
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Mingzhou Guo,
People’s Liberation Army General Hospital,
China

REVIEWED BY

Li Zhang,
University of Minnesota Twin Cities,
United States
Abbas Yadegar,
Shahid Beheshti University of Medical
Sciences, Iran

*CORRESPONDENCE

Junnan Xu

xjn002@126.com

RECEIVED 18 May 2023

ACCEPTED 28 August 2023
PUBLISHED 29 September 2023

CITATION

Wang Y, Han W, Wang N, Han M, Ban M,
Dai J, Dong Y, Sun T and Xu J (2023) The
role of microbiota in the development and
treatment of gastric cancer.
Front. Oncol. 13:1224669.
doi: 10.3389/fonc.2023.1224669

COPYRIGHT

© 2023 Wang, Han, Wang, Han, Ban, Dai,
Dong, Sun and Xu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 29 September 2023

DOI 10.3389/fonc.2023.1224669
The role of microbiota in the
development and treatment
of gastric cancer

Yiwen Wang1,2, Wenjie Han1,2, Na Wang1,2, Mengzhen Han1,2,
Meng Ban3, Jianying Dai4, Yuesheng Dong4, Tao Sun1,5

and Junnan Xu1,2,5*

1Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer
Hospital, Shenyang, China, 2Department of Pharmacology, Cancer Hospital of China Medical
University, Liaoning Cancer Hospital, Shenyang, China, 3Department of Bioinformatics, Kanghui
Biotechnology Co., Ltd., Shenyang, China, 4School of Bioengineering, Dalian University of
Technology, Dalian, Liaoning, China, 5Department of Oncology Medicine, Key Laboratory of Liaoning
Breast Cancer Research, Shenyang, Liaoning, China
The stomach was once considered a sterile organ until the discovery of

Helicobacter pylori (HP). With the application of high-throughput sequencing

technology and macrogenomics, researchers have identified fungi and fivemajor

bacterial phyla within the stomachs of healthy individuals. These microbial

communities exert regulatory influence over various physiological functions,

including energy metabolism and immune responses. HP is a well-recognized

risk factor for gastric cancer, significantly altering the stomach’s native

microecology. Currently, numerous studies are centered on the mechanisms by

which HP contributes to gastric cancer development, primarily involving the CagA

oncoprotein. However, aside from exogenous infections such as HP and EBV,

certain endogenous dysbiosis can also lead to gastric cancer through multiple

mechanisms. Additionally, gut microbiota and its metabolites significantly impact

the development of gastric cancer. The role of microbial therapies, including diet,

phages, probiotics and fecal microbiota transplantation, in treating gastric cancer

should not be underestimated. This review aims to study themechanisms involved

in the roles of exogenous pathogen infection and endogenous microbiota

dysbiosis in the development of gastric cancer. Also, we describe the application

of microbiota therapy in the treatment and prognosis of gastric cancer.

KEYWORDS

gastric cancer, microbiota, Helicobacter pylori (HP), Epstein-Barr virus
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Introduction

Gastric cancer is the fifth most common cancer and the third leading cause of cancer-

related deaths worldwide (1). Gastric cancer rarely detects in its early stage, and the lack of

effective biomarkers can accurately diagnose early gastric cancer and monitor prognosis

during the adjuvant stage, which results in higher mortality rates, with only one in five

patients surviving more than five years after being diagnosed with gastric cancer (2).

Consequently, the development of more accurate and accessible biomarkers is necessary to

aid in the early-stage diagnosis of gastric cancer and to monitor relapse.
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The microbiota in the human body comprises viruses, fungi and

bacteria. High-fat diets, antibiotics, exogenous microbial infections and

host genetics can lead to dysbiosis (3–5). The definition of dysbiosis is a

change in the composition and function of the microbiota (5). A

healthy and stable microbiota inhibits cancer development, whereas a

dysbiotic microbiota has a limited protective effect on the host and

promotes cancer development. Gastric cancer is the result of the

interaction between the dysbiosis of the gastric microbiota and the

host gastric epithelial cells (6). Moreover, as gastric cancer progresses,

damage to the gastric mucosal barrier and persistent chronic

inflammation will further promote dysbiosis (7).

Helicobacter pylori (HP) infection is one of the riskiest factors

for gastric cancer (8). The majority of intestinal-type gastric cancers

are associated with HP. HP infection accelerates the progression

from atrophic gastritis (AG) to intestinal metaplasia (IM) and

eventually to gastric cancer. Furthermore, individuals with HP

infection have a 3-6 fold higher risk of developing gastric cancer

than those without HP infection (2, 9). In recent years, viruses such

as Epstein-Barr virus (EBV), Hepatitis B virus (HBV), and John

Cunningham virus (JCV) have also attracted attention for their role

in gastric cancer carcinogenesis. In addition to exogenous pathogen

infections, some dysbiotic endogenous microbiota such as

Lactobacillus, F. nucleatum, and Candida albicans can also be

involved in developing gastric cancer through various

mechanisms. Metabolites from the gut microbiota influence

gastric cancer progression and improve anticancer therapy for

gastric cancer patients. Microbiota therapy will be an essential

target for future cancer treatment. In this review, the direct and

indirect mechanisms by which exogenous infections and

endogenous dysbiosis contribute to gastric cancer development

are examined first. Next, the effects of oral and gut microbiota on

gastric cancer are explored. Finally, the application of microbiota

therapy in treating gastric cancer, including diet, bacteriophages,

probiotics, and fecal microbiota transplantation (FMT), is

discussed. Our goal is to investigate the impact of microbiota on

gastric cancer, which could provide new insights for early screening

and subsequent treatment of gastric cancer.
Abbreviations: HP, Helicobacter pylori; EBV, Epstein-Barr virus; HBV, Hepatitis

B virus; JCV, John Cunningham virus; AG, atrophic gastritis; IM, intestinal

metaplasia; FMT, fecal microbiota transplantation; CG, chronic gastritis; TSG,

tumor suppressor genes; CagA, cytotoxin-associated gene A; VacA, vesicular

cytotoxin A; T4SS, type 4 secretion system; CagPAI, Cag pathogenicity island;

EMT, epithelial-mesenchymal transition; MDSCs, myeloid-derived suppressor

cells; Treg cells, regulatory T cells; ICIs, immune checkpoint inhibitors; DNMTs,

DNA Methyltransferases; LMP1, Latent Membrane Protein 1 (LMP1); LMP2A,

Latent Membrane Protein 2A; HBx, hepatitis B virus X protein; F. nucleatum,

Fusobacterium nucleatum; TIGIT, T cell immunoreceptors with IG and ITIM

domains; PGE2, prostaglandin E2; PKM2, pyruvate kinase M2; mAb, monoclonal

antibody; B. fragilis, Bacteroides fragilis; A. muciniphila, Akkermansia

muciniphila; NAP, Neutrophil-Activating Protein; HtrA, High Temperature

Requirement A; gGT, g-Glutamyl Transpeptidase; BabA, Blood Group

Antigen-Binding Adhesin; SabA, Sialic Acid-Binding Adhesin; OipA, Outer

Inflammatory Protein; Hop, Helicobacter pylori Outer Membrane Protein;

ROS, Reactive Oxygen Species; DC, Dendritic cell, WHO, World

Health Organization.
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Gastric microbiota

Composition of the gastric microbiota in
healthy individuals

Due to its high acidity, the stomach was once regarded as a

sterile organ and unsuitable for microbial colonization. However,

the discovery of HP led to the realization that some microbes could

indeed colonize the stomach (2). Advancements in high-throughput

sequencing technologies in microbiology have facilitated the

discovery of an increasing number of exogenous and endogenous

microbiota. The normal human stomach harbors a diverse

microbiota, with over 130 lineages representing 7 to 13 bacterial

phyla, of which 5 are the most dominant, including Proteobacteria,

Firmicutes, Bacteroidetes, Actinobacteria, and Fusobacteria (10,

11). Fungi, a common yet easily overlooked component of gastric

microbiota, have also been identified. Investigations of the gastric

environment in healthy individuals, patients with chronic gastritis

(CG), and gastric ulcers have detected hundreds of fungal strains in

the stomach. Fungi may possess an effective acid tolerance

mechanism, enabling them to proliferate more efficiently in a

gastric environment with a pH of only 1.4 compared to bacteria.

Researchers have detected fungal species, such as Candida tropicales

and Candida lusitanae, in addition to the most common Candida

albicans. Fungi usually colonize areas like the gastric mucosa and

stomach contents (12, 13).

Both bacteria and fungi in the human stomach play crucial roles

in various physiological activities, including energy metabolism,

nutrient absorption, immune response, and nervous system

regulation (14). However, some studies have observed differences

in the flora of the gastric mucosa and gastric juice (8, 10, 11, 15, 16).

Due to swallowing in the oral cavity and reflux in the duodenum,

the gastric juice may contain more bacteria than the gastric mucosa

(17). Although most current gastric flora studies have sampled the

gastric mucosa, bacteria in the gastric juice should not be

overlooked. These bacteria can contribute to the proper

functioning of the gastrointestinal system but may also cause

some adverse reactions.
Composition of the gastric microbiota in
gastric cancer patients

The results are diverse for changes in the diversity and

abundance of microbiota in gastric cancer. Some studies showed

that the abundance and diversity of the gastric microbiota did not

change gradually with the development of gastric cancer (18, 19).

Other studies have taken the opposite view, suggesting that the

abundance and diversity of the microbiota decrease as gastric

cancer progresses, which is what most studies have concluded

(20–22). Another study has shown a significant increase in the

abundance and diversity of the microbiota in cancerous tissues

compared to paracancerous tissues. They also found that oral

bacteria (such as Peptostreptococcus, Streptococcus , and

Fusobacterium) dominated the cancerous tissues, and lactic acid-
frontiersin.org
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producing bacteria (such as Lactococcus lactis and Lactobacillus

brevis) were enriched in the paracancerous tissues (23). However,

Liu et al. found that Prevotella melanogenic, Streptococcus anginosus

and Propionibacterium acnes were enriched in cancerous tissues

compared to normal and paracancerous tissues. In contrast, the

abundance of HP, Prevotella copri and Bacteroides uniformis was

significantly reduced in cancerous tissues (24).

Many current studies exist on the microbiota of gastric cancer

patients and controls. However, their results varied widely, and

some were even contradictory, possibly due to different sample

types, study populations, sequencing technologies and analysis

methods (Table 1). However, it is undeniable that there is a

significant difference in the microbial composition of gastric
Frontiers in Oncology 03
cancer patients compared to controls. In general, the microbiota

of gastric cancer patients shows a decreased abundance of HP, a

significant enrichment of the oral bacteria, and reduced diversity

and abundance of the microbiota.
Effect of HP-positive and HP-negative
gastric cancer on the gastric microbiota

HP is a gram-negative bacterium that parasitizes the human

stomach. The colonization ofHP can lead to dysbiosis. The diversity

and abundance of the gastric microbiota decrease after infection

with HP (27). HP-positive gastric cancers demonstrate an
TABLE 1 Studies on the difference in gastric microbiota composition between patients with gastric cancer and controls.

Authors/
Year

Country Sample
type

Study group Richness/Diversity Main differences in microbiota

Peng, 2023
(22)

China Gastric
juice

22 HC (Gastritis), 22
GPL (AG, IM, and
adenomatous polyp), and
16 GC

The richness and diversity of gastric
microbiota decreased gradually from
HC, GPL to GC.

• Phylum level:
From HC, GPL to GC: Proteobacteria and
Spirochaetota↓, Firmicutes↑
• Genus level:
Vulcaniibacterium and Sphingomonas were common
in HC.
From HC, GPL to GC: Treponema, Campylobacter,
and Neisseria↓, Lactobacillus and Streptococcus↑

He, 2022
(17)

China Gastric
mucosal
biopsy and
gastric
juice

61 SG, 55 IM, and 64
GC

The diversity of GM was significantly
lower than that of GF. As the disease
progressed, the differences between
GM and GF in GC were significantly
reduced compared with SG and IM.

• Enriched phyla:
GF: Bacteroidetes, Fusobacteria and Proteobacteria
GM: Firmicutes
• Enriched genera:
GM: HP, Lactobacillus, Lactococcus, and Bacillus
GF: Neisseria, Haemophilus, Streptococcus, and
Gemella
• Compared to SG and IM, Lactobacillus was
significantly increased in GC.

Sun, 2022
(21)

China Gastric
mucosal
biopsy and
gastric
juice

56 SG, 9 AG, 27 IM, 29
Dys, and 13 GC (All
patients were HP-)

The richness and diversity of gastric
microbiota decreased gradually from
SG, AG, IM, Dys to GC.

• Phylum level:
The abundance of Firmicutes: GC > IM and Dys
The abundance of Bacteroidetes: Dys < SG
The abundance of Proteobacteria: IM and Dys >
other stages
• Genus Level:
The abundance of Streptococcaceae and
Lactobacillaceae: GC > SG
AG to Dys: Burkholderaceae↑, Streptococcaceae and
Prevotellaceae↓
The dominant genus of IM and Dys: Ralstonia and
Rhodococcus

Deng, 2021
(19)

China Gastric
mucosal
biopsy

25 SG (All patients were
HP-, antrum 10, corpus
7, and cardia 8) and 34
GC (9 HP+ and 25 HP-,
antrum 19 and corpus
15)

There was no significant difference in
the diversity and richness of gastric
microbiota between SG and GC.

• Enriched order:
Antrum:
HP- GC: Peudomonodales and Erysipelotrichales
HP+ GC: Neisseriales
SG: Actinomycetales, Enterobacteriales and
Pasteurellales
Corpus:
HP- GC: Peudomonodales
HP+ GC: Campylobacterales and Bacteroidales
SG: Enterobacteriales, Actinomycetales, and
Burkholderiales

Zhang, 2021
(18)

China Gastric
mucosal
biopsy

17 SG, 10 AG, 5 IN, and
15 GC

In different stages of GC, the richness
and diversity of gastric microbiota
did not change gradually, and the
richness of AG was the highest.

• Enriched genera:
SG to GC: Oral bacteria (Slackia, Selenomonas,
Bergeyella, and Capnocytophaga)
SG: Anaerobacillus, Bacillus, Massilia, and

(Continued)
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TABLE 1 Continued

Authors/
Year

Country Sample
type

Study group Richness/Diversity Main differences in microbiota

Rhodobacter
AG: Alloprevotella, Pelomonas, Ralstonia,
Clocibacterium, and Deinococcus
IN: Intestinal commensal bacteria (Romboutsia,
Fusicatenibacter, Prevotellaceae-Ga6A1group, and
Intestinimonas)
GC: Oral bacteria (Parvimonas, Eikenella and
Prevotella-2)
Environmental bacteria (Kroppenstedtia,
Lentibacillus, and Oceanobacillus)

Wang, 2020
(20)

China Gastric
mucosal
biopsy

30 HC, 21 CG, 27 IM, 25
IN, and 29 GC

The richness and diversity of gastric
microbiota decreased gradually from
HC, CG, IM, IN to GC.

• Enriched phyla:
CG and IM: Acidobacteria, Gemmatimonadetes,
Proteobacteria, and Verrucomicrobia
IN and GC: Actinobacteria, Bacteriodes, Firmicutes,
Fusobacteria, SR1, and TM7
• Enriched genera:
HC: Acinetobacter and Pseudomonas
CG and IM: Halomonas, Shewanella, Aquincola and
Sphingomonas
IN: Granulicatella, Porphyromonas, unclassified
Gemellaceae, Rothia, and Fusobacterium
GC: HP and Lactobacillus
IN and GC: Streptococcus, Prevotella, and Veillonella

Chen, 2019
(23)

China Gastric
mucosal
biopsy

62 pairs of matched
cancer and para-
cancerous tissues

The richness and diversity of
microbiota in cancer tissues were
significantly increased compared with
that in para-cancerous tissues.

• Phylum level:
Para-cancerous tissues: Firmicutes, Bacteroidetes,
Actinobacteria, Acidobacteria and Fusobacteria↓,
Proteobacteria↑
• Genus level:
Cancer tissues: Oral bacteria (Peptostreptococcus,
Streptococcus, and Fusobacterium)↑
Para-cancerous tissues: Lactic acid-producing
bacteria (Lactococcus lactoactis and Lactobacillus
brevis)↑

Liu, 2019
(24)

China Gastric
mucosal
biopsy

276 GC (230 normal,
247 para-cancerous and
229 cancer tissues)

The richness and diversity of the
microbiota showed a clear downward
trend from normal to para-cancerous
to cancer tissues.

•Enriched genera:
Para-cancerous and cancer tissues: B. fragilis and A.
muciniphila
Para-cancerous tissues: HP, Halomonas and
Shewanella
Cancer tissues: S. anginosus, Prevotella
melaninogenica, Streptococcus anginosus,
Selenomonas, Fusobacterium, Propionibacterium,
and Corynebacterium
• Reduced genera:
Cancer tissues: Prevotella copri and Bacteroides
Normal and para-cancerous tissues: S. anginosus

Coker, 2018
(25)

China Gastric
mucosal
biopsy

21 SG, 23 AG, 17 IM
and 20 GC (biopsies of
GC patients were from
cancer and para-
cancerous tissues)

Compared with other stages, the
richness and diversity of the
microbiota in GC decreased.

• The oral microbiota was significantly enriched in
GC. The most important are Peptostreptococcus
stomatis, Slackia exigua, Parvimonas micra,
Streptococcus anginosus, and Dialister pneumosintes,
which can be biomarkers to differentiate between
GC and SG.

Ferreira,
2018 (26)

Portugal Gastric
mucosal
biopsy

81 CG and 54 GC GC showed reduced microbiota
diversity.

• Phylum level:
GC: Proteobacteria, Firmicutes and Actinobacteria↑
• Genus level:
CG: HP, Neisseria, Prevotella and Streptococcus↑
GC: HP↓, Achromobacter, Citrobacter,
Phyllobacterium, Clostridium, Rhodococcus, and
Lactobacillus↑
F
rontiers in Onc
ology
 04
SG, Superficial Gastritis; AG, Atrophic Gastritis; IM, Intestinal Metaplasia; GC, Gastric Cancer; CG, Chronic Gastritis; HP, Helicobacter pylori; B. fragilis, Bacteroides fragilis; A. muciniphila,
Akkermansia muciniphila; HC, Healthy Controls, IN, Intraepithelial Neoplasia; HP+, Helicobacter pylori positive; HP-, Helicobacter pylori negative; Dys, Dysplasia; GPL, Gastric Precancerous
Lesions; GM, Gastric mucosa; GF, Gastric fluid; ↑, increased; ↓, decreased.
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abundance of Lactobacillus, Achromobacter, Citrobacter,

Clostridium, and Rhodococcus but lack HP and Neisseria

compared to other gastric diseases (26). A recent meta-analysis

suggests that eradicating HP can restore the diversity of the gastric

microbiota and reduce the risk of gastric cancer (28). However,

some studies contradict this result by suggesting that eradicatingHP

does not entirely prevent the development of gastric cancer, which

indicates that other microorganisms in the stomach besides HP are

also associated with gastric cancer carcinogenesis (29).

Lertpiriyapong et al. demonstrated this hypothesis with INS-GAS

mice. They found that HP mice colonized by complex or restricted

microbiota were more susceptible to HP-induced gastric cancer

than germ-free mice (30). This result suggests that after HP

infection of the gastric epithelium causes dysbiosis, HP acts

synergistically with the dysbiotic microbiota to promote

gastric carcinogenesis.

Although HP is recognized as a type 1 carcinogen by the

World Health Organization (WHO), not all gastric cancers are

caused by HP infection. HP-negative gastric cancers also account

for a percentage ranging from 0.7% to 47.8% of gastric cancer

patients (31). The role of microbiota in the development of HP-
Frontiers in Oncology 05
negative gastric cancer has attracted increasing attention. In HP-

negative gastric cancer, Kim et al. found there was a significant

increase in the abundance and diversity of Lactobacillaceae,

Streptococcaceae, and Prevotellaceae and a decrease in the

numbers of Burkholderiaceae, Haemophilus, and Campylobacter

(32) (Figure 1). These findings are inconsistent in related studies,

but the increased abundance of Lactobacillaceae was detected in

almost all patients with gastric cancer. Lactobacillaceae is a

nitrosating bacterium, and Haemophilus is a nitrate-reducing

bacterium. An increase in the abundance of Lactobacillaceae and

a decrease in the abundance of Haemophilus can increase the

formation of N-nitroso compounds, which can cause persistent

inflammation and promote the development of gastric cancer

(32). Ding et al. also concluded that HP-negative gastric cancer

occurs due to disruption of the normal microbiota, with elevated

levels of some bacteria with pro-cancer activity and decreased

levels of cancer-suppressing bacteria (33). In other words, it is not

a certain kind of bacteria that causes gastric cancer alone. Instead,

the microbiota in the stomach undergoes dysbiosis, and the

various dysbiotic microbiota work together to participate in the

development of gastric cancer.
FIGURE 1

Factors affecting gastric microecological dysbiosis and potential mechanisms underlying microecological dysbiosis causing gastric carcinogenesis. A
multitude of microorganisms resides in the stomach, creating normal gastric microecology. Normal microecology plays a vital role in various
physiological activities such as energy metabolism, nutrient absorption, immune response, and nervous system regulation. High-fat diet, antibiotics,
genetic variation, and exogenous infections can all dysregulate normal gastric microecology, turning the normal microenvironment into the tumor
microenvironment and eventually leading to gastric cancer development. Exploring the mechanism of gastric cancer progression from the
perspective of gastric microecology is essential for early diagnosis, treatment, and prognosis of gastric cancer. HP, Helicobacter pylori; EBV, Epstein-
Barr virus; HBV, Hepatitis B virus; JCV, John Cunningham virus, F. nucleatum, Fusobacterium nucleatum; Th, helper T cell; CTL, Cytotoxic T
lymphocyte. Created with BioRender.com. (accessed on 17 May 2023).
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Gastric carcinogenesis

Numerous studies have found a connection between the

development of gastric cancer and exogenous infections, such as

HP and EBV, as well as endogenous dysbiosis. A shared mechanism

among these factors is the induction of chronic inflammation,

which heightens the risk of cancer (34). Chronic inflammation is

vital in all three stages of gastric cancer development, from AG to

IM and finally to gastric cancer. Chronic inflammation leads to the

accumulation of mutations and the destabilization of the host

genome by accelerating DNA replication rates and diminishing

DNA damage repair capabilities. The result is pro-oncogenes’
Frontiers in Oncology 06
activation and tumor suppressor genes’ (TSG) inactivation,

ultimately leading to gastric cancer development (35).
Exogenous pathogens

HP and its potential mechanism in gastric
carcinogenesis

HP, a representative exogenous bacteria in the stomach’s

microecology, can be transmitted through saliva, vomit, and feces.

The carcinogenic mechanism of HP is closely linked to its virulence

factors, which include cytotoxin-associated gene A (CagA),
TABLE 2 Virulence factors closely associated with the carcinogenic mechanism of HP.

Virulence
factors

Mechanisms Functions

Pathogenic
factors

CagA (36, 37) • Transfection into cytoplasm by T4SS
• Phosphorylation of tyrosine

• Disrupts intercellular junctions
• Facilitates inflammation
• Causes cell proliferation
• Promotes EMT

VacA (38, 39) • Selective anion channel properties
• Targets different organelles

• Promotes HP colonization
• Induces apoptosis and necrosis
• Causes cell vacuolization
• Enhances autophagy

NAP (40–43) • Overactivation of ERK and p38-MAPK
pathways
• DNA-binding protein
• Structurally similar to bacterial ferritin

• Activates neutrophils, monocytes, and mast cells
• Produces ROS
• Promotes neutrophils’ adhesion to gastric epithelial cells
• Promote the release of IL-8, IL-6, TNF-a, MIP-1a, MIP-1b, and b-
hexosaminidase
• Damages the gastric mucosa
• Accelerates the process of chronic gastritis
• Protects HP DNA from oxidative damage
• Promotes the growth and colonization of HP

HtrA (44, 45) • Serine proteases
• Chaperones

• Cleaves E-cadherin
• Disrupts intercellular junctions
• Disrupt the epithelial barrier
• Enhances CagA translocation
• Removes the wrong protein

gGT (46–48) • Promotes biochemical reactions
• Glutamine hydrolysis

• Damages the gastric epithelium
• Causes Glutathione consumption
• Produces ROS
• Causes cell cycle arrest
• Induces apoptosis and necrosis
• Induces immune tolerance
• Up-regulates IL-8, caspase-3, caspase-9, and COX-2
• Enhances VacA-Dependent Vacuolation

Adhesion
factors

BabA (49, 50) Binds to Leb receptors on gastric epithelial
cells

• Facilitates HP adhesion and colonization
• Enhances CagA translocation
• Activates inflammation

SabA (51) Binds to the sialyl-Lex antigens • Facilitates HP adhesion and colonization
• Promotes neutrophil activation and infiltration
• Induces oxidative damage
• Causes inflammation

OipA (52–54) Unknown • Facilitates HP adhesion
• Inhibits DC maturation
• Induces apoptosis
• Causes neutrophilic infiltration

(Continued)
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vesicular cytotoxin A (VacA), neutrophil-activating protein (NAP)

and outer membrane proteins (OMPs) (3) (Table 2). These factors

damage DNA in gastric epithelial cells and cause the destabilization

of the host genome.

CagA, an oncoprotein, interacts with various signaling

pathways upon entering the cytoplasm of gastric epithelial cells,

disrupts intercellular junctions, and activates pro-inflammatory

and oncogenic signaling pathways. This process leads to sustained

inflammatory responses and uncontrollable cell proliferation.

CagA can be transfected into the cytoplasm of gastric epithelial

cells via the type 4 secretion system (T4SS) encoded by the Cag

pathogenicity island (CagPAI) (2). CagA can regulate

signal transduction through both phosphorylated and non-

phosphorylated pathways. Phosphorylated CagA can directly

bind or recruit the phosphatase SHP2 to activate the MAPK/

ERK pathway. SHP2 is a key protein in CagA pathogenesis and

can regulate ERK signaling in a non-Ras-dependent manner (36).

Non-phosphorylated CagA, when combined with E-cadherin,

decreases E-cadherin expression and promotes epithelial-

mesenchymal transition (EMT), accelerating gastric cancer

progression (37).

VacA possesses selective anion channel properties that facilitate

the release of bicarbonate and organic anions into the cytoplasm,

contributing to HP colonization in gastric epithelial cells and

leading to apoptosis (36). Moreover, HP infection can induce

gastric carcinogenesis through hypermethylation silencing of

multiple TSGs, such as miR-124a-1, miR-124a-2, and miR-124a-3

(60). Abnormal alterations in the methylation levels of the CpG

island of TSG promoters following HP infection affect the

transcription of downstream genes, causing irreversible TSG

inactivation (61).

NAP is the main pro-inflammatory factor in HP infection. The

protein was initially named for its ability to activate neutrophils to

produce Reactive Oxygen Species (ROS) and promote neutrophils’

adhesion to gastric epithelial cells (62). In addition to neutrophils,

NAP activates monocytes and mast cells to release a variety of pro-

inflammatory chemokines such as IL-8, IL-6, TNF-a, MIP-1a,
Frontiers in Oncology 07
MIP-1b, and b-hexosaminidase (63). The release of these factors

causes damage to the gastric mucosa and accelerates the process of

chronic gastritis. In addition, NAP has been found to play an

essential role in bacterial protection. NAP is a DNA-binding protein

belonging to the Dps family and has structural similarity to bacterial

ferritin. Therefore, NAP can isolate free iron and bind DNA, which

can protect HP DNA from oxidative damage and promote the

growth and colonization of HP (40).

The most studied adhesins amongHP outer membrane proteins

are blood group antigen-binding adhesin (BabA) and sialic acid-

binding adhesion (SabA). They can bind to receptors on the surface

of gastric epithelial cells, and this binding contributes to HP

adhesion and colonization, increases HP pathogenicity, and

promotes persistent infection (64). BabA binds to Leb and

enhances CagA translocation by promoting T4SS activity. CagA

induces the production of massive pro-inflammatory factors,

leading to IM and precancerous lesions (49). SabA binds to the

sialyl-Lex antigen and promotes neutrophil activation and

infiltration, inducing oxidative damage and causing a persistent

inflammatory response (51). The expression of BabA and SabA is

closely associated with the development and prognosis of various

gastrointestinal diseases, such as chronic gastritis and gastric cancer

(50, 65). Therefore, they may be potential targets for preventing and

treating HP-related diseases.

Additionally, HP infection may significantly diminish the

effectiveness of immunotherapy for gastric cancer. Firstly, HP can

decrease the activity of CD4+ T cells, dendritic cells (DCs),

macrophages, and NKT cells, while also increasing the activity of

myeloid-derived suppressor cells (MDSCs) and regulatory T cells

(Treg cells) (66). Secondly, HP elevates the expression of PD-L1 in

gastric epithelial cells and induces CD4+T cell apoptosis (67)

(Figure 2). This finding implies that HP infection leads to non-

specific suppression of T cells and reduced immune checkpoint

inhibitors (ICIs) efficacy. Finally, Oster et al. discovered that HP

infection could reduce the effectiveness of anti-CTLA-4 and anti-

PD-L1 therapy, decrease the potency of cancer vaccines, and inhibit

in situ tumor immunotherapy (66, 68).
TABLE 2 Continued

Virulence
factors

Mechanisms Functions

• Mediates CagA translocation
• Increases IL-8 secretion
• Decreases IL-10 expression

HopQ (55–57) Binds to the CEACAM receptors • Facilitates HP adhesion
• Enhances CagA translocation
• Promotes the release of IL-8 and MIP-1a
• Inhibits immune cell activities
• Protects tumor cells

HopZ (58, 59) Unknown • Facilitates HP adhesion
• Causes infection
• Inhibits gastric acid secretion
CagA, Cytotoxin-Associated Gene A; VacA, Vesicular Cytotoxin A; NAP, Neutrophil-Activating Protein; HtrA, High Temperature Requirement A; gGT, g-Glutamyl Transpeptidase; BabA,
Blood Group Antigen-Binding Adhesin; SabA, Sialic Acid-Binding Adhesin; OipA, Outer Inflammatory Protein; Hop, Helicobacter pylori Outer Membrane Protein; T4SS, Type 4 Secretion
System; EMT, Epithelial-Mesenchymal Transition; HP, Helicobacter pylori; ROS, Reactive Oxygen Species; DC, Dendritic cell.
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EBV and its potential mechanism in
gastric carcinogenesis

EBV, first isolated from Burkitt’s lymphoma cell line in 1964,

was among the initial viruses identified to be linked to human

malignancy. EBV infection also elevates the risk of developing

gastric cancer by more than 18-fold, with EBV-associated gastric

cancer constituting approximately 10% of all gastric cancers

(69, 70).

Following EBV infection, viral genes such as EBERs, EBNA-1,

and BARTs are expressed and can interact with host proteins to

promote cell proliferation and inhibit apoptosis. The DNA damage

and cell proliferation resulting from this process contribute to

gastric cancer development. Additionally, EBV can disrupt the

host’s epigenetic machinery and induce malignant transformation

of the epigenome. EBV upregulates host DNA Methyltransferases

(DNMTs) through the expression of Latent Membrane Protein 1

(LMP1) and Latent Membrane Protein 2A (LMP2A) viral

oncoproteins (13, 71). Consequently, most EBV-associated gastric

cancers exhibit CpG island hypermethylation at TSGs, such as

PTEN, leading to the inactivation of TSGs and immune escape.

Plasma EBV DNA load is a valid marker for assessing the efficacy

and prognosis of EBV-associated gastric cancers (72). It has been
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discovered that EBV and HP may synergistically impact the

development of gastric cancer. HP-positive patients have a higher

EBV DNA load. EBV infection can enhance the oncogenic potential

of CagA. Gastric cancers co-infected with EBV and HP display

numerous methylated genes. EBV and HP can synergistically

promote chronic inflammation and increase tissue damage during

the early stages of the gastric carcinogenesis process (2, 73).

Immunotherapy is typically employed to treat patients with EBV-

associated gastric cancer because EBV subtypes are positively

associated with PD-L1 overexpression (35). Su et al. observed an

increased cellular immune response and cytotoxicity in EBV-

associated gastric cancer xenograft model mice through CRISPR/

Cas9 system-mediated disruption of PD-1 on T cells (74).

Several studies have suggested that other viruses, such as JCV

and HBV, may also play a crucial role in gastric cancer

development (75). The oncogenic effect of JCV is primarily

achieved through its encoded oncoprotein T-Ag. T-Ag can

interact with tumor suppressor proteins like p53 and pRB and

participate in gastric carcinogenesis through critical signaling

pathways, such as Wnt/b-Catenin (76). HBV infection results in

a 1.29-fold increased risk of gastric cancer, with the hepatitis B

virus X protein (HBx) potentially playing a vital role in this process
FIGURE 2

Pathogens and probiotics have effects on anti-tumor immunity. Pathogens correlated with gastric carcinogenesis comprise Helicobacter pylori, F.
nucleatum, and Candida albicans, all of which can suppress immune cell function, stimulate tumor cell proliferation and hinder apoptosis, thereby
fostering tumor advancement. Helicobacter pylori upregulate PD-L1 expression in gastric epithelial cells, consequently inducing T cell apoptosis.
Helicobacter pylori additionally activate MDSCs, reducing DCs and macrophage function while enhancing Treg cell activity. The F. nucleatum
virulence factor Fap2 obstructs tumor elimination by immune cells via binding and interacting with TIGIT on NK cells or lymphocytes. Candida
albicans infection leads to heightened expression of the inflammatory factor PGE2. PGE2 diminishes cytokine levels such as IL-1, IL-12, and TNF-a,
which restrain DC and NK cell activity and function, obstruct CTL activation, and promote Treg cell maturation, ultimately suppressing tumor
immunity. Furthermore, PGE2 facilitates MDSC migration to TME, thus promoting tumor immune escape. Probiotics like Bifidobacterium and B.
fragilis elicit robust immune responses, enhance anti-tumor immunity, and impede tumor progression. Bifidobacterium directly stimulates DC
maturation and fosters immune response production by T cells. B. fragilis induces macrophage polarization toward the M1 phenotype and enhances
macrophage phagocytic capacity. In summary, microbial pathogens associated with gastric carcinogenesis suppress anti-tumor immunity. However,
probiotics can potentially enhance anti-tumor immunity, which has significant implications for the treatment and prognosis of gastric cancer. F.
nucleatum, Fusobacterium nucleatum; B. fragilis, Bacteroides fragilis; MDSCs, myeloid-derived suppressor cells; Treg cells, regulatory T cells; TIGIT,
T cell immunoreceptors with IG and ITIM domains; DC, Dendritic cell; TME, Tumor microenvironment. Created with BioRender.com. (accessed on
17 May 2023).
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(77). Cui et al. discovered that HBV could induce gastric epithelial

cell carcinogenesis through HBx (78). Moreover, chronic

inflammation caused by HBV infection heightens the risk of

gastric carcinogenesis (79).
Endogenous dysbiosis

Lactobacillus and its potential mechanism in
gastric carcinogenesis

Although Lactobacillus is widely regarded as a probiotic in the

intestine, it is often abundantly enriched in gastric cancer,

particularly in advanced gastric cancer (32, 80). Several factors

contribute to Lactobacillus causing gastric cancer. First, lactate,

produced by Lactobacillus, plays a massive role in the Warburg

effect of tumors (81). Second, Lactobacillus can upregulate pro-

inflammatory genes, such as Ptger4 and Tgf-b, and oncogenic

genes, such as Nos2, Tnf-a, Cxcl1 (Kc), and Ccl2 (Mcp-1) to

induce gastric carcinogenesis (30). Third, Lactobacillus can reduce

nitrate to nitrites and eventually form nitrosamines (82).

Furthermore, Lactobacillus is a potent ROS inducer, leading to

DNA damage (83). Lastly, Lactobacillus can convert human

fibroblasts into multipotent cells, directly promoting gastric

cancer development (84). These factors may jointly contribute to

gastric cancer development, but the exact mechanism requires

further investigation.

F. nucleatum and its potential mechanism in
gastric carcinogenesis

Fusobacterium nucleatum (F. nucleatum) is most widely known

for its carcinogenic effect on colorectal cancer. However, in recent

years, F. nucleatum has also been recognized as a significant cause of

gastric cancer development. F. nucleatum is more abundant in

gastric cancer than normal tissues, and F. nucleatum positivity is

associated with a worse prognosis and shorter overall survival in

patients with diffuse-type gastric cancer (85, 86). F. nucleatum binds

to E-cadherin in gastric epithelial cells via the characteristic

virulence factor FadA, increasing endothelial permeability,

promoting self-colonization, propagation, and immune escape

(87), and activating the Wnt/b-catenin signaling pathway to

enhance tumor cell proliferation (88). Familial adenomatous

polyposis 2 (Fap2) is another virulence factor of F. nucleatum.

Fap2, through binding and interaction with T cell immunoreceptors

with IG and ITIM domains (TIGIT), can inhibit the killing of NK

cells and lymphocytes to tumors, thereby protecting tumors and

promoting the formation of an inflammatory microenvironment

(89, 90). F. nucleatum also produces an induced inflammatory

response through NF-kB-mediated cytokines such as IL-6, IL-1b,
IL-17, IFN-g, and TNF-a (87, 91).

Candida albicans and its potential mechanism in
gastric carcinogenesis

Zhong et al. conducted ITS rDNA gene analysis on cancerous

and non-cancerous tissues from 45 gastric cancer patients and

discovered an imbalance of fungal communities in gastric cancer.

After statistical analysis, they determined that Candida albicans
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were abundantly enriched in gastric cancer. Ultimately, it was

demonstrated that Candida albicans could serve as a fungal

biomarker for diagnosing gastric cancer. Candida albicans may

promote gastric cancer development by reducing the diversity and

abundance of fungi in the stomach, such as Candida glabrata,

Aspergillus montevidensis, Saitozyma podzolica, and Penicillium

arenicola (92).

Candida albicans may possess multiple carcinogenic

mechanisms, including damage to mucosal epithelial cells,

induction of chronic inflammation, and production of

carcinogens leading to cancer.

Upon invasion of the mucosal epithelium, Candida albicans

cause apoptosis and necrosis, which disrupts the immune barrier of

the epithelium and leads to structural changes in the epithelium

(93). Long-term colonization and infestation of Candida albicans in

the mucosal epithelium can cause chronic inflammation. During

this process, the expression of the inflammatory factor

prostaglandin E2 (PGE2) increases. PGE2 downregulates

macrophage cytokines, inhibits DC and NK cell activity and

function, blocks cytotoxic T cell activation, and promotes

maturation and suppressive activity of Treg cells, thereby

suppressing tumor immunity. PGE2 aids in the migration of

MDSCs to the tumor microenvironment, proliferation of

malignant cells, and inhibition of apoptosis, directly promoting

tumor progression. PGE2 can also promote tumorigenesis through

ROS production, activation of oncogenic transcription factors, and

promotion of angiogenesis (94).

Candida albicans-produced nitrosamines and acetaldehyde can

contribute to cancer development to some extent. Acetaldehyde

impacts DNA replication and can cause point mutations of genes

and chromosomal abnormalities. Meanwhile, acetaldehyde

interferes with enzymes involved in cytosine methylation and

DNA damage repair, resulting in proto-oncogene activation and

cell cycle abnormalities, thereby promoting cancer development.

Additionally, acetaldehyde can cause mitochondrial damage and

induce apoptosis (93).

In conclusion, Candida albicans dysbiosis can increase the

likelihood of cancer occurrence and promote cancer progression.
Microbiota from other habitats and
gastric cancer

Oral microbiota and gastric cancer

The oral and gastric environments are linked through

swallowed saliva and ingested food. The oral microbiota is a

major source of gastric microbiota (95). Many studies have found

that dysbiosis of the oral microbiota is associated with gastric

carcinogenesis. Oral bacteria such as Parvimonas, Eikenella and

Prevotella-2 were significantly enriched in gastric cancer compared

to other precancerous stages (18). The abundance of oral bacteria

such as Peptostreptococcus, Streptococcus, and Fusobacterium was

higher in cancerous tissues than in paracancerous tissues (23).

Network analysis revealed that oral microorganisms such as
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Peptostreptococcus stomatitis, Slackia exigua, Parvimonas micra,

Streptococcus anginosus, and Dialister pneumosintes might play

critical roles in the development of gastric cancer (25). Under

normal conditions, most of the oral microbiota entering the

stomach is either destroyed by gastric acid or protected by the

mucus-bicarbonate barrier from invading the gastric epithelium.

However, certain disease states, such as gastric ulcers and gastric

cancer, can damage the gastric mucosa and neutralize gastric acid,

allowing oral bacteria to colonize the gastric mucosa from gastric

juices (17). Recently, some studies have also been on the interaction

between oral microbiota and HP. On the one hand, HP infection

can disrupt the homeostasis of the oral microbiota (96). On the

other hand, ectopic colonization on the gastric mucosa by the oral

microbiota may, in turn, be necessary for HP-induced ecological

dysbiosis (95).
Gut microbiota and gastric cancer

Since the pH in the intestine is more conducive to microbial

colonization, intestinal bacteria are nearly 107 times more abundant

than those in the stomach (16, 97). Approximately 99% of the 1014

microorganisms that comprise the human microbiome reside in the

intestine (98). Numerous studies have demonstrated that intestinal

flora can directly and indirectly affect the development, treatment,

and prognosis of gastric cancer.

In a study conducted in Shanxi province, researchers

investigated changes in the gut microbiota of 116 patients with

gastric cancer and 88 healthy controls. They observed an increase in

the abundance of intestinal flora, a decrease in butyrate-producing

bacteria, and a significant enrichment of Lactobacillus, Escherichia,

and Klebsiella in patients with gastric cancer (99). According to

Sarhadi et al., Enterobacteriaceae were abundant in stool samples

from patients with all types of gastric cancer (100).

Enterobacteriaceae may serve as a potential biomarker in the

diagnosis of gastric cancer.

Certain metabolites of intestinal bacteria, such as acetic acid and

butyrate, also influence the development of gastric cancer. Acetic

acid and butyrate are the major short-chain fatty acids, and

intest inal bacteria such as Eubacterium , Clostridium ,

Ruminococcus, and Coprococcus can produce butyrate (35).

Increasingly, research has found that butyrate plays a crucial role

in inhibiting gastric cancer development. First, butyrate inhibits the

Warburg effect of gastric cancer by binding pyruvate kinase M2

(PKM2), increasing the content of glucose intermediates in

mitochondria, preventing the conversion of tricarboxylic acid

cycle intermediates to ATP, and ultimately depriving tumor

growth of sufficient energy, thus inhibiting gastric cancer

development. Second, butyrate can directly interfere with the

mitochondria of gastric cancer cells, upregulate oxidative stress,

and significantly increase the level of ROS. Moreover, butyrate can

promote caspase 9 production and inhibit BCL-2 synthesis, leading

to the apoptosis of gastric cancer cells (101). Lastly, a recent study

discovered that butyrate could inhibit the growth, migration, and
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invasion of gastric cancer cells and aerobic glycolysis by blocking

the Wnt/b-catenin/c-Myc signaling pathway (102).
Microbiota modification and
immunotherapy for gastric cancer

Alterations in the microbiota may directly impact gastric cancer

immunotherapy (103, 104). Matson et al. discovered that higher

proportions of Bifidobacterium longum, Collinsella aerofaciens, and

Enterococcus faecium led to more effective anti-PD-L1 therapy (105).

A meta-analysis revealed that Bacteroides caccae was enriched in all

types of immune checkpoint inhibitor therapies. Faecalibacterium

prausnitzii, Bacteroides thetaiotamicron, and Holdemania filiformis

were enriched in responders to anti-CTLA-4 and anti-PD-1 ICIs

treatments (106). Based on these findings, researchers have proposed

microbiota modification as a means to enhance the efficacy of

immunotherapy for gastric cancer. Current approaches to

microbiota modification include the use of probiotics and FMT.
Probiotics

Probiotics, such as Bifidobacterium, Lactobacillus, and

Saccharomyces, are active microbes that benefit the host’s health

(107, 108). There is growing evidence that probiotics may inhibit

the growth of gastric cancer to some extent. Probiotics can

significantly reduce inflammatory responses, enhance the immune

system, promote tumor cell apoptosis, restore gut microbiota

homeostasis, and inhibit cancer signaling pathways (35, 109, 110).

Lactobacillus can inhibit the development of gastric cancer by

reducing the expression of NF-kB and the phosphorylation of the

PI3K/Akt/mTOR signaling pathway (111). Bifidobacterium can

directly induce DC maturation and cytokine (IFNg, TNFa, IL-10,
IL-17) production, thus promoting anti-tumor immunity and anti-

PD-L1 efficacy and almost inhibiting tumor progression after

combination therapy with PD-L1 monoclonal antibody (mAb)

(104). Bacteroides thetaotaomicron and Bacteroides fragilis (B.

fragilis) are also potential probiotics. Vétizou et al. found that the

antitumor and immunotherapeutic effects of CTLA-4 blockade

were associated with Bacteroides thetaotaomicron and B. fragilis.

Oral administration of Bacteroides thetaotaomicron or B. fragilis to

germ-free mice enhances the antitumor effects of CTLA-4 blockers

(112). B. fragilis also increase macrophage phagocytosis, prompting

them to polarize towards an M1 phenotype (113).

Probiotics have become a prominent research topic due to their

beneficial effects on gastric cancer. Immunotherapeutic probiotics

could be developed to improve the efficacy of immunotherapy

(114). However, contrary to the aforementioned findings, it is

relatively easy to identify inconsistencies. The role of Lactobacillus

in gastric cancer remains unclear. In addition to Lactobacillus, there

are inconsistent findings on the effects of other probiotics on gastric

cancer. Based on human microbiome studies and animal models,

researchers have cautioned against the direct use of Lactobacillus in

treating patients with gastric cancer (81).
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FMT

FMT is transplanting fecal material from a healthy donor into a

recipient’s intestine, ultimately altering the recipient’s intestinal

flora to match the donor’s microbial profile (115). Several

methods of fecal microbiota transplantation exist, including oral,

nasal, and rectal administration. Rectal administration is preferred,

as nasal administration may cause pulmonary or gastrointestinal

complications, and although oral administration is convenient,

careful avoidance of first-pass effects is necessary (116, 117).

Given FMT’s numerous benefits, there is growing interest in its

potential for enhancing cancer immunotherapy.

Routy et al. discovered that the aberrant composition of

intestinal flora results in primary resistance to immune

checkpoint inhibitors (ICIs) in patients with late-stage cancer and

that antibiotics interfere with the therapeutic efficacy of ICIs in

patients. Their findings revealed that the anti-tumor effects of PD-1

inhibitors are more effective in germ-free mice or those not treated

with antibiotics after FMT from cancer patients who respond to

ICIs. However, this was not the case in the FMT of patients who did

not respond to ICIs. They also analyzed the metagenomics of fecal

material from patients and found a correlation between the efficacy

of ICIs and the abundance of Akkermansia muciniphila (A.

muciniphila). After FMT, patients who did not respond were

given A. muciniphila can restore the efficacy of PD-1 inhibitors

(103). Fecal material from immunotherapy responders was

transplanted into germ-free mice, resulting in slower tumor

growth and increased immunotherapy efficacy (105). In summary,

FMT can enhance patient responses to immunotherapy.

Since FMT has a more substantial impact on intestinal flora

than gastric flora, most current research focuses on the effect of

FMT on intestinal diseases. However, researchers should also

consider FMT as a treatment for gastric cancer and precancerous

lesions in the stomach. As a safe and effective therapy, FMT may

treat gastric cancer in the future by interfering with the composition

of the intestinal flora. However, we need further studies to evaluate

FMT’s safety and reduce the risk of side effects.
Other interventions and therapeutic
strategies for gastric cancer treatment

In addition to the FMT and probiotics mentioned above, many

potential microbial interventions have been used to treat gastric

cancer, including diet, prebiotic, and bacteriophage-based strategies,

all pointing to the promising future of microbial therapies.
Bacteriophage-based strategies

Bacteriophages are viruses that selectively infect bacteria (118)

and are more than 100 times more abundant in the gut than in

bacteria and human cells (119). Given that most bacteriophages are
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homeostasis of normal flora (120), many studies have constructed

bacteriophage-based biotic–abiotic hybrid nanosystems to

accurately remove tumor microorganisms (121).

In order to precisely regulate intestinal flora to treat colorectal

cancer, Zheng et al. loaded irinotecan inside dextran nanoparticles

(122). And through bioorthogonal reaction, it was covalently linked

with azide-modified phages that could specifically lyse F.

nucleatum, which could not only effectively inhibit the

proliferation of F. nucleatum, but also reduce the toxic side effects

caused by the non-targeted re lease of convent ional

chemotherapeutic drugs. Moreover, phages can also remodel

TME. F. nucleatum selectively amplifies MDSCs, thereby blocking

the body’s anti-tumor immune response. Through phage display

technology, Dong et al. screened M13 phage that can specifically

bind F. nucleatum (123). They further assembled silver

nanoparticles on the surface capsid protein of the M13 phage

(M13@Ag). Subsequently, it was also demonstrated that M13@Ag

could specifically clear F. nucleatum and inhibit the proliferation of

MDSCs, reversing the immunosuppressive TME. In addition, the

M13 phage utilizes its coat protein to activate antigen-presenting

cells, which further activates the host immune response and inhibits

CRC. Animal experiments demonstrated that M13@Ag combined

with immune checkpoint inhibitors or chemotherapeutic agents

significantly prolonged the survival of CRC mice. A recent study on

phage strategies targeting HP may open new avenues for treating

HP-positive gastric cancer (124).
Diet and prebiotic strategies

Diet has an important influence on the composition of the gut

microbiota. Different dietary habits can lead to differences in the

composition of the gut microbiota (125). Compared to omnivores,

the intestinal flora of strict vegetarians was characterized by a higher

abundance of Bacteroidetes and a lower abundance of Firmicutes

(126). However, the opposite alteration of the intestine flora was

observed in people on chronic high-fat diets (127). Therefore, the

composition of the intestinal flora can be adjusted by dietary

interventions, thereby creating a more favourable microecological

environment for the host. Dietary interventions such as fasting and

calorie restriction have been used in clinical trials for various

cancers, and the results have shown that dietary interventions can

alter the systemic metabolism of cancer patients, improve anti-

tumor immunity (128), and inhibit tumor growth. For example, in

an ongoing clinical trial (NCT01642953), researchers restrict

patients’ diets after gastric cancer surgery to assess whether

fasting promotes recovery and reduces mortality and adverse

events (129). Dietary interventions can also inhibit inflammation,

improve anti-cancer immune surveillance (130) and prevent

chemotherapy-induced toxic side effects (131).

WHO defines the concept of prebiotics as “an inactive food

ingredient that promotes the health of the organism by modulating

the composition of the microbiota (107).” Common prebiotics are
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fructooligosaccharides (FOS), galactooligosaccharides (GOS) and

inulin (132). Prebiotics can help the body resist pathogenic

infections, maintain stable gastrointestinal function, promote the

production of short-chain fatty acids by beneficial bacteria, regulate

immunity and energy metabolism, and increase the absorption of

micronutrients, thus improving the efficacy of cancer treatment

(132–134). To demonstrate the role of prebiotics in cancer

treatment, many preclinical studies and clinical trials are

underway or have been completed. One clinical trial in the

United States (NCT04682665) is investigating eicosapentaenoic

acid’s role in treating liver metastases from colorectal cancer

(135). Furthermore, It has been shown that a high intake of

Ganoderma spp (136). Polysaccharides and raffinose (137)

potentially reduce the risk of gastric cancer, but more extensive

independent studies and clinical trials are needed to confirm this.
Conclusions and perspective

The microbiota has dual effects on gastric cancer. On the one

hand, pathogenic bacterial infections and dysbiosis can promote the

development of gastric cancer and is detrimental to the treatment

and prognosis of gastric cancer. On the other hand, microbial

therapies that optimize the microbiota through dietary changes,

the use of bacteriophages and probiotics, and even transplantation

of the fecal microbiota hold promise as potential treatments for

gastric cancer. Furthermore, specific microorganisms and

metabolites in gastric and intestinal flora could potentially serve

as markers for diagnosing and monitoring the prognosis of gastric

cancer, thereby improving early detection and treatment. Studying

the microbiota helps us further understand the mechanisms of

gastric cancer development and may provide new ideas for targeting

microbiota interventions to treat cancer. However, there are still

some problems in the current research on the microbiota of gastric

cancer. Firstly, the mechanism by which some microbes promote

gastric cancer has not been conclusively demonstrated and requires

further investigation. Second, due to the differences in sequencing

technology, analysis method or study population, the results

obtained by many studies are quite different, and the interference

of these factors should be excluded as far as possible. Third, there is

currently a lack of more definitive biomarkers for gastric cancer

other than prevention or eradication ofHP infection, which hinders

the early diagnosis of gastric cancer. In the future, more convenient

and efficient biomarkers should be explored in larger sample sizes.
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In conclusion, further exploration is needed to modify the

microbiota and ultimately improve the prognosis and

effectiveness of gastric cancer treatment.
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