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Introduction: The domestic dog, Canis familiaris, is quickly gaining traction as an

advantageous model for use in the study of cancer, one of the leading causes of

death worldwide. Naturally occurring canine cancers share clinical, histological,

and molecular characteristics with the corresponding human diseases.

Methods: In this study, we take a deep-learning approach to test how similar the

gene expression profile of canine glioma and bladder cancer (BLCA) tumors are

to the corresponding human tumors. We likewise develop a tool for identifying

misclassified or outlier samples in large canine oncological datasets, analogous

to that which was developed for human datasets.

Results: We test a number of machine learning algorithms and found that a

convolutional neural network outperformed logistic regression and random

forest approaches. We use a recently developed RNA-seq-based convolutional

neural network, TULIP, to test the robustness of a human-data-trained primary

tumor classification tool on cross-species primary tumor prediction. Our study

ultimately highlights the molecular similarities between canine and human BLCA

and glioma tumors, showing that protein-coding one-to-one homologs shared

between humans and canines, are sufficient to distinguish between BLCA and

gliomas.

Discussion: The results of this study indicate that using protein-coding one-to-

one homologs as the features in the input layer of TULIP performs good primary

tumor prediction in both humans and canines. Furthermore, our analysis shows

that our selected features also contain the majority of features with known

clinical relevance in BLCA and gliomas. Our success in using a human-data-
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trained model for cross-species primary tumor prediction also sheds light on the

conservation of oncological pathways in humans and canines, further

underscoring the importance of the canine model system in the study of

human disease.
KEYWORDS

comparative oncology, deep learning, machine learning, bladder cancer, tumor
classification, glioma
1 Introduction

The domestic dog, Canis familiaris, is rapidly gaining traction as

a useful model with which to study human disease and has been

proposed to be a particularly advantageous model in the study of

cancer (1–4). Cancer is one of the leading causes of death worldwide

and according to the American Cancer Society (https://

www.cancer.org/) (5), 1.9 million new cancer cases and over

600,000 cancer-caused deaths were expected to occur in 2022 in

the United States (5). Similarly, cancer is one of the leading causes

of death in canines, and annually over 4.2 million dogs per year are

diagnosed with cancer in the United States (1). The study of

naturally occurring tumors in pet dogs through comparative

oncology studies has the potential to provide a valuable

perspective on tumor biology and a powerful means by which to

develop novel therapeutics in both humans and canines.

Comparative oncology is a research field that investigates and

compares tumor development and progression across species and

(1–4) previous studies in comparative oncology have revealed

similarities between naturally-occurring canine and human

cancers (1–4). Dogs develop spontaneous tumors which

pathologically, biologically, and histologically mirror the

formation of tumors in humans. Additionally, canines and

humans have numerous shared treatment regimens in various

types of cancer (2–4, 6–8). Furthermore, pet dogs share a

common living environment with their caregivers, which provides

a valuable perspective on how environmental exposures contribute

to the development of cancer (1–4). Hence, studies in comparative

oncology shed light on basic cancer-related biological pathways.

Such studies are also proving to be advantageous for the testing of

novel therapeutic targets at the early stages of clinical trials.

The rapid generation of omics datasets from studies in oncology

coupled with increasingly sophisticated machine learning and deep

learning methodologies are ushering in a new era of precision-

oncology research. One recently developed tool; the TUmor

CLassIfication Predictor (TULIP) is a classification tool that has

been developed for the prediction of primary tumor types based on

human RNA-seq data (Figure 1A) (4). TULIP was trained using

normalized RNA-seq data of various human primary tumor types

downloaded from the Genomic Data Commons (GDC) (4). All four

TULIP models achieve over 95% classification accuracy. Thus,

TULIP can be a useful quality control (QC) tool for the
02
identification of misclassified or potential outlier samples in

human RNA-seq datasets.

Such a tool would also be useful in identifying any sample-based

issues in canine oncological datasets that is analogous to the human

sample implementation. Unfortunately, the sample size of canine

studies is small in comparison to the large human datasets held in

the GDC. As a result, the training of a deep learning model on

canine data for the purpose of classifying canine primary tumor

types is not practical. Intriguingly, further evaluation of TULIP-

derived models on non-TCGA kidney cancer RNA-seq data

suggests that the models that were derived from TULIP generalize

well to accurately predict the primary tumor types of other non-

TCGA data (4).

Several publications have shown that canine and human

cancers exhibit clinical, molecular, and histological similarities (2,

9, 10). Here, we take this a step further to see whether the

similarities of the transcriptomic profiles are such that a deep

learning model trained on human data can accurately classify

canine tumors. In this study, we focused on canine bladder

cancer and glioma for the initial evaluation of this cross-species

tumor type classifier. Both canine bladder cancer and glioma exhibit

similar molecular traits to those observed in humans. For example,

genes that were identified as dysregulated in human bladder cancer

(BLCA) were also identified as such in canine BLCA data (11).

Previous genome-wide studies on canine glioma samples suggest

that frequently mutated genes that are associated with human

glioma are also mutational hotspots in canine glioma samples (10).

Invasive urothelial carcinoma (InvUC) is a highly invasive type

of bladder cancer in which tumors grow into the muscle of the

bladder (12, 13). Canines have been previously identified and

validated as a model for InvUC, and treatment protocols for

canine are similar to those used in human patients. Notably, there

is a large need for improved therapeutics for the treatment of InvUC

in both human and canine (6, 12). InvUC has been identified in

20%-30% of human bladder cancer cases, is the most common

bladder cancer type in canines and includes luminal and basal

subtypes in both humans and canines (6).

Gliomas are a common type of brain tumor originating in the

glial cells that surround and support neurons (14). Human gliomas

are classified into 4 grades depending on tumor aggressiveness in

the clinic (15). Grades I and II are termed low-grade gliomas (LGG)

and grades III and IV are termed high-grade gliomas (HGG) (15).
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Canine glioma is generally classified into HGG and LGG without

the assignment of a numeric grade (16). The study here contains

RNA-seq data from two di fferent types of g l iomas :

oligodendrogliomas and astrocytomas. Oligodendrogliomas

originate from oligodendrocytes, and astrocytoma from

astrocytes. Clinically, glioblastoma (GBM) is a subset of HGG,

specifically a grade IV astrocytoma (17, 18). Several studies have

shown that clinical and molecular similarities are exhibited in

canine and human gliomas, and particularly between canine LGG

and human pediatric glioma (10, 19).

To test how similar the gene expression profile of canine glioma

and bladder cancer tumors are to the corresponding human tumors

and to identify misclassified or outlier samples in large canine

oncological datasets, we sought to determine whether a neural

network trained to identify tumor types from human RNA-seq

data (20) can accurately predict tumor types in canines. TULIP (20),
Frontiers in Oncology 03
a 1-dimensional (1D) convolutional neural network (CNN), was

used in this cross-species primary tumor classification (Figure 1A).
2 Materials and methods

2.1 RNA-seq data analyses

An overview of the methods used in this study can be found in

Figure 1B. Fastq files containing raw reads of 56 canine bladder

tumor samples (BLCA) and 4 canine normal bladder samples were

downloaded from National Cancer Institute’s Integrated Canine

Data Commons with the accession ID: 000005 (https://

caninecommons.cancer.gov/#/study/UBC02) (6). Fastq files that

contain raw reads from 39 canine glioma tumor samples

including 30 high-grade glioma (HGG) and 9 low-grade glioma
frontiersin.o
B
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FIGURE 1

(A) Architecture of the TULIP 1D convolutional neural network (CNN) model for classifying RNA-seq samples into different primary tumor types.
(B) Workflow used in processing the canine RNA-seq data and applying TULIP models to predict primary tumor type.
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(LGG) samples and 3 normal canine brain samples were

downloaded from the NCBI SRA database with the BioProject

accession ID: PRJNA579792 (10). Fastq files with raw sequence

reads from 5 normal canine bladder samples and 5 normal canine

frontal cortex samples were obtained from Barkbase (http://

www.barkbase.org) (21), and data were included in the differential

gene expression analysis. Raw reads of data from Barkbase were

downloaded from the NCBI SRA database with the BioProject

accession ID: PRJNA396033 (21). All raw counts were converted

to TPM (transcripts per million) to compare the transcript levels of

genes across different samples. TPM values of 412 human bladder

cancer samples and 711 Glioma samples were downloaded from

TCGAbiolinks in BiocManager (Version: 2.12.6) (6, 22, 23).

All RNA-seq data analyses follow the mRNA analysis pipeline

established by the National Cancer Institute’s (NCI’s) Genomic

Data Commons (GDC) (24). Reads were aligned to the CanFam3.1

reference genome assembly by using STAR v2.7.9a (25). Aligned

reads were converted to reads counts using HTseq-count v2.0.1

(26). FPKM-UQ (Fragments per kilobase of transcript per million

mapped reads upper quartile) that were calculated using

htseq_tools were converted to TPM used to test the performance

of the TULIP model on canine model (20, 24).
2.2 Detection of the one-to-one
homologous genes in human and canine

Human (Grch38.p13) to Canine (CanFam3.1) orthologs were

downloaded from the biomaRt query page for Ensembl Genes 104

(27, 28). The fields selected for download were the Gene Stable Id

and associated version, Gene Names for both human and dog,

Percentage identity of human genes to dog and vice-versa, and

Gene-Order Conservation Score with homology type set to dog.

Protein coding genes with one-to-one orthologous mapping

between human and dog annotations were further extracted and

retained for preparing the input files.
2.3 Training the cTULIP model

The canine-adapted version of TULIP (cTULIP) is a deep

learning Python-based classification tool that utilizes a 1-

dimensional (1D) convolutional neural network (CNN)

framework (20). It takes human RNA-seq data as the input layer

and the output is the predicted primary tumor types with their

probability scores. To adapt TULIP for canine tumor type

prediction (Figure 1B), we obtained RNA-seq data expressed as

FPKM-UQ. FPKM-UQ is the upper quartile of the number of

fragments per kilobase per million mapped reads. We obtained the

FPKM-UQ values for the 9,025 and 9,199 samples corresponding to

17 (sample size > 300 samples) and 18 primary tumor types

respectively from the TCGA project in GDC (February 2022)

(Supplementary Table 1). The 18 primary tumor types include all

17 tumor types with the addition of GBM. We converted the

FPKM-UQ values to TPM (transcripts per million) and

normalized the TPM values by using a log10 transformation. The
Frontiers in Oncology 04
data was split randomly into training (80%), validation (10%), and

test (10%) datasets using the scikit-learn package (version 1.0.2).

The primary tumor types were encoded using the OneHotEncoder

() function. We filtered the human protein coding genes to 14,761

genes common between human and canine (one-to-one

orthologous mapping). We created two CNN models with Keras

(version 2.4.3) that have the number of genes (14,761) as features in

the input layer and the number of primary tumor types (17 or 18) in

the output layer. The source code is publicly available at https://

github.com/CBIIT/CTULIP.
2.4 Random forest and logistic
regression models

We built random forest (RF) and logistic regression (LR)

models using the scikit-learn package for comparing with the

cTULIP (1D-CNN) models. All parameters were kept at default

values. We evaluated the performance of the cTULIP (1D-CNN)

models along with the random forest (RF) and logistic regression

(LR) models using the test dataset by computing the weighted

average of precision, recall and F1-score for imbalanced data. The

formulas for calculating precision, recall, and F1-score are below.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1   score =
2(Recall � Precision)
(Recall + Precision)

where TP is the number of true positives, TN is the number of

true negatives, FP is the number of false negatives, and FN is the

number of false negatives.
2.5 t-SNE analysis and PCA analysis

A t-distributed stochastic neighbor embedding (t-SNE) was

performed by using the Rtsne package v0.15 with perplexity is 4

and 5000 iterations (https://github.com/jkrijthe/Rtsne) (29). The t-

SNE plot was visualized by using ggplot2 v3.3.6 (https://

ggplot2.tidyverse.org). A principal component analysis (PCA) was

performed and visualized with the DEseq2 v1.24.0 package in

Bioconductor (30). Both t-SNE plots and PCA analyses were

performed by using the top 500 highly variable genes amongst

the one-to-one protein coding homologs between the three selected

primary tumor types.
2.6 Differential gene expression analyses

Differential gene expression analysis was carried out by

comparing canine bladder cancer and glioma tumor samples to

their corresponding normal samples using the raw count matrices.
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Differentially expressed genes were identified by using a quasi-

likelihood negative binomial generalized linear model from edgeR

package v3.26.8 in Bioconductor with a Benjamini-Hochberg false

discovery rate< 0.05 (31–33). Volcano plots were generated by using

ggplot2 v3.3.6 (https://ggplot2.tidyverse.org) (34).

2.7 Identification of clinically
relevant genes

Glioma and bladder cancer-associated genes were downloaded

from the Online Mendelian Inheritance in Man (OMIM) database

(35, 36). Genes associated with either glioblastoma (GBM) or glioma

were included in the glioma-associated OMIM genes. Genes linked to

either bladder cancer or bladder carcinoma were included in the

bladder cancer-associated OMIM genes. In total, 178 BLCA-

associated (OMIM) genes (35, 36) were included and 302 glioma-

associated genes were included in the intersection analysis. A set of

genes that have been previously identified as playing a critical role in

both human and canine bladder cancer were included in the clinically

relevant genes (6). Intersection analyses between OMIM genes and

DEGs were visualized by Venn diagrams and upset plots. Venn

diagrams were generated with the VennDiagram R package v1.7.3.

Upset plots were generated by using the intersection mode in

ComplexHeatmap v2.11.1 (37).

2.8 Single-sample gene set
enrichment analysis

The enrichment of hallmark signatures (H) and oncogenic

signature genes (C6) from the Molecular Signatures Database

(MSigDB) on individual samples for all canine bladder cancer

data, canine glioma tumor data, human bladder cancer data, and

human glioma data was assessed by using a single-sample gene set

enrichment analysis (ssGSEA) (38, 39). For the sake of clear

visualization and to achieve balanced sample numbers across

cancer types, we randomly selected 9 samples from each canine

cancer and 10 samples from each human primary tumor type. The

ssGSEA derived scores were plotted in heat maps and grouped

based on the primary tumor types and species. Only protein-coding

genes with one-to-one homologous mapping between human and

canine data were included for ssGSEA. TPM values of human

bladder cancer data and glioma data were downloaded from

TCGAbiolinks in BiocManager (Version: 2.12.6) (6, 22, 23). TPM

values of canine data were calculated from the count matrix

generated from HTseq-count v2.0.1 (26). The significant gene sets

were selected with a false discovery rate threshold of< 0.05.
3 Results

3.1 Protein-coding one-to-one homologs
are sufficient for classifying primary tumor
types in canine

The selection of features is a critical first step to enable the use of

a cross-species classifier on canine data. Initially, one-to-one
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homologs between canine and human genes were selected as the

features for the input layer of the models (Figure 1B). Overall,

15,860 canine genes have one-to-one homologs in the human

genome (Figure 2A). In addition, the initial classification of

TULIP on human data suggests that only using protein-coding

genes as the input layer is also sufficient to perform primary tumor

type prediction in that the model achieves 97.6% accuracy (20). A

total of 14,761 out of 15,860 genes that have one-to-one human

homologs in canine were also identified as protein-coding genes in

the human genome (Figure 2B).

To visually inspect whether protein-coding one-to-one

homologs are sufficient to distinguish between primary tumor

types in canine, we employed t-SNE and a PCA on canine glioma

and bladder cancer RNA-seq data (Figures 2C, D). Both analyses

suggest that protein-coding one-to-one homologs are sufficient to

distinguish between canine glioma and bladder cancer tumor

samples (Figures 2C, D; Supplementary Figures 1A, B). However,

these genes failed to distinguish between canine high-grade glioma

(HGG) and low-grade glioma (LGG) samples.

Next, we investigated whether a model trained on human data

using protein-coding one-to-one homologs would provide more

robust predictive power than a model using all one-to-one

homologs. We first compared the performance of the models on

human data with the two selected feature sets and used the 17

primary tumor types as the output layer (Supplementary Table 1).

The model using protein-coding genes (cCNN-17-PC) achieves an

accuracy of 96.2% whereas the model with all one-to-one homologs

(cCNN-17) achieves an accuracy of 95.7%. Ultimately, the model

trained with protein-coding one-to-one homologs achieves a higher

accuracy, precision, recall, and F1 score than the model trained on

all one-to-one homologs (Table 1). This observation is consistent

with that previously observed in the human study (20). Therefore,

we continued our analysis by using protein-coding one-to-one

homologs as the selected features for the input layer.
3.2 Model selection for cross-species
cancer type prediction

In addition to the features used in the input layer, the number of

primary tumor types in the output layer also impacts the model

performance (20). The initial development of TULIP allows users to

choose either a 17 or a 32 primary tumor type model

(Supplementary Tables 1, 2). Glioblastoma (GBM) was not

included in the 17 primary tumor type model due to the

relatively small number of samples available through TCGA, but

it was included in the 32 primary tumor type model

(Supplementary Table 2). We used protein-coding one-to-one

homologs as features in the input layer and tested the

classification performance of the models on human data. For the

sake of simplicity, we refer to the 17 primary tumor type model as

the cCNN-17-PC model and the 32 primary tumor type model as

the cCNN-32-PC model in the remainder of the manuscript

(Table 1). Both models achieve an accuracy that is greater than

92% when used with human testing datasets (Table 1). The cCNN-

17-PC model performs well on predicting the primary tumor types
frontiersin.org
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in human data sets and outperformed the cCNN-32-PC model

(cCNN-17-PC: accuracy: 96.2%, precision: 96.2%, recall: 96.1%, F1

score: 0.961; cCNN-32-PC: accuracy: 92.3%, precision: 91.6%, recall:

92.2%, F1 score: 0.915) (Table 1). To examine the ability of TULIP

to distinguish between glioma tumor grades in both human and
Frontiers in Oncology 06
canine, we constructed an 18 primary tumor type model (cCNN-18-

PCmodel) that includes the primary tumor types in the 17 primary

tumor type model with the addition of glioblastoma

(Supplementary Table 3). The cCNN-18-PC model also performs

very well on predicting primary tumor type (cCNN-18-PC:
B

C

D

A

FIGURE 2

Feature selection for modeling. (A) Venn diagrams of the intersection between the 15860 annotated canine genes that have one-to-one human homologs
and the 60483 human genes annotated in the GDC. (B) Venn diagrams of the intersection between 15860 annotated canine genes that have one-to-one
human homologs and 19758 annotated protein coding human genes in GDC. (C) t-SNE analysis of three cancer types in canine datasets. The 500 most
variable of the 14761 canine genes that have one-to-one protein coding human homologs in the GDC were used. BLCA = Bladder cancer, LGG = Lower-
grade glioma, HGG = High-grade glioma. (D) Principal component analysis of canine bladder cancer and glioma datasets. The 14761 canine genes that have
one-to-one protein coding human homologs in the GDC were included. The top 500 genes exhibiting the highest row variance were used in this analysis.
BLCA, Bladder cancer; LGG, Lower-grade glioma; HGG, High-grade glioma.
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accuracy: 96.5%, precision: 96.6%, recall: 96.4%, F1 score: 0.965).

Both the cCNN-17-PC and the cCNN-18-PC models outperformed

the cCNN-32-PC model with an accuracy of greater than 96%

(Table 1). In addition, both the cCNN-17-PC and the cCNN-18-

PC models accomplish greater than 95% for precision, recall, and

F1 score.

To further benchmark the performance of cTULIP (1D-CNN)

models with other standard machine learning algorithms, we

constructed random forest (RF) and logistic regression (LR)

models with the 17 and 18 primary tumor types. The comparison

indicates that the accuracy of the 1D-CNN models surpassed both

the RF and LR models in all metrics (Table 2).
3.3 Cross-species primary tumor
classification performance

According to the performance on human data, both the cCNN-

17-PC and the cCNN-18-PC models classify human primary tumor

types robustly (Table 1). Next, we evaluated the predictive power of

these two human data-trained models on canine data. We tested

whether the cCNN-17-PC model can robustly classify canine

bladder cancer and canine glioma samples. Overall, this model

exhibits good predictive power in that it achieves an accuracy of

75.8%, a recall of 0.758, and an F1 score of 0.867 (Table 3). Without

distinguishing between the grades of glioma tumors, the cCNN-18-

PCmodel performed better than the cCNN-17-PC with an accuracy
Frontiers in Oncology 07
of 80.0%, a recall of 0.800, and an F1 score of 0.889 (Table 3). Thus,

including GBM in the model results in a somewhat improved

performance relative to the cCNN-17-PC model. We also tested

the ability of the model to distinguish between the grades of glioma

tumors in canine using the cCNN-18-PC model. However, this

model fails to accurately predict the grades of primary tumors

(Table 3). In particular, the accuracy drops to 48.4%, and precision,

recall, and F1 score decrease significantly as well. The inspection of

individual canine samples reveals that even though an increased

number of canine bladder cancer samples are classified into BLCA

correctly by using the cCNN-18-PC model, very few HGG samples

have been assigned to GBM (Supplementary Table 2). Overall, the

human data-trained models can classify canine primary tumor

types, but further optimization is needed to distinguish between

tumor grades.
3.4 Selected features capture key genes of
bladder cancer and glioma

Since we selected only the one-to-one protein-coding homologs

for use in the input layer, we sought to determine the cancer

relevance of these genes in humans. We compared these genes to

those with established importance in either human bladder cancer

or human glioma (Figure 3 and Supplementary Tables 5, 6) from

the Online Mendelian Inheritance in Man (OMIM) database (35,

36). In total, there are 178 BLCA-associated OMIM genes and 302
TABLE 1 Summary of the performance evaluation of the various models on human data.

Features Precision Recall F1-score Accuracy

17 PRIMARY TUMOR TYPES (Total samples: 9025)

cCNN-17-PC 96.2% 96.1% 0.961 96.2%

cCNN-17 96.0% 95.7% 0.957 95.7%

18 PRIMARY TUMOR TYPES (Total samples: 9199)

cCNN-18-PC 96.6% 96.4% 0.965 96.5%

32 PRIMARY TUMOR TYPES (Total samples: 10940)

cCNN-32-PC 91.6% 92.2% 0.915 92.3%
Accuracy, recall, precision and F1 score were used to quantify the performance of each model. The total number of human RNA-seq samples and selected features that were included in each
dataset used to train various models are indicated. PC 1:1 homologs included the 14761 protein coding human genes with one-to-one homologs in the canine genome. The 1:1 homologs included
the 15743 human genes with one-to-one homologs in the canine genome. Primary tumor types included in the models are provided in Supplemental Tables 1-3.
TABLE 2 Performance of various training algorithms on human data.

Statistics
cCNN-17-PC cCNN-18-PC

CNN RF LR CNN RF LR

Precision 96.2% 92.0% 82.0% 96.6% 89.0% 80.0%

Recall 96.1% 90.0% 83.0% 96.4% 90.0% 81.0%

F1-score 0.961 0.890 0.820 0.965 0.890 0.800

Accuracy 96.2% 90.0% 83.0% 96.5% 90.0% 81.0%
Accuracy, recall, precision and F1 score were used to quantify the performance of each model. The 14761 protein coding genes that have one-to-one homologs in the human and canine genomes
were used in the model input layer. The 17-cancer-type model included 17 primary tumor types as annotated in the GDC and the 18-cancer-type model included 17 primary tumor types as
indicated previously with the addition of glioblastoma (Supplemental Tables 1–3). CNN, Convolutional Neural Network; RF, Random Forest; LR, Logistic Regression.
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glioma-associated OMIM genes that have canine homologs.

Approximately 88% of BLCA-associated OMIM genes and 86% of

glioma-associated OMIM genes were included as features in the

input layer (Figures 3, 4A, B and Supplementary Tables 5, 6). In

addition, we compared the selected features to 402 genes that were

previously shown to be clinically relevant in bladder cancer (6, 40,

41). Of the 402 genes, 373 have at least one canine homolog and 339

are protein-coding one-to-one homologs (Figure 4C and

Supplementary Table 7).

Next, we examined whether the selected features used in the input

layer are biologically relevant in canine tumors. To this end, we

performed a differential expression analysis in both canine bladder

cancer and canine glioma compared to their corresponding normal

samples. In total, 13,028 differentially expressed genes (DEGs) were

identified in canine bladder cancer tumors and 8,215 DEGs were

identified in canine glioma tumors (Figure 5A). Over 66% of DEGs in

bladder cancer tumors and over 75% of DEGs in glioma tumors are

protein-coding one-to-one homologs (Figures 3, 5B, C). Furthermore,
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we combined the 402 clinically meaningful genes that were identified

from previous whole-genome sequencing and RNA-seq analyses (40,

41) and bladder cancer-associated OMIM genes that contain known

BLCA drivers to generate a list of 535 genes with documented

importance in bladder cancer. A total of 318 critical BLCA genes are

also differentially expressed in canine bladder cancer samples

(Figure 6A), 289 of which were included as features in the input

layer (Figure 6B). By and large, the selected features included in the

input layer appear to capturemost genes that are relevant in canine and

human bladder cancer and glioma.
3.5 Transcriptomic profiles alone may not
be sufficient for the classification of canine
glioma grades

The evaluation of these human-trained models suggests that

TULIP can perform cross-species primary tumor classification,
FIGURE 3

Upset plot showing the summary of the intersection between bladder cancer and glioma OMIM genes with selected features that were included in
the model input layers. Intersection analysis between gene sets of significantly differentially expressed genes in each cancer type as indicated,
human genes associated with each cancer type (OMIM genes) and annotated protein-coding human genes as indicated previously. The OMIM BLCA
gene set is the union of genes associated bladder cancer and bladder carcinoma. The OMIM glioma genes set is the union of genes associated with
glioma and glioblastoma [32,33]. Significantly differentially expressed genes of each canine cancer type were identified relative to normal samples
with false discovery rate (FDR)< 0.05. DEGs in glioma were identified by using all low-grade glioma and high-grade glioma samples relative to
normal samples. The total number of genes in each set is indicated by the set size. A black dot indicates the data sets that were intersected; a grey
dot shows that a gene set is excluded from the given intersection analysis. The size of the intersection between gene sets is shown on a log10 scale
as annotated at the top of each bar.
TABLE 3 Summary of performance evaluation of various models on canine data.

Models Precision Recall F1-score Accuracy Notes

Canine test data (Total samples: 95)

cCNN-17-PC 100.0% 75.8% 0.862 75.8%

cCNN-18-PC 100.0% 80.0% 0.889 80.0% Regardless of the grades of glioma samples

cCNN-18-PC 61.3% 48.4% 0.541 48.4%
Precision, Recall, F1-score and accuracy were calculated on the selected canine RNA-seq data. A total of 95 canine samples were included. Primary tumor types included in the models are
provided in Supplemental Tables 1–3.
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however, it cannot accurately distinguish between grades of canine

glioma tumors (Table 3). This observation is also supported by

Figures 2C, D. To further investigate possible causes of this caveat,

we undertook a series of analyses as described below.

First, we performed a single-sample gene set enrichment

analysis (ssGSEA) to examine whether the one-to-one protein-

coding homologs that are used in the input layer of the model

recapitulate the human glioma and bladder cancer molecular

signatures in the canine data. As the heat maps show, glioma and

bladder cancer exhibit distinct gene expression patterns (Figure 7;

Supplementary Figures 2, 3). Intriguingly, the hierarchical

clustering reveals that canine LGG and HGG samples share very

similar transcriptomic signatures, and that canine glioma exhibits a

more similar gene expression pattern to human LGG than to GBM.

Moreover, canine and human bladder cancer samples exhibit

similar gene expression patterns to one another (Figure 7;

Supplementary Figure 3).

We also performed a differential expression analysis between HGG

and LGG in canine. Only 117 DEGs were identified (Figure 8),

suggesting that there may be few enough transcriptomic differences

between grades of canine glioma to render classification using gene

expression profiles alone to be inadequate, which could contribute to
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the low classification power observed in segregating the LGG and

HGG samples.
4 Discussion

The canine model has in recent years been gaining traction as a

valuable system for studying a number of human diseases, including

cancer (1–4). This study highlights the transcriptomic similarities

between canine bladder cancer and glioma with the corresponding

human diseases, and in doing so underscores the importance of pet

dogs as a translational model in oncology. In this study, we find that

TULIP (TUmor CLassIfication Predictor), a deep learning

classification tool trained on RNA-seq data from human tumors,

can classify canine primary tumor types (20). The developed cCNN-

17-PC model performs good classification of canine tumor types

with an accuracy of 75.8%, a recall of 75.8% and an F1 score of

0.862, likewise the cCNN-18-PCmodel achieves an accuracy of 80%,

a recall of 80.0% and an F1 score of 0.889.

Additionally, the feature selection performed in this study

found that protein-coding genes that have one-to-one homologs

in the human and canine genome are sufficient to distinguish
B

C

A

FIGURE 4

Intersection analysis between critical BLCA and glioma genes and protein-coding one-to-one homologs. (A) Diagrams of the intersection between
the 14761 protein-coding canine genes that are one-to-one homologs and the bladder cancer-associated OMIM genes. Numbers in parentheses
indicate the percentage of the intersection of OMIM bladder genes. (B) Diagrams of the intersection between the 14761 protein-coding canine
genes that are one-to-one homologs and the glioma-associated OMIM genes. Numbers in parentheses indicate the percentage of the intersection
of OMIM glioma genes. (C) Diagrams of the intersection between the 14761 protein-coding canine genes that are one-to-one homologs and
identified clinically meaningful genes in both human and canine bladder cancers. Numbers in parentheses indicate the percentage of the
intersection of clinically meaningful BLCA genes.
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primary tumor types in both human and canine. On the human test

dataset, the cCNN-17-PCmodel, which uses protein-coding one-to-

one homologs as features in the input layer outperforms the cCNN-

17 model that uses all one-to-one homologs. The improved
Frontiers in Oncology 10
performance of models using protein-coding one-to-one

homologs indicates that most biologically relevant genes were

included as features in the input layer. The implication of this

observation is that the basis of oncogenesis is fundamentally
B C

A

FIGURE 5

Summary of DEGs in two canine cancer datasets. (A) Total numbers of differentially expressed genes that were identified in each canine cancer type
as indicated relative to normal samples with a false discovery rate threshold of< 0.05. BLCA = Bladder cancer, LGG = Low-grade glioma, HGG =
High-grade glioma, Glioma = High-grade glioma and low-grade glioma. (B) Diagrams of the intersection between 14761 protein coding canine
genes that are one-to-one homologs and identified DEGs in canine Glioma samples. Numbers in parentheses indicate the percentage of
intersection of DEGs identified in canine glioma samples. (C) Diagrams of the intersection between 14761 protein-coding canine genes that are one-
to-one homologs and identified DEGs in canine bladder cancer samples. Numbers in parentheses indicate the percentage of the intersection of
DEGs identified in canine bladder cancer samples.
BA

FIGURE 6

DEGs in BLCA in canine RNA-seq data. (A) Diagrams of the intersection between critical bladder-cancer-associated genes and DEGs in canine
bladder cancer samples. Numbers in parentheses indicate the percentage of the intersection of critical BLCA genes. (B) Diagrams of the intersection
between critical DEGs in canine bladder cancer samples and protein-coding one-to-one homologs. Numbers in parentheses indicate the
percentage of the intersection of critical BLCA genes that are identified as DEGs in canines.
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evolutionarily conserved. This finding provides independent

evidence to support the use of canines as a relevant model for

human cancers. It likewise suggests that the current selection of

input genes for the 1D-CNN models also includes the critical genes

for distinguishing between primary tumor types.
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It should be noted here that strictly speaking our analysis

doesn’t rule out the alternative hypothesis that even though the

initial oncogenic pathways are conserved, the subsequent

progression pathways may have diverged in humans and canines.

However, the observed conservation of oncogenes and oncogenic
FIGURE 7

Single-sample Gene Set Enrichment Analysis of canine RNA-seq data and human RNA-seq data. Annotated hallmark gene sets in the MSigDB
database were included in the analysis. The heat map of derived ssGSEA scores of 9 randomly selected samples of each canine cancer type and 10
randomly selected randomly samples from each human primary tumor type are shown. Enriched gene sets in either canine glioma or canine bladder
cancer were determined by having at least 2/3 of total sample size with an FDR threshold of< 0.05. The union of enriched gene sets in both cancer
types results in 42 gene sets as indicated. BLCA, Bladder cancer; LGG, Low-grade glioma; GBM, Glioblastoma; HGG, High-grade glioma.
FIGURE 8

DEGs in HGG vs. LGG in canine RNA-seq data. Significantly differentially expressed genes were identified in HGG relative to LGG with a false
discovery rate threshold of< 0.05. Significantly downregulated genes were colored by blue, and significantly upregulated genes were colored by red.
LGG, Low-grade glioma; HGG, High-grade glioma.
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pathways, as well as the ability to classify primary tumor types in

canines with a human-data-trained model suggest otherwise.

Specifically, a differential expression analysis and comparison to

genes with known cancer relevance support the hypothesis that

protein-coding one-to-one homologs include most of the known

cancer-relevant genes in canine and human. In addition, the

ssGSEA provides further evidence that the canine and human

diseases share strikingly similar transcriptomic profiles, including

those associated with oncogenic signaling and hallmark pathways.

Furthermore, we found that 1D-CNN models that were derived

from TULIP also outperformed other well-known machine learning

algorithms, both the cCNN-17-PC and cCNN-18-PC models

achieved accuracies of at least 96% while the accuracies of the 17

and 18 primary tumor type random forest and logistic regression

models had accuracies of at least 90% and 85% respectively.

This study also highlights, as in the previous study (20) that the

smaller cCNN-17-PC and cCNN-18-PC models outperform the

cCNN-32-PC model. We strongly suspect that the performance

gap between the CNN-32-PC model and the smaller models is due

to the number of samples available for the various types of cancer in

the Genomic Data Commons. In particular, the BLCA and LGG

datasets each contain more than 400 samples, however, the GBM

dataset only contains 174 samples in the training data. The previous

study on the initial development of TULIP has demonstrated that

the class imbalance of primary tumor types in the training dataset

has a significant impact on the accuracy of the model (20).

TULIP has previously been shown to enable the identification of

different types of primary kidney tumors, kidney renal clear cell

carcinoma and kidney renal papillary cell carcinoma, that originate

in the same organ (20). This observation raises the possibility of

using this model to classify samples by glioma grades. Even though

the cCNN-18-PC model is ultimately not able to perform robust

classification between grades of canine glioma tumors, there is

potential that this model could classify glioma tumor grade in

canines with further optimization. For example, there is a

fundamental discrepancy in the pathological classification of

grades of glioma in canines and humans that could impact the

predictive power of the cCNN-18-PC model. Canine gliomas are

classified into HGG and LGG without an assignment of a numeric

grade (16). In contrast, human LGG samples stands for lower grade

glioma, including grades II and III glioma (42), and GBM samples

are grade IV astrocytomas, which have a distinct clinical and

molecular characterization (15, 18). In addition, canine HGG

samples contain both oligodendrogliomas and astrocytomas, and

the majority of samples are oligodendrogliomas (10). In particular,

the ssGSEA analysis indicates that the biological pathways that are

overrepresented in canine LGG and HGG largely mirror the

representative biological pathways in human LGG samples while

human GBM samples exhibit a distinct enrichment of biological

pathways. It is not hard to speculate that the class imbalance of

primary tumor types could contribute to the lower predictive power

of the cCNN-18-PC model in distinguishing between grades of

canine gliomas. Therefore, future training for cross-species machine

learning with a balanced number of samples sharing more similar
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transcriptomic signatures might be required to improve

model performance.

According to the differential expression analysis, few

differentially expressed genes were identified between canine LGG

and HGG which may also contribute to the low predictive power of

the cCNN-18-PC model for glioma grade prediction. However, a

caveat is that we suspect that the low number of canine LGG

samples (n=9) is negatively impacting our ability to identify DEGs.

However, our study only highlights the similarity of the

transcriptomic profiles and the cancer relevance of selected

features in both canine and humans. Previous studies on canine

methylation patterns reveal that different grades of canine glioma

exhibit distinct DNA methylation profiles (10). This finding

suggests that the inclusion of epigenomic profiles might improve

the performance of TULIP in glioma grade classification.

In conclusion, this study underscores the similarities between

the gene expression profiles of canine bladder cancer and canine

glioma with that of the corresponding human diseases. This study

also highlights a general cross-species primary tumor classification

pipeline by developing 1D-CNN models for primary tumor type

prediction in humans and in canines. This is, to our knowledge, the

first example of a cross-species machine-learning primary tumor

type predictor. At the same time, this study also sheds light on the

need of additional multi-omics analysis in comparative oncology.

This study highlights the translational potential of the canine model

system, and ultimately, paves the way for the development of more

advanced cross-species machine-learning models with multi-omics

sequencing analysis that could have practical clinical applications,

such as tumor subtype identification as well as analysis of the

impact of novel therapies.
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