx 223 polyp videos 125 videos Sensitivity:98.0%, Accuracy:94.0%,Specificity:83%,
PPV:90.0%,NPV:97%

Kudo
et al.(2020)

(102)

Retrospective CADx 69142 images 100 cases Sensitivity:96.9%, Accuracy:98.0%,Specificity:100%,PPV:100.0%,
NPV:94.6%(stained endocytoscopic images)

Mori
et al.(2018)

(103)

Prospective CADx 61425 images 466
diminutive polyps

NPV:93.7%-96.4% with stained mode,95.2%-96.5% with NBI

Zachariah
et al.(2020)

(104)

Retrospective CADx 5378 images 634 polyp images Accuracy:94%,NPV:97%

Rodrigues
et al.(2021)

(105)

Retrospective CADx 745 images 520 images Sensitivity:96.0%, Specificity:84%,NPV:91%
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remains the gold standard. The accuracy of AI for optical biopsy

depends on the extent to which the surface structure reflects the

histological characteristics of the lesion (91). CADx can analyze

endoscopic images to make a qualitative diagnosis of colorectal

tumors with low inter-observer variation. Generally, CAD for

colonoscopy is designed to extract features from colonoscopy

images or videos and the output includes predicted polyp location

or pathology (111). The optical prediction of polyp histology helps

guide subsequent treatment and is the key to the “resect and

discard” and “detect and leave” strategy (112, 113). Previous

studies have demonstrated that en bloc R0 ER of selected

colorectal neoplasms confined to the mucosa or superficial

submucosa (T1a, with <1000 mm of submucosal invasion and

favorable histological features) may be considered a curative

resection (114, 115). Therefore, the estimation of the invasion

depth is of utmost importance for establishing treatment

strategies for colorectal neoplasms (116). The diagnostic

capability of the CAD system was evaluated by observing between

invasive and less invasive lesions.

Kominami et al. (117) evaluated whether the real-time image

recognition system could predict the histological diagnosis of

colorectal lesions depicted on NBI. The concordance between the

endoscopic diagnosis and CADx output was 97.5%(115/118).

Owing to the need for the manual design of imaging features in

support vector classifiers, subsequent models are mostly based on

AI, especially DL. Similarly, Chen et al. (100) used a CAD model

with deep neural network to predict the histopathology of 284

diminutive polyps diagnosed with NBI and achieved an NPV of

91.5% for adenomas. Byrne et al. (101) further demonstrated that

the AI model based on DCNN could be used to classify diminutive

colorectal polyps. The model achieved 94% accuracy, 98%

sensitivity, 97% NPV, and 90% PPV for 106 diminutive polyps.

The use of video images can effectively reduce selection bias and

simplifies the steps of the clinical work. Kudo et al. (102) performed

a retrospective comparative analysis to determine the diagnostic

performance of EndoBRAIN, which can identify colon neoplasms

by analyzing their microstructures. When the pathological results

were used as the standard, the ability of NBI to distinguish

neoplastic lesions was significantly higher than or comparable to

that of the 30 endoscopists. If high-quality images are available, the

system will be a powerful tool for endoscopists with quick response

and reproducibility.

To distinguish between invasive cancer and adenomas, Takeda

et al. (118) evaluated endoscopic CAD for the diagnosis of invasive

CRC. They trained on 5843 images and tested on 200 images with

specificity of 98.9% and accuracy of 94.1%. Another CAD system

based on ME-NBI was further applied to classify hyperplastic

polyps, adenoma/adenocarcinoma lesions, and deep sub-mucosal

lesions (119). A single-center, large-scale prospective study (103)

showed that endocytoscopy with CADx had an NPV for diminutive

rectosigmoid adenomas of 93.7%–96.4% with the stained mode and

95.2%–96.5% with NBI. Considering the missing data, their model

met the threshold of 90% recommended by ASGE PIVI. Instead of

endoscopy, Zacharia et al. (104) created a CNN-based DL algorithm

for real-time in situ diagnosis of colorectal polyps. With 5-fold cross

validation, the NPV was 97% for diminutive polyps and the
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surveillance interval concordance achieved 94%. A novel CADx

model capable of delineating polyp boundaries and providing

localized histological predictions has been presented (105). The

histology map increased the transparency and interpretability of the

results, and the model was tested on 254 polyps with sensitivity,

specificity and NPV of 96%, 84%, and 91%, respectively.

Given the high risk of CRC, to develop a real-time automated

polyp detection system can significantly reduce missed diagnosis

rates and guide management decisions regarding polyps (120). An

ideal CAD system would support the simultaneous detection and

classification of polyps to achieve optimal CRC prevention and

treatment. In a previous study that evaluated real-time CADx with

CADe, the model failed to generate sufficient confidence to predict

15% of the polyps in 125 videos (101). For the remaining 106

polyps, the model achieved an accuracy of 94%, sensitivity of 98%,

NPV of 97%, and PPV of 90%. On the one hand, computer analysis

of video may reduce differences among endoscopic observers and

lead to widespread acceptance of “resect and discard.” On the other

hand, AI systems are regarded as low-risk devices that can assist but

not replace the work of endoscopists, making it impossible to

guarantee the added value of AI in clinical practice (121).
Limitations and future direction

In recent years, artificial intelligence (AI) has made remarkable

progress in medical image recognition and has shown promise in

the diagnosis and treatment of gastrointestinal tumors. Medical and

engineering institutions are actively conducting a great deal of

researches. However, it is critical to overcome the following

limitations before it become part of the clinical workflow.

Firstly, most current studies rely on retrospective datasets,

especially validation sets, which may be affected by selection bias.

On the one hand, due to selection bias, the results obtained in

retrospective studies are often better than those obtained in clinical

practice. However, since low-quality endoscopic images are often

excluded from retrospective studies, they cannot usually determine

how to manage low-quality images in clinical practice. To overcome

this limitation, multi-center prospective studies, which are

necessary for clinical validation, should be prioritized. Secondly,

false-positive or false-negative results can be found in some models.

The main reason may be the limited quantity and quality of learning

materials, which limit the clinical applicability. Therefore, further

accumulation of various endoscopic images could reduce these

inaccurate results. Video images can be used as learning materials

(88, 101)to realize the real-time diagnosis of lesions, and the

number and type of images can be further increased. Thirdly, the

results lack external validity. Due to differences in genetics, diet, and

lifestyle between Chinese andWestern populations, the results from

one region may not be generalizable to parts of the world with

different incidence rates, so adaptability and effectiveness in other

areas need to be further explored. In this regard, multicenter studies

have been widely conducted in other areas of medicine to evaluate

DL systems. Similarly, specific colonoscopy devices were used in

most studies, and the adaptability of the model to equipment

manufactured by other companies should be further explored to
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ensure the same performance level. Finally, to date, there is no

effective method to verify the status of tumor resection; therefore,

future efforts may facilitate AI utilization to distinguish between

normal mucosa, adenoma, and submucosal tissue, enabling

endoscopists to evaluate resection status (122).
Discussion

This study reviewed the research and development of AI for

gastrointestinal tumors endoscopy. Owing to the insidious clinical

symptoms of early gastrointestinal tumors and large variations

among endoscopists, the use of AI for lesion detection is not

influenced by factors known to influence the size and shape of

human observers. AI-assisted systems have evolved from traditional

ML algorithms to DL based on neural networks, from still image

analysis to real-time video processing. More importantly, it can

promote the development of telemedicine since the system is

automated and online. With the processing power and high

performance of algorithms such as DL, the use of a new era of

AI-based assisted endoscopy systems can help endoscopists

perform basic tasks such as the early detection and classification

of gastrointestinal tumors, and more development and validation is

undergoing. Most previous diagnosis process are difficult to be

understood by humans, known as “black box”, so it is very

necessary to further explore the construction of AI endoscopic

systems with man–machine interaction capability. In the training

process, a sufficient number of training datasets is essential, and in-

depth analysis of as many variables as possible should be carried

out. In the validation process, the risk of overtreatment should be

taken into account if the specificity is reduced. The selection of

included variables may be inappropriate when the sensitivity is

reduced. The objectivity and reproducibility of AI technology will

enable its further application in the treatment of gastrointestinal

tumors, including early detection, pathological identification, risk

assessment, treatment guidance, and outcome prediction. AI will

likely be introduced into the composition of endoscopic equipment
Frontiers in Oncology 08
for diagnosis and treatment to improve clinical outcomes. More and

more patients and physicians will benefit from the progress of

endoscopic AI-assisted systems.
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