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Introduction: The hepatobiliary-specific phase can help in early detection of

changes in lesion tissue density, internal structure, and microcirculatory

perfusion at the microscopic level and has important clinical value in

hepatocellular carcinoma (HCC). Therefore, this study aimed to construct a

preoperative nomogram for predicting the positive expression of glypican-3

(GPC3) based on gadoxetic acid-enhanced (Gd-EOB-DTPA) MRI hepatobiliary

phase (HBP) radiomics, imaging and clinical feature.

Methods: We retrospectively included 137 patients with HCC who underwent

Gd-EOB-DTPA-enhanced MRI and subsequent liver resection or puncture

biopsy at our hospital from January 2017 to December 2021 as training cohort.

Subsequently collected from January 2022 to June 2023 as a validation cohort of

49 patients, Radiomic features were extracted from the entire tumor region

during the HBP using 3D Slicer software and screened using a t-test and least

absolute shrinkage selection operator algorithm (LASSO). Then, these features

were used to construct a radiomics score (Radscore) for each patient, which was

combined with clinical factors and imaging features of the HBP to construct a

logistic regression model and subsequent nomogram model. The

clinicoradiologic, radiomics and nomogram models performance was assessed

by the area under the curve (AUC), calibration, and decision curve analysis (DCA).

In the validation cohort,the nomogram performance was assessed by the area

under the curve (AUC).

Results: In the training cohort, a total of 1688 radiomics features were extracted

from each patient. Next, radiomics with ICCs<0.75 were excluded, 1587 features

were judged as stable using intra- and inter-class correlation coefficients (ICCs),

26 features were subsequently screened using the t-test, and 11 radiomics

features were finally screened using LASSO. The nomogram combining

Radscore, age, serum alpha-fetoprotein (AFP) >400ng/mL, and non-smooth

tumor margin (AUC=0.888, sensitivity 77.7%, specificity 91.2%) was superior to

the radiomics (AUC=0.822, sensitivity 81.6%, specificity 70.6%) and

clinicoradiologic (AUC=0.746, sensitivity 76.7%, specificity 64.7%) models, with

good consistency in calibration curves. DCA also showed that the nomogram

had the highest net clinical benefit for predicting GPC3 expression.In the
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validation cohort, the ROC curve results showed predicted GPC3-positive

expression nomogram model AUC, sensitivity, and specificity of 0.800, 58.5%,

and 100.0%, respectively.

Conclusion: HBP radiomics features are closely associated with GPC3-positive

expression, and combined clinicoradiologic factors and radiomics features

nomogram may provide an effective way to non-invasively and individually

screen patients with GPC3-positive HCC.
KEYWORDS

Gd-EOB-DTPA, hepatocellular carcinoma, glypican-3, radiomics, hepatobiliary phase,
magnetic resonance imaging
1 Introduction

Liver cancer is a global health challenge and its incidence is

increasing worldwide, especially in China, where it is the second

leading cause of cancer-related death (1). More than 80% of patients

with liver cancer are clinically diagnosed at the moderate to

advanced stage, with a poor prognosis despite various treatments.

Notably, the World Health Organization estimates that more than 1

million individuals will die from liver cancer by 2030 (2).

Hepatocellular carcinoma (HCC) accounting for 75–85% of liver

cancer and is a major type of liver cancer with high histological and

molecular heterogeneity.

HCC-expressing stem cell markers are a new subtype that has

been identified with different developmental pathways and unique

morphological and immunohistochemical features. Glypican-3

(GPC3) is one such HCC stem cell marker that is a specific

antigenic protein typically expressed in the liver during fetal

development, but not in healthy adults or fatty liver disease,

cirrhosis, and hepatitis. However, GPC3 is highly expressed in

80% of HCC tissues and is closely associated with elevated serum

alpha-fetoprotein (AFP) levels (3–5), making it an ideal early

diagnostic marker and therapeutic target for HCC. Evidence

shows that patients with high GPC3 expression experienced

higher recurrence and shorter survival rates than those with low

GPC3 expression (6–8). Therefore, preoperative evaluation of

GPC3 expression is important to improve patient outcomes and

treatment strategies.

Recently, the development of medical imaging technology has

facilitated preoperative non-invasive GPC3 assessment.

Conventional methods include serological examination and liver

biopsy; however these are limited by low sensitivity and high

invasiveness, respectively. Similarly, traditional medical imaging

modalities can only show simple features of lesions and organs,

such as morphology, size, and mode of enhancement (9). However,

radiomics, an emerging technology in the field of diagnostic

imaging for high-throughput extraction of biological features, can

transform medical images into quantitative data to enable model

creation from large-scale datasets using computer algorithms.

Furthermore, radiomic profiling has significant advantages and
02
broad applicability in the diagnosis, prognosis prediction, and

selection of suitable treatment options for tumors, which can aid

in the early and non-invasive assessment of GPC3 expression in

patients with HCC (10). In addition, gadolinium-ethoxybenzyl-

diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced

magnetic resonance imaging (MRI) can be used to evaluate

quantitative and qualitative intratumoral and peritumoral imaging

features during tumor development or heterogeneous and

hemodynamic patterns in very early-stage HCC. Moreover,

clinicoradiologic models based on Gd-EOB-DTPA-enhanced MRI

features can aid qualitative patient diagnosis, efficacy evaluation,

and postoperative recurrence prediction (11, 12).

Various studies have demonstrated a correlation between GPC3

expression and MRI radiomics features, histogram analysis,

iterative decomposition of water and fat with echo asymmetry

and least squares estimation quantification sequence (IDEAL-IQ)

sequences, and liver imaging reporting and data system (LI-RADs)

signatures (13–17). However, only one study reported the potential

advantages of Gd-EOB-DTPA-enhanced MRI radiomics in

identifying GPC3-positive HCC (13) and was based on multiple

sequences with limited extracted features of the hepatobiliary phase

(HBP). Changes in lesion tissue density, internal structure, and

microcirculatory perfusion can be detected during the

hepatobiliary-specific phase at the microscopic level early on and

has important clinical value. Therefore, this study aimed to

construct a nomogram model containing HBP information,

including higher throughput radiomics features and qualitative

and quantitative parameters of traditional medical imaging, and

to explore the clinical application of the nomogram to predict

GPC3 expression.
2 Materials and methods

2.1 Study population

This study retrospectively analyzed the data of 137 patients

from January 2017 to December 2021 in Henan Provincial People’s

Hospital as a training cohort, consisting of 103 patients in the GPC3
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expression positive group and 34 patients in the GPC3 expression

negative group. Subsequently collected from January 2022 to June

2023 as a validation cohort of 49 patients, of which 41 were GPC3

positive and 8 were negative, the inclusion criteria were as follows:

(a) patients with HCC, confirmed by postoperative pathology

report; (b) the use of Gd-EOB-DTPA-enhanced MRI, within one

month before surgery; (c) complete GPC3 immunohistochemical

staining; and (d) complete medical history. The exclusion criteria

were as follows: (a) patients who received treatment for HCC before

the MRI examination, such as transarterial chemoembolization,

radiofrequency ablation, and partial hepatectomy; and (b) poor

MRI quality due to motion artifact (Figure 1). This study was

approved by the Ethics Committee of Henan Provincial People’s

Hospital. The requirement to obtain written informed consent was

waived due to the retrospective nature of the study.
2.2 EOB-MRI protocol

MRI scanning was performed using a 3.0T system (Discover

MR750; GE Healthcare, Milwaukee, WI, USA) with an 8-channel

phased-array surface coil, with the abdominal MRI scan coil

centered at the level of the glabellar process, covering the top of

the diaphragm to the lower edge of the liver. The hepatobiliary

specific contrast agent (Gd-EOB-DTPA, Primovist; Bayer

HealthCare, Berlin, Germany) was injected at a dose of 0.025

mmol/kg via the elbow vein using a high-pressure syringe with a

flow rate injection of 1.0 mL/s. The acquisition time for scanning

the arterial, portal venous, transitional, and hepatobiliary phases

were 20–30 s, 60–90 s, 3–5 min, and 20 min after drug

administration, respectively. The MRI parameters for the HBP

were as follows: a repetition time (TR) of 4.1 ms, time to echo

(TE) of 1.9 ms, matrix size of 320 × 192, field-of-view (FOV) of 360

mm × 288 mm, and layer thickness of 5 mm.
2.3 MRI imaging analysis

The MRI data were independently reviewed by two senior

diagnostic radiologists, and the results were negotiated to reach a

consensus. The qualitative imaging parameters included in the
Frontiers in Oncology 03
analysis were: (a) HBP tumor hypointensity; (b) non-smooth

tumor margin, defined as an irregular margin that had a budding

portion at the tumor periphery during HBP; (c) peritumoral

hypointensity during HBP, defined as a wedge-shaped or

flamelike hypointense area of hepatic parenchyma surrounding

the tumor during HBP; The quantitative imaging parameters

included in the analysis were: (d) tumor size, which was defined

as the maximum diameter of the tumor was measured on the axial

HBP; and (e) signal intensity (SI) of the HBP lesion and the liver

tissue surrounding the lesion, with each measurement avoiding

blood vessels, hemorrhage, and cystic lesions. The maximum lesion

level was selected for measurement, and the region of interest (ROI)

of the peritumoral liver tissue was selected to be about 200 mm2.

Peritumoral liver parenchyma was selected within ≤2 cm of the

tumor. Finally, each area of interest was measured three times and

averaged, and the tumor/peritumoral liver parenchyma signal ratio

was calculated.
2.4 Radiomics analysis

Using an imaging segmentation online software (3D Slicer,

version 5.0.3), the ROI was determined by a radiologist with 5

years of abdominal diagnostic experience using the “segment

editor” module to manually outline the ROI layer by layer during

the HBP, which was later verified and validated by another senior

radiologist. If the second radiologist questioned the segmented ROI

of the first radiologist, a consensus was reached or the senior

radiologist modified it accordingly. After one week, all 137 lesions

were outlined again to assess the stability and reproducibility

(Figure 2). Radiomics profiling was conducted using Python

(version 3.9.15) and Pyradiomics (version 3.6.13), after the images

were normalized and resampled (1,1,1), resulting in 9 image types

(original, wavelet, square, squareroot, logarithm, exponential,

gradient, localbinarypattern2D, localbinarypattern3D) and 7

feature classes [shape, first-order statistics, gray-level co-

occurrence matrix (glcm), gray-level run length matrix (glrlm),

gray-level size zone matrix (glszm), gray-level dependence matrix

(gldm), and neighborhood gray-tone difference matrix (ngtdm)].
2.5 Selection and construction of the
radiomics model

Radiomics features were screened using Python (version

3.9.15). The common features with reproducibility within and

between observers were used, while those with intra- and inter-

class correlation coefficient (ICCs)<0.75 were excluded. After

removing unstable features, t-tests were performed between the

positive and negative groups, and least absolute shrinkage and

selection operator (LASSO) regression analysis was performed for

features with P-values <0.05. The penalty term coefficient (l) was
determined by a 10-fold cross-validation iteration to select the

largest AUC. According to the final 11 radiomic features

obtained, clinical factors and imaging signs were incorporated

using logistic regression (LR) classification to construct a
FIGURE 1

Flowchart of patient enrollment in the study.
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nomogram for comparison. Finally, plots for receiver operating

characteristic curves (ROC), calibration curves, and decision curves

analysis (DCA) were created to validate the model.
2.6 Laboratory tests and
histopathological examinations

The preoperative laboratory indicators were serum alpha-

fetoprotein (AFP), carcinoembryonic ant igen (CEA),

carbohydrate antigen 199 (CA199), carbohydrate antigen 125

(CA125) , a lanine aminotransferase (ALT) , aspartate

aminotransferase (AST), total bilirubin (TBIL), direct bilirubin

(DB I L ) , a n d a l b um in (ALB ) . I n a dd i t i o n , GPC3

immunohistochemistry analysis was reviewed by two pathologists.

To accurately assess GPC3 expression, the scoring criteria proposed

by Takai et al. (18) was applied, considering the positive cell rate,

staining intensity, and staining pattern. Then, the patients were

classified into a negative (<10%) and a positive group (≥10%) based

on GPC3 expression.
2.7 Statistical analysis

Statistical analysis was performed using SPSS Statistics (version

26; IBM Corp, Armonk, NY, USA) and R (version 4.2.1; R

Foundation for Statistical Computing, Vienna, Austria) software.

The normality of variables was tested using the Kolmogorov-

Smirnov test and the homogeneity of variables was tested by

Levene’s test. Normally distributed continuous measures are

expressed as mean ± standard deviation using the t-test. Non-

normally distributed continuous measures are expressed as median

(P25–P75) using the Mann-Whitney U test, while the Chi-square

test or Fisher’s exact test was used for categorical variables. Inter-

reader variability was assessed using Cohen’s kappa coefficient.

Clinicoradiologic factors with significant (P<0.05) differences in

the univariate analysis were further analyzed using multivariable

logistic regression analysis. The area under the curve (AUC),

sensitivity, and specificity were used to assess the validity of the

predictive model; calibration curve analysis was used to assess the fit

between the predicted and actual probabilities of the nomogram

model; and the net clinical benefit of the nomogram was evaluated

by DCA.
Frontiers in Oncology 04
3 Results

3.1 Patient baseline information

The preoperative clinicopathologic information between GPC3-

positive and GPC3-negative patients in both training and validation

datasets are shown in Table 1. In the training cohort, the two groups

demonstrated significant differences in age, serum AFP, non-

smooth tumor margins, and tumor/peritumoral liver parenchyma

signal ratios. In the validation cohort, two groups demonstrated

significant differences in non-smooth tumor margins and tumor/

peritumoral liver parenchyma signal ratios.Inter-reader agreement

between the two radiologists for HBP imaging was good with a

Cohen’s kappa value ranging from 0.761 to 1.000. Univariate

logistic regression analysis in the training cohort showed that age,

AFP, non-smooth tumor margin, and tumor/peritumoral liver

parenchyma signal ratio were significantly associated with GPC3

expression (P<0.05), and all factors were further analyzed using

multivariable logistic regression. Age (odd ratio (OR)=0.950; 95%

confidence interval (CI): 0.906–0.992, P=0.025) and non-smooth

tumor margin (OR=3.388; 95% CI: 1.197–9.649, P=0.020) were

found to be independent risk factors for clinicoradiologic modeling,

while AFP>400 ng/mL (OR=3.136; 95% CI: 0.950–14.318, P=0.088)

possessed clinical significance.
3.2 Radiomics feature analysis and
radscore calculation

A total of 1688 features were extracted from the HBP images per

patient in the training cohort, including 14 shape, 18 first-order

statistical, 75 texture, 744 wavelet, 93 square, 93 square root, 93

logarithmic, 93 exponential, 93 gradient, and 372 (93 2D and 279

3D) local binary features. Following exclusion of radiomics with

ICCs<0.75, 1587 features were judged as stable features and

screened using the t-test, retaining 26 features. Of these, 11 key

radiomics features were finally identified by LASSO regression

analysis (Figure 3). The details of the 11 radiomics features are

shown in Figure 4.

Radscore=(-0.058037)×exponential_glrlm_HighGray

LevelRunEmphasis+(-0.032068)×lbp-3D-m2_firstorder_Kurtosis

+(0 .015217)×logar i thm_firs torder_Interquar t i l eRange

+(-0.016434)×square_glcm_JointAverage+(0.041409)×wavelet-
FIGURE 2

A representative ROI outlined in a 20 min HBP image using 3D Slicer software.
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LLH_glcm_Idmn+(0.010683)×wavelet-LLH_glcm_MCC

+ ( - 0 . 0 5 8 6 1 9 ) ×w a v e l e t - LHH_fi r s t o r d e r _ S k ewn e s s +

(-0.027467)×wavelet-LHH_glszm_LowGrayLevelZoneEmphasis

+(0.032267)×wavelet-HLH_glcm_ClusterShade+(-0.029348)

×wavelet-HLH_gldm_LowGrayLevelEmphasis+(0.041051)

×wavelet-HHH_firstorder_Skewness.
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3.3 Modeling and evaluation of
radiomics nomogram

In the training cohort, age, serum AFP >400 ng/mL, and non-

smooth tumor margin were incorporated, and the top 11 features

were combined to construct the nomogram (Figure 5). The
TABLE 1 Comparison of clinical radiological features between GPC3-positive and GPC3-negative patients.

Variable Training cohort Validation cohort

GPC3-positive
(n=103)

GPC3-negative
(n=34)

P
value

GPC3-positive
(n=41)

GPC3-negative
(n=8)

P
value

Age (years) 54.83 ± 9.88 59.88±8.81 0.009 54.05±1.27 56.63±3.44 0.431

Gender (%) 1.000 0.633

Male
Female

84 (81.6)
19 (18.4)

28 (82.4)
6 (17.6)

24 (58.5)
17 (41.5)

6 (75.0)
2 (25.0)

AFP (%) 0.038 0.333

<400ng/mL
>400ng/mL

74 (71.8)
29 (28.2)

31 (91.2)
3 (8.8)

32 (78.0)
9 (22.0)

8 (100.0)
0 (0.0)

CEA (ng/mL) 2.29
(1.34,3.61)

1.71
(0.96, 2.54)

0.054 1.64
(0.88, 2.16)

2.18
(0.81, 3.13)

0.343

CA199 (U/mL) 19.35
(9.65, 30.75)

14.94
(8.56, 32.06)

0.648 9.43
(4.60, 25.67)

15.46
(12.71, 30.87)

0.310

CA125 (U/mL) 11.61
(7.34, 15.05)

12.05
(9.42, 26.16)

0.212 8.87
(6.21, 16.38)

10.66
(6.79, 16.78)

0.905

TBIL (µmol/L) 13.90
(9.90, 17.70)

14.20
(11.40, 20.90)

0.690 11.90
(8.90, 15.60)

10.85
(8.40, 15.50)

0.735

DBIL (µmol/L) 4.60
(3.25, 6.65)

4.85
(3.23, 6.45)

0.960 3.30
(2.60, 4.50)

2.55
(1.75, 3.68)

0.189

ALT (IU/L) 27.60
(19.05, 42.00)

29.80
(21.70, 41.75)

0.548 31.40
(18.30, 46.80)

22.50
(15.77, 33.65)

0.250

AST (IU/L) 32.00
(23.25, 42.35)

32.55
(24.40, 46.00)

0.519 29.60
(23.00, 43.30)

26.80
(21.12, 32.85)

0.285

ALB (g/L) 40.24 ± 5.35 39.84 ± 4.81 0.695 39.85±4.34 38.50±3.30 0.409

Diameter (mm) 82.7
(67.0-107.0)

83.0
(64.0-103.0)

0.772 32.0
(20.0-49.0)

19.0
(13.0-48.5)

0.185

HBP hypointense 1.000 …

Present
Absent

101 (98.1)
2 (1.9)

33 (97.1)
1 (2.9)

41 (100.0)
0 (0.0)

8 (100.0)
0 (0.0)

Peritumoral hypointense 0.157 0.104

Present
Absent

40 (38.8)
63 (61.2)

8 (23.5)
26 (76.5)

21 (51.2)
20 (48.8)

1 (12.5)
7 (87.5)

Non-smooth tumor
margin

0.002 0.037

Present
Absent

92 (89.3)
11 (10.7)

22 (64.7)
12 (35.3)

33 (80.5)
8 (19.5)

3 (37.5)
5 (62.5)

Tumor SI 548.96 ± 156.41 592.62±201.79 0.193 364.07±34.05 402.92±103.01 0.665

Peritumoral SI 875.02 ± 221.85 853.51±199.68 0.616 633.61±49.59 577.28±122.92 0.653

Tumor/peritumoral
signal ratio

0.64 ± 0.14 0.71±0.22 0.026 0.55±0.01 0.66±0.05 0.033
fron
GPC3, glypican-3; AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; CA125, carbohydrate antigen 125; TBIL, total bilirubin; DBIL, direct bilirubin;
ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALB, albumin; SI, signal intensity.
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diagnostic performance of each model was evaluated using ROC

curves. The clinicoradiologic model had AUC of 0.746, with

sensitivity of 76.7% and specificity of 64.7%. The model

constructed using the 11 radiomics features had AUC of 0.822,

with sensitivity of 81.6%, and specificity of 70.6%. The model

consisting of the combined radiomics and clinicoradiologic scores

had AUC of 0.888, with sensitivity of 77.7% and specificity of 91.2%

(Figure 6). The clinical application value of each model was assessed

using DCA (Figure 7A) and showed that the nomogram yielded a

higher net clinical benefit than the radiomic and clinicoradiologic

models, indicating the clinical utility for GPC3-positive patients

with HCC. The calibration curve assessed the agreement between

the actual and predicted GPC3 expression and found close

agreement between the predicted GPC3 status of the three models

and the actual GPC3 status (Figures 7B–D). In the validation

cohort, the nomogram model consisting of the combined

radiomics and clinicoradiologic scores had AUC of 0.800, with

sensitivity of 58.5% and specificity of 100.0% (Figure 8).
Frontiers in Oncology 06
4 Discussion

This study investigated radiomic and clinicoradiologic features

during HBP in Gd-EOB-DTPA-enhanced MRI scans of patients

with HCC for preoperative prediction of GPC3 expression and

constructed a nomogram that achieved good results and yielded a

superior predictive performance than the radiomics and

clinicoradiologic models. Given the signal difference between

tumor tissue and surrounding liver parenchyma in HBP images is

more significant than traditional contrast, the radiomics approach

facilitates accurate depiction of tumor boundaries.

GPC3 plays a key role in HCC development and tumor cell

proliferation and invasion regulation. Most patients with GPC3-

positive HCC have a poor postoperative prognosis with early

recurrence and a low overall survival rate (6–8). Therefore, early

prediction of GPC3 expression using radiomic features is an

important clinical tool; however, studies addressing GPC3

radiomics are limited. Although Chong et al. (13) conducted a

radiomics study based on Gd-EOB-DTPA-enhanced MRI, the 10

most discriminating radiomic signatures extracted lacked HBP

features. In the current study, we extracted HBP features

consisting of original, wavelet, square, square root, logarithmic,
FIGURE 4

Weighting coefficients of 11 the radiomics features.
BA

FIGURE 3

LASSO plots for screening features created using Python. (A) Lamda in the horizontal coordinate and mean square error (MSE) in the vertical
coordinate. (B) Lamda in the horizontal coordinate and coefficients in the vertical coordinate.
FIGURE 5

Nomogram of radiomics features and clinicoradiologic features of
GPC3 expression in HBP 20min MRI imaging.
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exponential, gradient, and local binary features. Therefore, more

tumor-related signatures can be obtained from HBP images to

achieve a quantitative assessment of tumor heterogeneity.

Moreover, conventional HBP MRI quantitative parameters, such

as tumor signal, peritumor liver parenchymal signal, and tumor/

peritumoral liver parenchyma signal ratio, may be a valuable

addition to the predictive indexes of existing studies.

Radiomics can transform medical imaging into high-

dimensional quantitative imaging feature data, describe tumor

heterogeneity more comprehensively and quantitatively, and

make up for the lack of qualitative diagnosis in traditional

imaging. In our study, 11 features most relevant to GPC3

expression were selected, all of which were high-order features, of

which 7 were wavelet features, and the remaining 4 were square,

logarithmic, exponential, and local binary features, respectively.

These 11 feature parameters reflect, to varying degrees, the

differences in HCC GPC3 expression in terms of imaging gray

value distribution, texture features, and spatial heterogeneity.

Wavelet transformation is a radiomics analysis method with good

localization properties that can identify characteristic image

features and is more responsive to the internal environment and

tumor heterogeneity. In addition, the wavelet transformation can
B

C D

A

FIGURE 7

Decision and calibration curves for predicting positive GPC3 expression. (A) DCA demonstrating that the nomogram model outperforms the
radiomics and clinicoradiologic models for predicting GPC3 in HCC. The gray line indicates the net benefit assuming all patients are GPC3-
positive, whereas the black line indicates the net benefit curve assuming all patients are not GPC3-positive. The green, blue, and red lines
indicate the (B) clinicoradiologic model, (C) radiomics model, and (D) nomogram model, respectively, with all showing that the predicted
GPC3 probability is consistent with the actual probability. The X-axis indicates the predicted GPC3 expression likelihood, while the Y-axis
indicates the actual GPC3-positive patients. Moreover, the diagonal dashed line indicates the ideal prediction of the perfect model.
FIGURE 6

Comparison of predicted GPC3 expression using the area under
curve (AUC) for clinicoradiologic, radiomics, and nomogram
models in the training cohort.
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eliminate the noise in images and sharpen images, and the

transformed higher-order features can more clearly portray subtle

changes in the tumor tissue. Consisted with our findings, Gu et al.

(14) identified MRI-derived wavelet features following wavelet

filtering, which focused on different frequency ranges: those with

high frequency reflected the tumor edge and detailed information,

while those with low frequency obtained the tumor outline

information and filtered noise at the same time. Furthermore, Qu

et al. (19, 20) constructed a radiomics model with mostly wavelet-

filtered imaging features to predict microvascular invasion (MVI),

indicating that the wavelet filter is a powerful tool for obtaining

decomposition and approximation information of imaging. The

results of this study show that four radiomics features such as

exponential_glrlm_HighGrayLevelRunEmphasis, wavelet-

LLH_glcm_Idmn, wavelet-LHH_firstorder_Skewness, wavelet-

HHH_firstorder_Skewness have large weights. The screened

exponential is based on the glrlm feature, which describes the

alignment of pixels with the same gray level in a specified

direction. exponential_glrlm_HighGrayLevelRunEmphasis

describes the complexity of the GPC3-positive HCC lesion site

and the change of layers, which indicates heterogeneity of the lesion

structure. The screened wavelet features are mainly based on glcm

and first-order statistics, glcm reflects the spatial relationship

between pixels and determines the frequency of occurrence of a

particular combination of pixels in the image, first-order statistical

features mainly describe distribution of pixel or voxel intensities

within the tumor region of the image, and Skewness represents the

degree of asymmetry of imaging in histogram distribution, which

reflects the fact that grayscales of the GPC3-positive HCC are more

asymmetric, inhomogeneous, and heterogeneous than those of the

negative ones.
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In the training cohort, our results showed that patients in the

GPC3-positive group were younger than those in the GPC3-

negative group, which was consistent with previous reports (13–

15). Univariate logistic regression analysis showed AFP levels were

significantly different between the groups, with the positive group

more likely to have AFP levels >400 ng/mL. However,

multivariable analysis showed no significant difference between

the two groups. AFP has become the most widely used clinical

biomarker for the diagnosis and prognosis of HCC, and high AFP

levels have been shown to correlate with HCC progression,

postoperative tumor recurrence, and metastasis. Weng et al. (21)

reported that GPC3 shared the same pattern of regulation with

AFP, whereby a reduction in zinc finger family protein−zinc finger

and BTB domain-containing protein 20 (ZBTB20) expression

promoted the expression of both AFP and GPC3, as well as

hepatocytes proliferation, consistent with findings of previous

studies (13–17). In the validation cohort, There was no

statistically significant difference in age and AFP between

groups, which we speculated may be related to smaller sample

sizes. Several studies have demonstrated that a non-smooth tumor

margin during HBP is associated with MVI, risk of early

recurrence, and poor prognosis (22, 23). In this study, patients

with GPC3-positive HCC predominantly showed irregular tumor

margins, which may be due to the higher malignancy of GPC3-

positive HCC and the susceptibility of tumor marginal tissues to

invasion, resulting in changes in morphology (24). Univariate

analysis of the tumor/peritumoral liver parenchyma signal ratio

revealed a significant difference between the two groups. In

addition, evidence suggests that poorly differentiated HCC cells

cannot express OATP1B3 on the membrane surface; which

contributes to low signal on MRI due to poor contrast uptake

(25). Conversely, Gong et al. (26) observed that GPC3 expression

was higher in moderately and poorly differentiated HCC than in

highly differentiated HCC. Thus, the lack of significant differences

in multivariate analysis may be attributable to the interaction of

multiple factors.

This study had several limitations. First, this was a single-

center retrospective study. In the future, we plan to obtain

further data for validation to achieve a better outcome. Second,

although the combination of t-test and LASSO regression

analysis has high efficiency and sparsity, it can be less stable

when a large number of features are included in the model.

Therefore, other feature selection methods should be

investigated in future research. Lastly, we only used HBP

images in this study, however, a variety of sequences, such as

T2WI, DWI, PRE, AP, PVP, and TP, should be investigated in

multiparametric studies.

In conclusion, HBP radiomic features were closely associated

with GPC3-positive expression, and the combination of age, AFP

>400 ng/mL, and non-smooth tumor margin provided an effective

way to non-invasively and individually predict GPC3-positive HCC

patients. Thus, this study provides a novel nomogram with clinical

utility and objectivity that may help to determine suitable treatment

plans for GPC3-positive patients with HCC in the future.
FIGURE 8

Predicted GPC3 expression using the area under curve (AUC) for
nomogram models in the validation cohort.
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