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Collagen, the most abundant protein in mammal, is widely expressed in tissues

and organs, as well as tumor extracellular matrix. Tumor collagen mainly

accumulates in tumor stroma or beneath tumor blood vessel endothelium,

and is exposed due to the fragmentary structure of tumor blood vessels.

Through the blood vessels with enhanced permeability and retention (EPR)

effect, collagen-binding macromolecules could easily bind to tumor collagen

and accumulate within tumor, supporting tumor collagen to be a potential

tumor-specific target. Recently, numerous studies have verified that targeting

collagen within tumor extracellular matrix (TEM) would enhance the

accumulation and retention of immunotherapy drugs at tumor, significantly

improving their anti-tumor efficacy, as well as avoiding severe adverse effects.

In this review, we would summarize the known collagen-binding domains (CBD)

or proteins (CBP), their mechanism and application in tumor-targeting

immunotherapy, and look forward to future development.

KEYWORDS

collagen-binding domain, collagen-binding protein, tumor targeting, cancer
immunotherapy, collagen
1 Introduction

Cancer immunotherapy has risen rapidly since IL-2 was approved by FDA in 1991 for

cancer immunotherapy, which significantly improved the prognosis of patients with

multiple metastatic or refractory tumor in the following decades. Quite a few

immunotherapy candidates have demonstrated inspiring outcomes in reducing

recurrence rates after surgery, radiotherapy or chemotherapy and prolonging the

survival of patients in clinical trials (1–4). However, only a fraction of candidates could
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be finally approved. One of the obstacles is side effect, which is

regarded as the most common but vital problem in immunotherapy

drugs development (5, 6). Most side effects of immunotherapy

drugs occurs because of binding to targets in non-tumor tissues, or

over-activating peripheral immune system (7), which indicating

that effective responses are not properly controlled. Thus, tumor-

targeting ability seems to be a solution for those agents, which

would focus drug function on tumor and reverse off-target side

effects. For this, a tumor-specific target is supposed to be necessary.

Collagen is the most abundant protein in mammals, widely

existing in tissues and organs (8), especially tumor (9). When

growing rapidly, tumor forms abnormal blood vessels with

fragmentary structure, which expose tumor collagen beneath to

blood. The abnormal tumor blood vessels also attract and retain

macromolecules in blood, which is summarized as the enhanced

permeability and retention (EPR) effect. Thus, collagen-binding

macromolecules would accumulate within tumors rather than other

tissues, because of different permeability. The unique feature in

tumor supported collagen to be an ideal tumor-specific target,

which has been verified and reported in a mass of researches.
2 Collagen in tumor

Collagen family consists of 28 types of collagens named from

collagen type I to XXVIII, which were successively discovered since

1969, when collagen type II was identified by Miller and Matukas

(10). Collagen is composed of three a-chains with a triple helix

domain and sometimes two non-helical domains at each side, while

different a-chain subtype combinations form different collagens

(11). The mutation or abnormal overexpression of collagen have

been verified to be highly associated with various diseases such as

osteoporosis, achondroplasia, Ehlers-Danlos syndrome, Alport

syndrome, and cancer (12, 13). Tumor collagen mainly exists in

tumor stroma or beneath tumor blood vessel endothelium,

promoting angiogenesis and progression of tumor, as well as

supporting invasion and metastasis of cancer cells (9). Tumor

collagen along with other components in tumor extracellular

matrix also help inhibit anti-tumor immune response via

preventing the infiltration of immune cells, which vastly depresses

the effect of immunotherapy drugs and leads to poor prognosis (14,

15). Constitutively expressed in almost all types of solid tumors,

collagen is supposed to become a potential anti-tumor target. Quite

a few immunotherapies targeting tumor collagen have represented

significant anti-tumor efficacy through regulating the expression or

alignment of collagen (16–19).

In order to meet the terrible desires for oxygen and nutrition,

tumor upregulates the expression of vascular endothelial growth

factor (VEGF) and reduces inhibitory factors such as

thrombospondin and angiostatins (20), forming plenty of

abnormal blood vessels with irregular shapes, multiple twists and

blind ends, which are easy to leak and bleed (21). In a widely

accepted theory, tumor is regarded as incurable wound, with

numerous similar characteristics such as high level of VEGF-A

expression, highly permeable sinusoids called “mother vessels” at

the beginning of angiogenesis, and a large number of blood
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capillaries linking mother vessels (21, 22). The over-expressed

VEGF-A and its subtypes which come from alternative splicing

effectively promote angiogenesis and vascular permeability, leading

to the abnormity of tumor blood vessels (22). Meanwhile, some

other vascular permeability factors such as bradykinin and nitric

oxide are also upregulated within tumor, collectively contributing to

the EPR effect of tumor (23–25).

EPR effect is widely used in tumor targeting strategies, including

strategy of targeting tumor collagen. Benefited from EPR effect,

collagen-binding macromolecules would enter tumor tissues rather

than other organs when circulating in blood and bind exposed

collagen around tumor blood vessels. When linked to

immunotherapy drugs such as antibodies or therapeutic

cytokines, collagen-binding macromolecules would represent

tumor-targeting ability and prolong the retention of drugs within

tumor (15) (Figure 1).
3 Collagen-binding domains

Collagen-binding domain (CBD) is a kind of protein domains

or polypeptides that specifically bind to collagen. CBD is derived or

designed from collagen-binding sites in natural ligands of collagen,

such as fibronectin (FN), von Willebrand factor (vWF), placental

growth factor (PlGF) and collagenase (reviewed in Addi et al.,

2017 (26)).
3.1 Fibronectin

Fibronectin is a kind of non-collagenous glycoprotein, which

widely exists in extracellular matrix, promoting adhesion, growth,

migration and differentiation of cells through mediating

interactions between cells and extracellular matrix [reviewed in

Pankov et al., 2002 (27)]. FN mainly exists as dimer, while each

monomer produced by alternative splicing varies from 230 to 270

kDa, consisting of several type I, II or III repetitive units. FN could

bind to collagen, heparin and integrin, especially representing high

affinity to collagen type I and II with KD value from 13 to 58 nM (28,

29). FN binds to collagen with a 42 kDa binding domain, containing

four type I and two type II repetitive units, which collectively

contribute to the binding of FN-CBD to collagen (30). Moreover,

the type II unit of FN-CBD is also discovered in other collagen-

binding proteins such as mannose receptor and matrix

metalloproteinase 2 (31, 32). Compared to natural collagen, FN

prefers denatured collagen like gelatin (33), revealing FN may bind

to the triple helix of collagen (34). FN plays important role in

wound healing and human growth (35), thus FN-CBD is mainly

used in researches for promoting wound healing or treating

developmental defects.
3.2 Von Willebrand factor

Von Willebrand factor (vWF) is a kind of glycoprotein

synthesized in endothelial cells and megakaryocyte, existing as
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polymer and participating in building basement membrane of blood

vessels [reviewed in Lenting et al., 2015 (36)]. The main

physiological function of vWF is mediating adhesion of blood

platelets beneath blood vessel endothelium and promoting

hemostasis by stabilizing coagulation factor VIII (37). VWF could

bind to multiple ligands such as plasma protein, platelet receptor,

integrin, collagen and heparin, with high affinity to collagen type I,

III, IV and VI [reviewed in Bergmeier et al., 2012 (38)]. Mature

vWF consists of 13 domains, in which A1 and A3 domains contain

the main collagen-binding sites (39). The A1 domain weights 20.3

kDa, containing binding sites to collagen type IV and VI (40, 41),

while the A3 domain is regarded as the main collagen-binding

domain of vWF, weighting 19.3 kDa and containing binding sites to

collagen type I and III (42). As a collagen-binding domain with high

affinity, vWF A3-CBD is used in collagen-targeting therapies for

vascular repairing, bone regeneration and tumor treatment (26, 43,

44). Beside A1 and A3 domains, some small domains in bovine and

human vWF could also specifically bind collagen (45).
3.3 Placental growth factor

Placental growth factor (PlGF), a member of VEGF family, is

mainly expressed in placenta with four subtypes of homodimer, and

a few in heart, lung, liver and other tissues [reviewed in Chau et al.,

2017 (46)]. PlGF is a multifunctional factor, participating in

promoting angiogenesis, chondrogenesis, wound healing and

tumor growth [reviewed in Dewerchin et al., 2012 (47)]. Two

subtypes of PlGF, PlGF1 and PlGF2, could specifically bind to

collagen type I by a 2.8 kDa collagen-binding domain with higher
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affinity than fibronectin, heparin and other ECM proteins (48).

PlGF-CBD is found to possess high isoelectric point (pI=12.0),

while polypeptides with same isoelectric point but disordered

sequence represent no collagen affinity, revealing that PlGF-CBD

binds to collagen through recognizing specific sequence but not

electrostatic binding (48).
3.4 Collagen-binding peptide

Natural collagen-binding domains could bind to multiple types

of collagens with high affinity. However, whole protein or large

domain may induce steric hindrance and lead to difficulties in

modifying cancer immunotherapy drugs. Thus, several small

collagen-binding peptides were designed according to the binding

site of collagen-binding proteins for better application with effective

collagen-binding ability.

Heptapeptide TKKTLRT is designed according to the antisense

sequence of collagenase cleavage site in mammal collagen type I a2-
chain, which is also the smallest CBD peptide (49). Heptapeptide

CBD is used inmodifying regenerative medicine or tissue engineering

drugs, such as bone morphogenetic protein-2 (BMP-2) (50) or brain-

derived neurotrophic factor (BDNF) (51–53) for treatment of spinal

cord injury, as well as platelet-derived growth factor (PDGF) for

promoting wound healing (54). Recently, heptapeptide CBD comes

to be used in researches such as modifying exosome for promoting

neurogenesis in neurodegenerative disease (55) or anti-tumor

therapeutic antibodies and cytokines (44, 56, 57).

Different from heptapeptide CBD, collagen mimetic peptide

(CMP) is designed imitating the triple helix in collagen, which could
FIGURE 1

Tumor-targeting ability and prolonged retention of CBD-modified antibody. Once therapeutic antibodies enter tumor tissues due to the fragmentary
tumor blood vessels, they would bind specific targets on tumor cells, while CBD-modified antibodies would also bind to tumor collagen with their
collagen-binding domains. Benefited from the collagen affinity, CBD-modified antibodies would retain in tumor for longer time while unmodified
ones are eliminated.
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bind collagen chains to form hybridized triple helix. CMP tends to

bind the unfolded chain in denatured proteins, thus is considered to

be a potential material in diseases with collagen degeneration or

degradation such as atherosclerosis, osteoarthritis and fibrosis (58).

In some researches, CMP is also used as hydrogel or polymeric

conjugate biomaterial for supporting organs and healing wounds

[reviewed in Strauss et al., 2017 and Chattopadhyay et al., 2014

(59, 60)].
4 Collagen-binding proteins

Apart from collagen-binding domains, some small proteins with

collagen affinity are also used in collagen affinity modification, such as

lumican, bacterial surface proteins and avimer.
4.1 Lumican

Lumican is a kind of small leucine-rich proteoglycans (SLRPs)

which exists in the ECM of cornea, gristle and skin (61). Lumican

regulates generation of collagenous fiber, formation of cuticle and

transparency of cornea, as well as epithelial-mesenchymal transition

(EMT), cell adhesion and migration in tumor progression [reviewed

in Giatagana et al., 2021 (62)]. The protein fraction of lumican

weights 38 kDa, consisting of four domains, with its collagen-

binding site in the domain at C-terminal (63). Lumican binds to

collagenous fiber to support the structure of collagen and help with

wound healing in tissues like cornea [reviewed in Karamanou et al.,

2018 (64)]. Recently, lumican was reported to be fused to

therapeutic cytokines for cancer immunotherapy, which

prolonged the retention of drugs in tumor and reduced side

effects (65).
4.2 Bacterial surface proteins

Bacterial surface proteins mediate adhesion and invasion of

bacterial and the formation of biofilm, helping bacterial to escape

from host immune system (66). Several bacterial surface proteins

such as lipoprotein SLR, M and M-like proteins possess collagen

affinity for infection at collagen-exposed wounds (reviewed in

Avilés-Reyes et al., 2017 (67)). Bacterial collagen-binding proteins

could specifically bind different types of collagens, representing

important values in drug design studies (67).
4.3 Avimer

Avimer comes from the A domain of human cell membrane

proteins which mediates interaction between proteins. There are

more than 200 kinds of avimers, most of which consist of 35 amino

acids and weight about 4 kDa [reviewed in Weidle et al., 2013 (68)].

In a recent study, avimers with high collagen affinity were selected

through phage display technology and fused it to IL-1 for treatment

of joint diseases (69).
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5 Cancer immunotherapy targeting
tumor collagen
Collagen-targeting drugs are mostly based on two strategies: one

is linking collagen-binding domains or collagen-binding proteins to

drugs at active chemical groups to produce collagen-binding

conjugates, the other is designing therapeutic fusion proteins which

contain CBD or CBP (44) (Figure 2). Collagen-binding drugs used to

be studied for diseases at collagen-rich tissues or wounds (26, 60, 69,

70). Recently, more and more researches on CBD or CBP-modified

cancer immunotherapeutic drugs raised (56, 57, 65).

A variety of immunotherapy drugs have been modified with

CBD or CBP, including therapeutic antibodies such as anti-EGFR

antibody (56, 57), anti-PDL1 antibody and anti-CTLA4 antibody

(44), and cytokines such as IL-2 (44) and IL-12 (65, 71). Hui Liang

and colleagues successively reported collagen-binding EGFR single-

chain Fv (scFv) antibody (56) and EGFR Fab antibody (57), which

fused antibody fragment to heptapeptide CBD TKKTLRT. In their

studies, both CBD-scFv and CBD-Fab retained EGFR affinity and

anti-tumor activity, while CBD contributed to an development of

collagen affinity, which led to quicker accumulation, longer

retention and controlled release of drugs in tumor, representing

enhanced anti-tumor efficacy on nude mice A431 xenograft model

(56, 57). In 2019, Jun Ishihara and colleagues also applied

heptapeptide CBD on modification of CTLA4 and PDL1

antibodies (44). Apart from advantages such as collagen affinity,

enhanced accumulation and anti-tumor efficacy that similar to

previous studies, they reported reduced treatment-related toxicity

of CBD modification, including water content in liver, increase of

alanine aminotransferase (ALT) and aspartate aminotransferase

(AST) activity and other organs damage markers in C57BL/6

B16F10 allograft mouse model (44), supporting CBD to be an

potential solution for adverse effects induced by therapeutic

antibodies. Previously, our group reported a CBD-SIRPaFc
conjugate as a novel tumor-targeting CD47 inhibitor (72). We

conjugated collagen-binding domain TKKTLRT to SIRPaFc
fusion protein with a short chemical linker Sulfo-SMCC, which

could block immune checkpoint CD47 and promote anti-tumor

phagocytosis to suppress tumor growth. CBD-SIRPaFc derived

collagen affinity and showed faster accumulation and prolonged

retention in tumor than unmodified SIRPaFc, providing a possible
strategy to avoid off-target adverse reactions in anti-CD47 therapy.

Hence, CBD-SIRPaFc represented improved anti-tumor efficacy

with increased macrophage infiltration and activation compared to

unmodified SIRPaFc on nude mice A549 xenograft model.

Collagen-binding cytokines benefit more from CBD or CBP

because of their common peripheric side effects. IL-2 and IL-12

could activate T cells and NK cells, promote antigen presentation

and secretion of IFN-g (44, 73). However, due to the severe

immune-related adverse effects (irAEs) including pulmonary

edema, hematologic toxicity and death by systemic administration

(44, 74), as well as poor accumulation in tumor (75), therapeutic

cytokines are limited in application. Jun Ishihara and colleagues

reported a fusion protein of IL-2 and vWF A3-CBD, which reduced

splenomegaly and pulmonary edema induced by IL-2-related
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vascular leakage and improved its anti-tumor efficacy in C57BL/6

B16F10 allograft mouse model (44). Besides, Noor Momin and

colleagues reported two fusion proteins of collagen-binding protein

lumican with IL-2 and IL-12, which represented impressive anti-

tumor efficacy when administrated individually or jointly in

multiple mouse models (65). Lumican-IL-2 and lumican-IL-12

also enhanced combined therapies such as therapeutic antibodies,

cancer vaccines and CAR-T therapy without systemic toxicity (65).

In 2020, Aslan Mansurov reported a vWF A3 CBD-IL-12 fusion

protein, which was also improved with better anti-tumor effect and

fewer toxicities in C57BL/6 B16F10 and EMT6 allograft mouse

models (71). A lot of CBD or CBP-modified antibodies and

cytokines had been proved their advantages in multiple tumor

models with vastly different collagen density from <3% in B16F10

to 20% in 4T1 (Table 1) (65), supporting collagen-binding domain/

protein to be a hopeful tumor-targeting strategy for improving

therapeutic effect of therapeutic cytokines and reducing their

common adverse effects (73).
6 Discussion

The growth of tumor relies on sufficient oxygen and nutrition.

Thus, tumor accelerates angiogenesis and forms lots of blood

vessels. However, the forced blood vessels are abnormal and

highly permeable, exposing tumor collagen to drugs in circulation

as a tumor-specific target. Due to the wide distribution of collagen,

numerous proteins have been found to possess collagen affinity,

which could be used to confer drugs with collagen-binding ability.
Frontiers in Oncology 05
Collagen-binding cancer immunotherapy drugs have been proved

to derive tumor-targeting ability, representing enhanced

accumulation and prolonged retention in tumor, as well as

improved anti-tumor efficacy. Lots of immunotherapy drugs have

also benefited from tumor collagen-targeting strategy with less

accumulation in normal tissues and fewer peripheric adverse

effects, thus could be better applied.

As an important component in tumor extracellular matrix,

collagen tends to be overexpressed in most solid tumors (76),

with stable content and structure among different tumor types.

Though collagen is also abundant in normal tissues, the intact blood

vessel walls would prevent collagen-binding macromolecules from

leaking (77). CBD or CBP modified drugs tend to enter tumor

through the fragmentary tumor blood vessels and bind tumor

collagen, but not normal tissues, which has been repeatedly

verified on mouse models in multiple researches (44, 57, 65),

ensuring the safety and specificity of targeting tumor collagen.

Studies on the differences between collagen in tumor and normal

tissues would also contribute to the development of targeting tumor

collagen, such as the overexpression (76, 78) and enhanced

linearization (19) of tumor collagen. A recent study also proposed

different trimer of collagen a-chains in pancreatic cancer and

normal tissues (79). Such differences are being gradually

discovered, which would help us distinguish tumor collagen and

design tumor-specific collagen binding domains as a developed

method of targeting tumor collagen in the future.

Meanwhile, collagen-binding modification is not restricted to

specific drugs. Through fusion expression, various kinds of

immunotherapeutic drugs could be included in targeting tumor
A

B

FIGURE 2

Two strategies of designing collagen-binding drugs. Strategy (A) Collagen-binding domain/protein with active group (e.g. sulfydryl) could be bound
to active group on antibodies or cytokines (e.g. amino) by specific linker (e.g. SMCC) through simple coupling reaction to synthesize CBD conjugate.
Strategy (B) Sequences of antibodies/cytokines, linker and collagen-binding domain/protein could be recombined and expressed through eukaryotic
expression system to produce CBD fusion protein.
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collagen. Thus, targeting tumor collagen could be applied on not only

broad spectrum of tumors but also diverse immunotherapy drugs.

Though it is a hopeful strategy, most applications of targeting

tumor collagen still stay at preclinical phase, which is main
Frontiers in Oncology 06
limitation in this field. We are paying attention and looking

forward to the outcomes of targeting tumor collagen in clinical

trials, and we hope it will provide us more choices and possibilities

for cancer immunotherapy.
TABLE 1 Summary of applications targeting tumor collagen.

Modified Drug
CBD or

CBP used
Modification

Method
Tested Model Advantages

Reference
Number

Anti-EGFR scFv
Heptapeptide
TKKTLRT

Fusion Protein
Nude Mice A431 Xenograft

Model

Collagen Affinity;
Prolonged Retention;
Controlled Release;

Enhanced Anti-Tumor
Efficacy

(56)

Anti-EGFR Fab
Heptapeptide
TKKTLRT

Fusion Protein
Nude Mice A431 Xenograft

Model

Collagen Affinity;
Prolonged Retention;
Controlled Release;

Enhanced Anti-Tumor
Efficacy

(57)

Anti-CTLA4 Antibody + Anti-PDL1
Antibody (Combination therapy)

vWF A3
Domain

Conjugate
C57BL/6 B16F10 Allograft

Model

Collagen Affinity;
Quicker Accumulation;
Prolonged Retention;
Enhanced Anti-Tumor

Efficacy;
Reduced Toxicity

(44)

SIRPaFc Fusion Protein
Heptapeptide
TKKTLRT

Conjugate
Nude Mice A549 Xenograft

Model

Collagen Affinity;
Quicker Accumulation;
Prolonged Retention;
Enhanced Anti-Tumor

Efficacy;
Promoted Anti-Tumor
Immune Response

(72)

IL-2
vWF A3
Domain

Fusion Protein
C57BL/6 B16F10 Allograft

Model

Collagen Affinity;
Quicker Accumulation;
Prolonged Retention;
Enhanced Anti-Tumor

Efficacy;
Reduced Toxicity

(44)

IL-2 Lumican Fusion Protein
C57BL/6 B16F10, EMT6 and

MC38 Allograft Model

Collagen Affinity;
Quicker Accumulation;
Prolonged Retention;
Enhanced Anti-Tumor

Efficacy;
Reduced Toxicity;

Potentiation of Other
Therapies

(65)

IL-12 Lumican Fusion Protein
C57BL/6 B16F10, EMT6 and

MC38 Allograft Model;
Balb/C 4T1 Allograft Model

Collagen Affinity;
Quicker Accumulation;
Prolonged Retention;
Enhanced Anti-Tumor

Efficacy;
Reduced Toxicity;

Potentiation of Other
Therapies

(65)

IL-12
vWF A3
Domain

vWF A3 Domain
C57BL/6 B16F10 and EMT6

Allograft Model

Collagen Affinity;
Quicker Accumulation;
Prolonged Retention;
Enhanced Anti-Tumor

Efficacy;
Reduced Toxicity;

Potentiation of Other
Therapies

(71)
Applications of targeting tumor collagen mentioned above are summaried with their prototype drugs, CBD or CBP used for modification, modification method, tested models and advantages.
Corresponding reference numbers are also labeled.
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