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Concomitant pathogenic mutations in oncogene-driven subgroups:
when next generation biology meets targeted therapy in NSCLC
Starting from the Epidermal Growth Factor Receptor (EGFR) (1) and Anaplastic

Lymphoma Kinase (ALK) (2), and continuing with the identification of other well-known

driver genes for target therapy in non-small-cell lung cancer (NSCLC), such as Proto-

oncogene tyrosine-protein kinase ROS (ROS1) (3), v-Raf murine sarcoma viral oncogene

homolog B (BRAF) (4), Kirsten rat sarcoma virus (KRAS) (5), Rearranged During

Transfection (RET) (6), Tropomyosin receptor kinase 1-2-3 (NTRK1-2-3) (7),

Neuregulin 1 (NRG1) (8), Erythroblastic oncogene B (ERBB2) (9), and MET proto-

oncogene (MET) (10), all clinical trials carried out worldwide in the last decade aim to

identify and evaluate the efficacy of different generations of target inhibitors (11, 12).

The impressive clinical efficacy of tyrosine kinase inhibitors (TKI) for oncogene-

addicted subgroups of NSCLC has inevitably oriented the scientific community towards an

oncogene-centric molecular classification paradigm of these tumors, where the

identification of single or largely non-overlapping oncogenic driver events guides clinical

decisions and forecasts patients’ responses (13). This approach allowed for oncogene-

addicted NSCLC patients an unimaginable, but variable objective responses, progression-

free survival and overall survival to up-front therapies (14). That was correlated at first

instance to phenotypic variability and de novo resistance events, with rare observed

complete responses (15–19).

Following the improvement in the knowledge of NSCLC genomic complexity, there was

growing evidence that this monocentric model fails to adequately capture the clinical

complexity of NSCLC and warrants revision to better modulate therapy in lung cancer
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patients. The use of molecular analysis techniques, most notably next

generation sequencing (NGS), has revealed ever-increasing evidences

that molecular intra-driver heterogeneity in tumors could guide the

clinical heterogeneity. Beside of distinct effects of individual oncogene

alleles (20–22) many under-investigated multiple non-random

patterns of co-occurring mutations can be one of the main cause of

the observed variations in response to therapies in NSCLC oncogene-

dependent patients’ groups (23, 24), depending on several factors: the

disease stage of tumors (25, 26), the selective pressure imposed by

previous anticancer therapy, the clonal or subclonal nature as well as

timing of co-alterations, immune-surveillance and –selection that

could drive the oncogenic mutational landscape (27). The

significance of such co-mutations as mediators of various NSCLC

phenotypes has just lately come into attention, and existing molecular

stratification frameworks do not adequately account for their

functional influence (28).

The first andmost supported evidences in this field were from the

most frequent druggable genes of NSCLC, as KRAS and EGFR. The

census of major KRAS co-mutations in advanced lung

adenocarcinoma identified co-occurred lesions in a set of core gene

including LKB1, KEAP1, ATM and RBM10 that are related to early

metastatic dissemination, tumor maintenance and an aggressive

clinical phenotype in response to standard chemotehrapy,

immunotherapy and biological agents (29). It is also crucial to

remember that even genetic changes that do not exhibit statistically

significant patterns of co-occurrence could nonetheless have crucial

biological connections. For example, even thoughTP53mutations are

less common in KRAS mutant lung adenocarcinoma than in other

oncogene-driver subgroups, TP53 inactivation is frequent and has a

significant influence in this kind of cancer having an early-stage and

chemo-refractory conditions or advanced PDL1-PD1 resistance

profile (30, 31). A critical role of TP53 mutations was also observed

by analyzing its impact in NSCLC EGFRex20ins mutated patients,

where TP53mutations was established as negative prognostic marker

and also correlated to poor prognosis for EGFR ex20ins near-loop

patients treated with second-/third-generation EGFR-TKIs, as well as

copy number gain instability and higher tumor mutational burden

(TMB) (32).

More recently, the co-mutations landscape and genomic

architecture of lung adenocarcinoma driven by rare oncogenic

alterations, such as BRAF mutations (33) or fusions involving ALK,

ROS1 and RET genes was highlighted. Compared with other driver

subgroups, rearranged–positive NSCLC showed higher prevalence of

CDKN2A and CDKN2B loss co-occurrent with TP53 mutations (34)

or MYC amplification (35, 36). By contrast, TP53 mutations are

underrepresented in NSCLC patients having MET exon 14 skipping,

who frequently showed MDM2 and CDK4 co-occurrent

amplifications events as an unfavorable outcome predictor (36).

Much more scientific advances are demanded to close the gap in

this field and they must necessarily go through a re-evaluation of

current clinical trials by including the genetic landscape of

lung tumors.

Moreover, the identification of the clonal or subclonal

architecture as well as the arising time of co-alterations may help

to clarify the clinical complexity of NSCLC and reveal crucial details

about their contributions to various stages of carcinogenesis (37),
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the nature of the microenvironment surrounding NSCLC (38), and

its immune context (37). Due to all of these factors, it will be

necessary in the future to compile a list of co-occurring pathogenic

abnormalities in NSCLC, functionalize them, and assess their

therapeutic value. This information will then be used to develop

more specialized treatment plans that will translate in better clinical

results for patients.

Actually, technology is helping us and the gold standard to

identify co-occurring mutations is actually NGS on DNA/RNA

extracted from tissue biopsy since it represents less time- and

money-consuming approach to obtaining information about the

molecular status of driver genes for target therapies (Yang et al.). In

addition, the growing field of precision immunotherapy, the

discovery of co-mutations in liquid biopsy, and the comparison of

genetic results from analyses of tissues and blood will offer for

personalized anticancer therapy challenges and opportunities (39).

Multiregional sequencing analysis by large consortia has

demonstrated the ability of ctDNA to capture the clonal structure

from tumor tissue as well as to unveil additional heterogeneity at

relapse when compared to tissue samples (37). The measurements

of sub-clonal expansion in different clinical time may also enable to

predict future metastatic sub-clones and give the chance to eradicate

such clones months or even years before the clinical relapse

of tumors.
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