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Purpose: We present the first study to investigate Large Language Models (LLMs) in

answering radiation oncology physics questions. Because popular exams like AP

Physics, LSAT, and GRE have large test-taker populations and ample test preparation

resources in circulation, they may not allow for accurately assessing the true

potential of LLMs. This paper proposes evaluating LLMs on a highly-specialized

topic, radiation oncology physics, which may be more pertinent to scientific and

medical communities in addition to being a valuable benchmark of LLMs.

Methods: We developed an exam consisting of 100 radiation oncology physics

questions based on our expertise. Four LLMs, ChatGPT (GPT-3.5), ChatGPT

(GPT-4), Bard (LaMDA), and BLOOMZ, were evaluated against medical

physicists and non-experts. The performance of ChatGPT (GPT-4) was further

explored by being asked to explain first, then answer. The deductive reasoning

capability of ChatGPT (GPT-4) was evaluated using a novel approach

(substituting the correct answer with “None of the above choices is the

correct answer.”). A majority vote analysis was used to approximate how well

each group could score when working together.

Results: ChatGPT GPT-4 outperformed all other LLMs andmedical physicists, on

average, with improved accuracy when prompted to explain before answering.

ChatGPT (GPT-3.5 and GPT-4) showed a high level of consistency in its answer

choices across a number of trials, whether correct or incorrect, a characteristic

that was not observed in the human test groups or Bard (LaMDA). In evaluating

deductive reasoning ability, ChatGPT (GPT-4) demonstrated surprising accuracy,

suggesting the potential presence of an emergent ability. Finally, although

ChatGPT (GPT-4) performed well overall, its intrinsic properties did not allow

for further improvement when scoring based on a majority vote across trials. In

contrast, a team of medical physicists were able to greatly outperform ChatGPT

(GPT-4) using a majority vote.

Conclusion: This study suggests a great potential for LLMs to work alongside

radiation oncology experts as highly knowledgeable assistants.

KEYWORDS

large language model, natural language processing, medical physics, artificial
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1219326/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1219326/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1219326/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1219326&domain=pdf&date_stamp=2023-07-17
mailto:shen.jiajian@mayo.edu
mailto:liu.wei@mayo.edu
https://doi.org/10.3389/fonc.2023.1219326
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1219326
https://www.frontiersin.org/journals/oncology


Holmes et al. 10.3389/fonc.2023.1219326
1 Introduction

The advent of large language models (LLM) has completely

transformed natural language processing (NLP) (1). The traditional

paradigm of NLP follows the typical pipeline of creating customized

solutions for downstream applications through supervised training.

For example, a pre-trained BERT (2) model must be modified with

additional network layers and then fine-tuned on labeled training

data to perform tasks such as sequence classification or question

answering. In some situations, it might also be beneficial or

necessary to further pre-train such models on domain specific

data to attain acceptable performance (3, 4). For example,

AgriBERT (5) was pre-trained on agriculture-related text data, to

properly address NLP tasks in the food and agriculture domain.

However, the expansive size and exceptional few-shot learning

capabilities enable LLMs to solve NLP problems through in-

context learning, which reduces or even eliminates the need for

annotated training samples (6, 7). During in-context learning,

LLMs generalize from a few examples (or no examples at all)

based on prompts, which typically are descriptive user inputs that

characterize desired responses from LLMs (6, 8). For example,

“summarize the following text” is a straightforward prompt that

asks the language model to produce a summary for the input text. In

general, LLMs provides a novel and simplified workflow for NLP

that could potentially do away with supervised fine-tuning and its

associated intricacies such as hyper-parameter tuning and model

architecture modification. Furthermore, in-context learning

significantly reduces the need for expensive and time-consuming

human annotation (6, 9). It is especially desirable in medicine and

science due to the limited data available in these domains (4,

10–12).

In recent months, the world has witnessed the rise of ChatGPT
1, which has enjoyed significant global popularity given its

unprecedented language capabilities and accessibility to the

general public through a chatbot interface. ChatGPT is based on

the powerful GPT-3 model (6), one of the first large language

models in history. The 175-billion-parameters GPT-3 was trained

on a large data collection that encapsulated diverse Internet data

(including the Common Crawl 2 and Wikipedia 3). It demonstrates

exceptional performance in a variety of NLP tasks spanning from

text summarization to named entity recognition (NER) through its

text generation objective (indeed, many NLP tasks can be translated

to some forms of text generation). ChatGPT inherits these

capabilities from GPT-3, along with the massive knowledge on

diverse topics stored in the parameter space. More importantly,

ChatGPT was trained through Reinforcement Learning from

Human Feedback (RLHF), a reinforcement learning process that

incorporates human preferences and human ranked values through

user feedback. This process tunes the model to generate outputs that

are most appealing and relevant to human users. The capabilities of
1 https://openai.com/blog/chatgpt

2 http://commoncrawl.org/

3 https://www.wikipedia.org/
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ChatGPT empowers diverse practical applications ranging from

essay writing to code generation (13).

One of the most powerful LLM to date is GPT-4 4, a successor to

GPT-3. While OpenAI has not revealed much about its technical

details yet, GPT-4 has demonstrated superior performance over the

GPT-3.5-based ChatGPT in various scenarios (9, 12, 14, 15). In fact,

as of March 2023, GPT-4 is powering Microsoft’s search engine,

Bing (16), which demonstrates the potential of LLM-based search.

In addition, unlike its predecessors, GPT-4 is a multi-modal model

that accepts image inputs, which undoubtedly leads to more

interesting applications.

GPT-4 has been shown to perform exceptionally well on various

academic and professional benchmarks (14). For example, GPT-4

passes the USMLE exam with a >20% margin (17). In fact, GPT-4

scores at over the 90th percentile on the SAT, the Uniform Bar

Exam and the verbal section of the GRE (see Figure 4 in the “GPT-4

Technical Report” (14)), where almost all of them included a

multiple-choice component. Indeed, multiple-choice examinations

are common for evaluating LLMs (14, 18, 19). Most multiple-choice

exams that have been used to evaluate LLMs are based on topics

that are among the most well represented in academics. For

example, in 2022, the AP physics exam had 144,526 test-takers

(20), the LSAT had 128,893 test-takers (21), the GRE had

approximately 342,000 test-takers (22). As a result of the large

numbers of test-takers taking these exams as well as the importance

placed on scores in determining university admittance, there exists

an exceeding amount of resources (including text data accessible on

the internet). Regardless of the particular LLM under evaluation,

the ease of access and overall ubiquity of these tests and relevant test

preparation materials effectively preclude a high performance when

evaluating LLMs on these tests. It is therefore important to also

study LLMs on more obscure and specialized topics where the size

of the training data is likely much smaller. In 2022, there were only

162 medical school graduates, who applied for radiation oncology

residency programs (23). Radiation oncology physics therefore

represents a topic that is relatively unknown to the general

population and may therefore be a more fair test in evaluating

LLMs as compared to highly represented knowledge-bases. Obscure

topics may represent the greatest educational opportunity and also

the greatest risk for the general population in the context of LLMs,

as the responses may be more relied upon while being less accurate

and with mistakes being less likely to be noticed.

An important factor in evaluating the accuracy of LLMs is to

ensure that the test questions are left out of the training data (24),

i.e. not contaminated. The best way to ensure this is to create new

questions for testing. In this study, a multiple-choice examination

has been created for this purpose. Four transformer-based LLMs

have been chosen for evaluation: ChatGPT (GPT-3.5) (6), ChatGPT

(GPT-4) (14), Bard (LaMDA) (25), and BLOOMZ (26). These

results are compared to radiation oncology experts as well as

non-experts. Additionally, ChatGPT (GPT-4) is further explored

on how to improve its answers and on its deductive reasoning

capabilities. Experimental results indicate that GPT-4 attains the
4 https://openai.com/research/gpt-4
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best performance among LLMs and outperforms professional

medical physicists on average, especially when prompted to explain

its reasoning before answering the question. We also conduct

extensive ablation studies and analyses to comprehensively

measure and explain the results.
2 Related work

2.1 Large language models

Transformer-based pre-trained language models (PLMs), such

as BERT (2) and GPT (27), have revolutionized natural language

processing. Surpassing previous methods (e.g., RNN-based models)

in numerous tasks, they have promoted interest in and accessibility

of language models (28). Generally, PLMs can be categorized into

three types: autoregressive models (like GPT), masked language

models (such as BERT), and encoder-decoder models (e.g., BART

(29) and T5 (30)). More recently, there is a rise of very large

language models, including GPT-3 (6), Bloom (31), PaLM (32), and

OPT (33). Rooted in the transformer architecture, these models

draw inspiration from the likes of BERT and GPT but are developed

at much larger scales.

The objective of large language models is to accurately learn

contextual and domain-specific latent feature representations from

input text (28). For example, the vector representation of

“discharge” might vary considerably between medical and general

domains. Smaller language programs often require continual pre-

training and supervised fine-tuning on downstream tasks to achieve

acceptable performance (3, 4). However, very large language models

could potentially eliminate the need for fine-tuning while

maintaining competitive results (6).

Besides the progress in model architecture, scale and training

strategies, large language models can be further aligned with human

preferences through reinforcement learning from human feedback

(RLHF) (34). This approach has been implemented in various

LLMs, such as Sparrow (35), InstructGPT (36), and ChatGPT.

InstructGPT was based on GPT-3 and was trained through a

process during which user preferences were prioritized through

human-generated ranking feedback. As a successor to InstructGPT,

ChatGPT also employs RLHF, focusing on adhering to prompts and

generating comprehensive responses. OpenAI also implemented

guardrails to prevent the generation of biased and undesirable

outputs (31). ChatGPT has become a highly successful AI

chatbot, capitalizing on GPT-3.5’s capabilities to facilitate human-

like interactions.

RLHF incorporates human feedback into the generation

and selection of optimal results by training a reward model

based on human annotators’ rankings of generated outcomes

(37). This reward model then rewards outputs that best

correspond to human preferences and values. We believe these

groundbreaking innovations make ChatGPT the perfect candidate

for this study.

The recent development of GPT-4 has significantly advanced

the state-of-the-art of language models. GPT-4 demonstrates

enhanced reasoning abilities, creativity, image comprehension,
Frontiers in Oncology 03
context understanding, and multi-modal abilities, leading to more

sophisticated and diverse responses. The success of large GPT

models spurs exploration into specialized variants for specific

fields, such as dedicated large language models for medical and

healthcare applications, which could potentially revolutionize

these domains.
2.2 Language models and examination

Large language models have exceptional natural language

comprehension abilities. In addition, they are trained on massive

data that supplies substantial knowledge. These characteristics

make large language models ideal candidates for academic and

professional benchmarks.

OpenAI recently released the first study in the literature that

evaluates large language models on academic and professional

exams designed for educated humans (14). The results indicate

that GPT-4 performs extremely well on a wide variety of subjects

ranging from the Uniform Bar Exam to GRE. In addition, a study

from Microsoft indicates that GPT-4 can pass USMLE, the

professional exam for medical residents, by a large margin (17).

This study is the first evaluation of large language models in the

realms of radiation oncology and medical physics, and we believe it

can inspire future research in evaluating LLMs on highly-

specialized branches of medicine.
2.3 Prompt engineering

Collecting and labeling data for training or fine-tuning NLP

models can be resource-intensive and costly, especially in the

medical domain (4, 9, 12). Recent studies suggest that by

employing prompts, large-scale pre-trained language models

(PLMs) can be adapted to downstream tasks without the need for

fine-tuning (6, 8).

A prompt consists of a set of instructions that customizes or

refines the LLM’s response. Prompts extend beyond merely

describing the task or specifying output formats. Indeed, they can

be engineered to create novel interactions. For example, it is

possible to prompt ChatGPT to emulate a cybersecurity breach

with simulated terminal commands (38). In addition, prompts can

also be used to generate additional prompts through a self-

adaptation process (38).

The emergence of prompt engineering signifies the start of a new

era in natural language processing (8). There is no doubt that carefully

crafted prompts have much potential for diverse and sophisticated

applications. However, determining the ideal prompt poses a unique

challenge in the age of large language models. Currently, prompts can

be designed manually or generated automatically (8, 39). Although

automatically produced prompts may outperformmanual prompts in

certain tasks (8), they often suffer from poor human-readability and

explainability (8, 40). Consequently, manual prompt generation may

be favored in domains where interpretability is crucial, such as clinical

practices and research. In this study, we design a suite of prompts and

chain-of-thought prompts based on our experience in radiation
frontiersin.org
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oncology and medical physics and evaluate their impact on large

language models.
3 Methods

A 100-question multiple-choice examination on radiation

oncology physics was created for this study by an experienced

medical physicist. This exam includes questions on the following

topics: basic physics (12 questions), radiation measurements (10

questions), treatment planning (20 questions), imaging modalities

and applications in radiotherapy (17 questions), brachytherapy (13

questions), advanced treatment planning and special procedures

(16 questions), and safety, quality assurance (QA), and radiation

protection (12 questions). The seven exam categories and the

associated number of questions for each category follows the

official study guide of American Board of Radiology (41). Of the

100 questions, 17 require numeric calculation (math-based). The

exam questions are listed in the Appendix, Section A.
3.1 Comparison between LLM scores and
human scores

The 100-question multiple-choice test on radiation oncology

physics was inputted to each LLM in 5 separate trials (Trial 1 - Trial

5), except BLOOMZ, which was only tested in one trial. Each trial,

beginning on a new thread or after reset, began with an initialization

prompt notifying the LLM that it was about to be tested. Next, the

LLM was prompted with instructions and 20 questions in batches

until the exam was complete. In each trial, the instructions indicated

to the LLM that it should only return the correct answer with no

justification. The instructions were included in each batch since it

was observed that the LLMs were less likely to follow the

instructions otherwise. In cases where the LLM could not accept

20 questions at a time, batches of 10 questions were used instead

(Bard). In cases where not all the answers were returned by the

LLM, the next batch would include the non-answered question(s) as
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well as the entire next batch. These occurrences were rare. In each

test trial, the global prompt and instructions prompt were phrased

differently in order to account for response-noise due to prompt-

noise. The initialization prompts and instructions prompts are

given in Table 1.

LLM test scores and their distributions were compared between

each other as well as with scores from two human groups, medical

physicists and non-experts. The medical physicists group included

four experienced board-certified medical physicists, three medical

physics residents, and two medical physics research fellows. The

non-expert group included six individuals with advanced degrees in

either electrical engineering, computer engineering, or computer

science, but with no known prior experience or education on

radiation oncology physics. Each human test-taker was allowed 3

hours to take the exam, closed book, also permitting the use of a

basic calculator. In comparing the LLM scores and human scores,

the mean scores, consistency in scores, and confidence in answers

were evaluated.

To quantify accuracy, the average score was calculated for each

LLM by averaging the scores from each trial. For the human test

groups, individual scores were averaged over the whole group.

To quantify the overall consistency of scoring success, the

standard deviation and average correlation between trials, defined

as the average of the upper values of the Pearson correlation matrix

between trials, were calculated. The average correlation indicates

how consistent the correct scores were between trials where 1 is

interpreted as the distribution being identical, 0 is equivalent to the

distribution being purely random, and -1 is interpreted as the

distribution being perfectly anti-correlated.

In order to quantify the degree of confidence in the answers

given by the LLMs and human groups, the number of correct

answers for each question were counted across all trials. For

example, if each LLM answered the same question correctly 5

times, then the percentage of questions where all 5 answers were

correct was incremented by 1% (since there are 100 questions).

Additionally, the test results were compared to the expected

distribution that would occur if the test-taker were guessing at

random. The expected number of correct answers in 5 trials, when

randomly guessing, is approximately 0.25×5 = 1.25 on average (98/
TABLE 1 The LLM prompts used in each trial.

Trial Initialization prompt Instructions prompt

Trial 1 I am a radiation therapy researcher. My research group would like to study the answers given by
ChatGPT on the topic of radiation oncology physics. I will now proceed to ask questions about

radiation oncology physics.

Instructions: For each multiple choice question,
provide the correct answer without

any justification.

Trial 2 I want to evaluate your knowledge on radiation oncology physics by asking some multiple choice questions. Please give only the question label and the letter
for the correct answer.

Trial 3 Please answer the following practice questions as if you were a resident preparing for
board certification exams.

Only give the correct answer in your response.
Do not explain your answers.

Trial 4 We want to test your understanding of radiation oncology physics. For this reason, we have created some
questions to ask you.

In your response, only report the question label
and the corresponding answer.

Trial 5 I will ask you some multiple-choice questions. Instructions: Only respond with the correct
letter choice.
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100 questions have 4 choices, 2/100 have 5 choices). Using this

value, the number of correct answer occurrences for each question

can be estimated following the resultant Poisson distribution.

Finally, ChatGPT (GPT-3.5 and GPT-4) and Bard scores were

compared to human scores where the scores were calculated based

on majority vote.
3.2 Improving ChatGPT (GPT-4) accuracy -
explain first, then answer

Due to the nature of transformer-based LLMs predicting the

next word based on the prior context, it has been shown that the

accuracy of responses can be improved if a sufficiently large LLM is

prompted to develop the answer in a step-wise manner (24, 42, 43).

ChatGPT (GPT-4) was evaluated using this strategy to see if its

score could be improved by prompting it to explain first, then

answer. The initialization prompt was the same as in Trial 1,

however the instructions prompt for Trial 1 was changed to the

following: “Instructions: For each multiple choice question, first

give an explanation for the answer followed by the correct answer

(letter choice).” These test results were then compared with the

original non-justified test results.
3.3 Testing ChatGPT (GPT-4) on its
deductive reasoning ability

In a multiple-choice question, an LLM will be most successful

when the question and answer are often used in the same context.

However, what happens if the correct answer has no shared context

with the question, such as when the answer is “None of the above”? In

this case, the LLMmust deduce the correct answer by rejecting all the

other answers, all of which likely share context with the question.

This scenario would seem to be especially challenging for an LLM. To

study the deductive reasoning ability of ChatGPT (GPT-4), each

question of the 100-question multiple-choice exam was modified.

Each correct answer was removed and replaced with “None of the

above choices is the correct answer.” Such a context-reduction

transformation cannot be used on a human since a human would

notice the pattern. Because of this, there are likely to be no examples
Frontiers in Oncology 05
of this sort of transformation to be found for tests that were designed

for humans and were subsequently used in the training data for

LLMs. It is assumed, then, that an LLM would not notice this pattern.

The modified exam was given to ChatGPT (GPT-4) using the Trial 1

prompts and was subsequently tested for improving accuracy by

explaining first, then answering as described in Section 3.2.
4 Results

4.1 Comparison between LLM scores and
human scores

The raw marks and mean test scores are shown in Figures 1 and

2A respectively, where the LLM mean test scores represent the

mean of 5 trials (except for BLOOMZ - 1 trial) and the mean test

scores for humans represent the mean of their respective groups

(see Section 3.1). Each LLM was able to outperform the non-expert

human group overall while only ChatGPT (GPT-4) outperformed

the medical physicist group. For math-based questions, the medical

physicists outperformed ChatGPT (GPT-4).

As can be observed in the rawmarks shown in Figure 1, each LLM

and human group showed variability between trials, not only in terms

of uncertainty in the overall score, but also in terms of the number of

times each question was answered correctly. The standard deviation

and average correlation between trials are reported in Figures 2B, C.

The LLMs were much more consistent in their scores and answers as

compared to the human groups, showing both a low standard

deviation in scoring and a high average correlation between trials.

From the results shown in 3, Bard slightly outperformed the

non-expert group, however both groups performed similarly to a

random guesser. ChatGPT (GPT-3.5 and GPT-4) and the medical

physicists showed no similarity to random guessing. ChatGPT

(GPT-3.5) was either confident, getting 35% of answers correct in

each trial, or confused, getting 28% of answers incorrect. ChatGPT

(GPT-4) was even more confident, getting 67% of questions correct

in each trial, however it also showed a propensity for confusion,

getting 14% of questions incorrect in each trial. As a group,

the medical physicists were neither extremely confident, nor

confused, however tending towards agreement in selecting the

correct answers.
FIGURE 1

Raw marks for each test where the rows are separate tests and the columns are the test questions. Dark shaded squares represent correct answers.
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Although ChatGPT (GPT-3.5 and GPT-4) scored well overall,

their scoring distributions, shown in Figure 3, suggested that if the

LLMs could work together, there would be very little improvement

in scoring, since they tended to be either confident or confused with

low variability. Bard (LaMDA) and the non-expert groups would

also likely show little improvement in working together as their

answers tended towards random success. However, because medical

physicists tended towards agreement on correct answers, it would

be expected that their score would improve considerably when

working together. To test for this, the answers for each group were

combined using a “majority vote”. For each question, the most

common answer choice was chosen as the group answer. In the case

of a tie, one answer among the most common answer choices was

chosen randomly. Figure 4 shows the scoring results when utilizing

a majority vote. As shown, ChatGPT (GPT-3.5 and GPT-4)
Frontiers in Oncology 06
improved very slightly, 1%. Bard (LaMDA) and the non-expert

group improved by 4% and 3% respectively. However, the medical

physicist group improved greatly, by 23%.
4.2 Improving ChatGPT (GPT-4) accuracy -
explain first, then answer

Figure 5 shows the results for having prompted ChatGPT

(GPT-4) to explain first, then answer, therefore allowing the

answer to develop. ChatGPT’s (GPT-4) overall score improved by

5%, exceeding each prior trial. The greatest improvement was in the

brachytherapy and math-based questions categories. These results

are in agreement with prior studies that found this capability to be

an emergent characteristic for sufficiently large LLMs (43). Sample
A

B C

FIGURE 2

Overall performance and uncertainty in test results. (A) Mean test scores for each LLM by category. (B) Standard deviation in total scores. (C) Average
correlation between trials.
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responses from ChatGPT (GPT-4) are given in the Appendix,

Section A.
4.3 Testing ChatGPT (GPT-4) on its
deductive reasoning ability

Figure 6 shows the results for the deductive reasoning test where

the correct answer was replaced by “None of the above choices is the
Frontiers in Oncology 07
correct answer” in all 100 questions. Overall, ChatGPT (GPT-4)

performed much more poorly as compared to the original test.

Although the performance was generally worse, the explain first,

then answer method was especially important in improving its ability

to deductively reason through the questions. Without explaining first,

ChatGPT (GPT-4) got 0% of math-based questions correct, which

improved to 65% after incorporating the explain first, then answer

method, only one question less accurate than the original trial also

using the explain first, then answer method.
FIGURE 3

Confidence in answers. The number of correct answer occurrences per-question for each LLM and human group. The dashed red curve indicates
the expected distribution if the answers were randomly selected based on the Poisson distribution.
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5 Discussion

More than 1 million new cancer cases are diagnosed and more

than 600,000 people die from cancer in the US every year.

Radiotherapy (RT) is a standard treatment option used for nearly

50% of cancer patients (44–47). Physics plays an important role in

radiation oncology due to the complexity and sophistication of

physics and engineering adopted in modern radiation therapy.

Therefore, it is essential for the radiation oncology professionals

to understand radiation oncology physics well to ensure the safety

and accuracy of the radiation treatment of cancer patients. The aim

of this study was to evaluate LLMs on a highly-specialized topic,

radiation oncology physics, based on a 100-question multiple

choice exam that was specifically designed for this study. The

exam can be found in the Appendix, Section A. The scoring

results from the non-expert group suggest that the general

population knows very little about radiation oncology physics as

their scores were similar to random guessing. Bard (LaMDA)

slightly outperformed the non-experts while BLOOMZ and

ChatGPT (GPT-3.5 and GPT-4) greatly outperformed the non-

experts. Amazingly, GPT-4 was able to outperform the average

medical physicist in nearly all subcategories and improved its

answer accuracy when prompted to explain its reasoning before

answering (Figures 2A, 5). As a general principle for improving

accuracy, users should consider prompting ChatGPT to explain

first, then answer. ChatGPT (GPT-4) showed a surprising ability to

deductively reason in answering all 100 questions where each

correct answer was modified to be “None of the above choices is

the correct answer.”, particularly when it was prompted to explain

first, then answer, scoring 55% overall. This result is somewhat

perplexing and could potentially be an emergent property.

Emergent properties are known to occur as the number of

parameters is increased in LLMs (43). This novel method may be

a useful method in determining whether deductive reasoning

improves with the number of parameters going forward.
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While ChatGPT (GPT-4) outperformed medical physicists

overall, this study has also provided evidence that individual LLMs

cannot compete with a small number of medical physicists working

together (Figure 4). The likely reason is that humans vary significantly

in capabilities and knowledge from individual to individual, even

when their professional backgrounds are similar. Additionally, while

an answer in a multiple-choice question will either be correct or

incorrect, the scoring count distributions shown in Figure 3 indicated

that the medical physicists were far less likely to be confused, which,

when aggregated over the whole group of medical physicists, allowed

them to select the correct answer at a much higher rate in a majority

vote. When ChatGPT (GPT-3.5 and GPT-4) was wrong, it was

confidently wrong (confused). Similarly, when it was correct, it was

confidently correct. Our results indicated that humans with expertise

on a highly-specialized topic knew when to guess, how to guess

intelligently, and were less likely to be wrong in their reasoning, even

when the correct answer was not chosen. This comparison may not be

completely fair as it is possible that if the exact same human could be

tested repeatedly in the same manner as ChatGPT (GPT-3.5 and

GPT-4), they might also repeat answers and show a degree of

confusion individually. That point is arguably irrelevant, however, as

there are many experienced medical physicists and only few LLMs as

capable as GPT-4. The high degree of consistency in correct and

incorrect answers for ChatGPT (GPT-3.5 and GPT-4) may be a sign

of over-fitting (or memorization) in regards to radiation oncology

physics knowledge. Regardless, being that radiation oncology physics

is a highly-specialized topic, the performance of ChatGPT (GPT-4)

was extraordinary and will likely continue to improve in the near-

future. Practically speaking, this study suggests a great potential for

radiation oncology experts to work alongside ChatGPT (GPT-4),

using it as a highly knowledgeable assistant.

A weakness in evaluating LLMs using exams such as the one

presented in this study is that this exam is not representative of the

detailed and nuanced daily clinical work being performed by

medical physicists and radiation oncology specialists. The relative
FIGURE 4

Scores by category, tabulated by majority vote among trials for LLMs and within the group for humans.
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performance between LLMs and medical physicists on radiation

oncology physics exams reported in this study may therefore

misrepresent the degree of equivalency between LLMs and

individual medical physicists. Furthermore, GPT-4’s high

performance on this certification-like exam, covering a highly

specialized topic, suggests a degree of superficiality in the

knowledge being assessed. Otherwise, we would have to entertain

the possibility of GPT-4 being competent enough to fulfill the role
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of a medical physicist, which seems highly improbable. The radiation

oncology community, and possibly the wider medical community,

may therefore need to reevaluate certification procedures, as the

necessity for humans to invest significant effort in acquiring such

superficial knowledge will diminish as LLMs continue to advance.

With this in mind, LLMs could potentially be used as a test for

superficiality. Perhaps a greater focus on knowledge not known by

the LLM should be more greatly emphasized.
FIGURE 6

The scores for Trial 1 after replacing the correct answer with “None of the above choices is the correct answer. ”, a method for testing for deductive
reasoning, and subsequent improvement as due to using the explain first, then answer method.
FIGURE 5

The improvement for Trial 1 as due to using the explain first, then answer method.
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5.1 Applying large language models in
radiation oncology

This study is a continuation of a line of research that applies state-

of-the-art NLP methods to radiation oncology. For example, Rezayi

et al. (11) trained BioBERT on a large corpus of radiation oncology

literature and a curated and anonymized text dataset from a hospital

to build ClinicalRadioBERT, a specialized language model for

radiation oncology. Liao et al. (48) proposed a framework of

directing the attention of transformer-based language models to

more important input tokens that significantly affect classification

decisions. This method is particularly important for few-shot learning

with few annotated samples, which is a common challenge in

radiation oncology where it is difficult to collect and curate large

amounts of multi-institution patient data that match certain

requirements due to the concern of patient privacy. On a related

note, ChatGPT has demonstrated superior performance as an

effective text data augmentation approach over state-of-the-art text

data augmentation methods in terms of testing accuracy and

distribution of the augmented samples (9), which can also be used

to address the few-shot learning challenge.

In addition, LLMs can be employed for innovative applications

such as data de-identification. For example, GPT-4 outperforms

ChatGPT and other language model competitors in de-identifying

clinical notes with a 99% accuracy (12). This is of extreme

importance to radiation oncology and all medicine specialities in

general, since it is often cumbersome to anonymize data for cross-

institution clinical collaboration and academic research. Some other

applications of language models include building domain-specific

knowledge graphs for oncology (49) without manual annotation

from clinicians or other domain experts.

5.2 Multi-modal models in
radiation oncology

Multi-modal models are the future of language model (1) and

are important in medical diagnosis (50). Some early LLM studies

with multi-modal data include ChatCAD (51), a framework to

integrate images and texts for computer-aided diagnosis. It supports

various diagnosis networks such as those for lesion segmentation

and report generation. In this framework, ChatGPT can be used to

enhance the outputs of these networks.

GPT-4 supports multi-modal inputs such as images, which

further unlocks the potential of large language models in

radiation oncology. It is necessary to investigate future models

and applications that integrate text, images, dosimetric data, and

other modalities into the diagnosis and treatment pipelines. We

believe such multi-modal models display inherent affinity to the

human brain (1) and future LLM models for medicine can receive

inspirations from advances in both neuroscience and NLP.
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