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Introduction: Hepatocellular carcinoma (HCC) is the most common type of

cancer worldwide and is a major public health problem in the 21st century.

Disulfidopathy, a novel cystine-associated programmed cell death, plays

complex roles in various tumors. However, the relationship between

disulfidoptosis and prognosis in patients with HCC remains unclear. This study

aimed to explore the relationship between disulfideptosis and the prognosis of

liver cancer and to develop a prognostic model based on amino acid metabolism

and disulfideptosis genes.

Methods: We downloaded the clinicopathological information and gene

expression data of patients with HCC from The Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO) databases and classified them into different

molecular subtypes based on the expression patterns of disulfidoptosis-

associated amino acid metabolism genes (DRAGs). Patients were then

classified into different gene subtypes using the differential genes between the

molecular subtypes, and the predictive value of staging was assessed using

survival and clinicopathological analyses. Subsequently, risk prognosis

models were constructed based on Cox regression analysis to assess patient

prognosis, receiver operating characteristic (ROC) curves, somatic mutations,

microsatellite instability, tumor microenvironment, and sensitivity to antitumor

therapeutic agents.

Results: Patients were classified into two subtypes based on differential DRAGs

gene expression, with cluster B having a better survival outcome than cluster A.

Three gene subtypes were identified based on the differential genes between the

two DRAGs molecular subtypes. The patients in cluster B had the best prognosis,

whereas those in cluster C had the worst prognosis. The heat map showed better

consistency in the patient subtypes obtained using both typing methods. We

screened six valuable genes and constructed a prognostic signature. By scoring,
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we found that patients in the low-risk group had a better prognosis, higher

immune scores, and more abundant immune-related pathways compared to the

high-risk group, which was consistent with the tumor subtype results.

Discussion: In conclusion, we developed a prognostic signature of

disulfidptosis-related amino acid metabolism genes to assist clinicians in

predicting the survival of patients with HCC and provide a reference value for

targeted therapy and immunotherapy for HCC.
KEYWORDS

hepatocellular carcinoma (HCC), disulfidptosis, amino acid metabolism, immune
microenvironment, microsatellite instability, prognostic signature
1 Introduction

According to the International Report on Oncology Statistics,

primary liver cancer is the fourthmost lethal cancer (1).Hepatocellular

carcinoma (HCC) accounts for approximately 80% of primary liver

cancers and is the most common type (2) Currently, The main

treatment options include local radiofrequency ablation, surgery,

radiotherapy, and immunotherapy, which have improved patient

survival (3). However, a high degree of heterogeneity among patients

has led to different outcomes in most patients with HCC after

comprehensive treatment. The complexity and polygenicity of

tumors may explain the limitations of current treatment options;

therefore, there is an urgent need to identify valuable prognostic

models to evaluate targeted and more effective treatments for

individual patients with liver cancer. Recent studies have shown that

the intracellular accumulation of disulfides induces a stress response

that leads to disulfidosis, a new form of programmed cell death (4).

Normally, cancer cells rely on the amino acid transporter protein

SLC7A11to transport cystine intracellularly topromote tumorgrowth;

however, cystine is a disulfide that may have cytotoxic effects. To

regulate thisbalance, cells rapidly convert toxic disulfides intonontoxic

molecules using NADPH (4, 5). NADPH is mainly produced by

glucose metabolism; therefore, when tumor cells lack glucose, it can

trigger disulfidaptosis in tumor cells, which in turn inhibits tumor

growth. However, this process is not cytotoxic to normal tissues (6).

Since the concept of disulfidoptosis was first proposed, it has attracted

considerable attention from the medical community, particularly in

the field of tumor therapy. Therefore, understanding the state of

disulfidoptosis in different HCC populations is important for

exploring targeted therapies for HCC.

Metabolic reprogramming was found to be the main feature in

the analysis of three common tumor metabolites, and amino acid

metabolism plays an important role in tumor development (7).

Several studies have shown that genes related to amino acid

metabolism act as metabolic regulators that meet the demands of

rapid tumor cell proliferation. For example, glutaminase 2 (GLS2)

regulates glutamine metabolism by binding to P53, decreasing the

antioxidant capacity of reduced glutathione and reducing ROS

levels, which in turn enhances the tumor-suppressive function of
02
P53 (8, 9). The oncogenic transcription factor cMyc in tumor

cells acts on serine hydroxymethyltransferase (SHMT) to promote

tumor proliferation by depleting serine (10, 11). Argininosuccinate

synthase (ASS), a key enzyme in the arginine synthesis pathway, is

defective in various tumors, including HCC. Some investigators

have developed arginine degradation therapies based on this

feature, which are used to treat patients with this group of tumors

(12). Exploration of amino acid metabolism is important for the

prevention and treatment of HCC. In addition, the immune

microenvironment of HCC provides a suitable growth

environment for tumor development (13), and chimeric antigen

receptor (CAR) T-cell therapies and monoclonal antibodies against

programmed cell death protein 1 (PD-1), thus improving the

prognosis of patients with HCC by altering the pathways where

immune cell checkpoints are located and thus improve the

prognosis of patients with HCC (14). However, it remains unclear

whether amino acid metabolism-related genes are involved in

immune regulation in HCC. Therefore, further studies are

required to determine the prognosis of patients with HCC.

The relationship between disulfidoptosis and amino acid

metabolism, two important processes in tumor development,

has received increasing attention. Amino acid metabolic

reprogramming is an essential feature of abnormal metabolic

changes in tumors that can endow cancer cells with the ability to

proliferate rapidly. However, as a new form of programmed death,

disulfidoptosis is closely related to cysteine/glutamine acidmetabolism.

In this study, we developed a prognostic signature combining

disulfide-related genes (DRGs) and amino acid metabolism-related

genes (ARGs), which is valuable for assessing the prognosis of patients

with HCC. A flowchart of the study is presented in Figure 1.
2 Materials and methods

2.1 Collation and collection of data

First, we downloaded clinicopathological information, gene

expression matrix data, and somatic mutation data of patients

with HCC from TCGA database. Another set of data containing
frontiersin.org

https://doi.org/10.3389/fonc.2023.1204335
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2023.1204335
the survival information of patients with HCC was downloaded

from the GEO database, and joint analysis of data from multiple

databases helped reduce the heterogeneity of individual datasets.

The GSE76427 and TCGA-LIHC data downloaded from the GEO

database were combined using the “merge” package, and the “sva”

package in R language was used to correct for differences and

normalize for different sequencing batches, excluding patients with

missing survival information. We finally obtained 371 patients with

HCC from TCGA database and 115 patients from the GEO

database, which were used for subsequent analysis.
2.2 Clinical sample collection

We randomly collected 23 pairs of fresh HCC and adjacent

normal tissue samples were randomly collected from the First

Hospital of Chongqing Medical University (Chongqing, China)

between February and March 2023. Twenty pairs of paraffin-

embedded sections of HCC and paracancerous tissues were

retrospectively collected from patients with HCC who underwent

surgery at the First Affiliated Hospital of Chongqing Medical

University between June 2022 and December 2022 at the
Frontiers in Oncology 03
Diagnostic Pathology Center of Chongqing Medical University

(Chongqing, China). None of the patients in our study underwent

radiotherapy, chemotherapy, or immunotherapy before surgery.

This study was approved by the Ethics Committee of the First

Affiliated Hospital of Chongqing Medical University and all

patients signed an informed consent form before the study.

2.2.1 Quantitative real time PCR (qRT-PCR)
Total RNA was extracted from 23 pairs of fresh HCC and

paraneoplastic tissues using the TRIZOL reagent (Takara

Biotechnology Co., Ltd., Dalian, China) according to the

manufacturer’s instructions. total RNA was reverse transcribed

into cDNA using the PrimeScrip™ RT kit (Takara Biotechnology

Co., Ltd.). The RNA was reverse-transcribed into cDNA.

Polymerase chain reaction (PCR) was performed to detect the

mRNA expression of CD8A in HCC and paraneoplastic tissues

according to the manufacturer’s instructions. The amplification

product was designed by Takara Biotechnology Co., Ltd. with the

f o l l ow in g s equenc e : CD8A : f o rwa rd , 5 ′ -TCATGGC

CTTACCAGTGACC-3, ‘ and reverse, 5′-AGGTTCCAGGTCCG
ATCC-3′; b-actin: forward, 5′-AGAAAATCTGGC ACCACACCT-3,’

and reverse, 5′-GATAGCACA GCCTGGATAGCA-3. ‘ Expression
FIGURE 1

Flow chart of our study. DRGs, disulfidptosis related genes; ARGs, amino acid metabolism-related genes; DRAGs, disulfidptosis related glycolytic
genes TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; TMB, tumor mutational burden; CNV, copy number variation; GSEA, Gene
Set Enrichment Analyses; TME, tumor microenvironment; MSI, microsatellite instability; CSCs, cancer stem cells; IHC, immunohistochemical; DEGs,
Differentially expressed genes.
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was normalized to that of b-actin and relative expression was

calculated using the 2-DDCt method (15).
2.3 Immunohistochemical staining (IHC)

Immunohistochemical staining was performed on 20 paraffin-

embedded HCC and normal paracancerous tissue samples. The

specific experiments were performed as previously described (16).

Anti-human CD8a antibody (1:5000, Proteintech) was used to

incubate the tissues overnight at 4°C. After application of the

appropriate secondary antibody, the labeled antigen was visualized

using a standard 3,3’-diaminobenzidine (DAB) protocol. The slides

were stained with hematoxylin. Two pathologists evaluated the

staining results in a double-blind manner. The specimens were

divided into high- and low-expression groups according to the

degree of staining, and the number of cells in each groupwas counted.
2.4 Differential analysis of DRAGs,
genomic features

The expression differences and prognostic characteristics ofDRAGs

in HCC samples and normal tissues were assessed by the “limma” and

“survival” packages of R language. Then, the frequency and type of

mutations of 39 DRAGs in patients with HCC were analyzed by the

“maftools”package, and theresultswerepresentedas “waterfall plots.” In

addition, the somatic copy number variation (CNV) frequencies of the

above genes were shown by “bubble plots,” and the sites where the

mutations occurred were shown by “circle plots”.
2.5 Consensus clustering
analysis of DRAGs

We retrieved 14 disulfidoptosis-associated genes (Table S1) from

the relevant literature on the MSigDB website (https://www.gsea-

msigdb.org/gsea/msigdb/), and 374 ARGs (Table S2) were extracted

from the MSigDB website (https://www.gsea-msigdb.org/gsea/

msigdb/). Then, we normalized the data from TCGA and GEO

databases using the “limma” package of R language, and obtained 39

disulfidoptosis-related glycolytic genes (DRAGs) with the screening

condition of |cor| > 0.55. Consensus clustering analysis was performed

using the ConsensusClusterPlus R language package to classify the

enrolled HCC patients into different molecular subtypes according to

differences in gene expression. Intragroup associationswere enhanced,

and intergroup associations were reduced after clustering.

Heterogeneity between the two groups was assessed using principal

component analysis (PCA). To assess the value of consistent cluster

analysis in the management of patients with HCC, we compared

between-group differences in clinicopathological characteristics of

patients with different subtypes by heat map, which was drawn using

the R language package “survival” and “survminer.”Kaplan-Meier (K-

M) curves were used to determine survival differences between the two

subtypes. The Kyoto Encyclopedia of Genes and Genomes (KEGG)

was used for functional variation analysis (GSVA). In addition,
Frontiers in Oncology 04
differences in immune cell infiltration were analyzed using single-

sample gene set enrichment analysis (ssGSEA) to understand the

differences in immune microenvironments between the groups.
2.6 Screening, functional analysis and
prognostic analysis of differential genes
between molecular subtypes of DRAGs

Differentially expressed genes (DEGs) among the molecular

subtypes of DRAGs were screened using the “limma” package in R

language with FDR<0.05 and |log2fold change (FC)|≥0.585 as

criteria. Functional enrichment analysis was performed using GO

and KEGG to further explore the potential gene functions and

enrichment pathways of DRAGs, functional enrichment analysis

was performed using Gene Ontology (GO) and KEGG.

Next, differential genes with prognostic value between the two

subtypes were screened using univariate Cox regression analysis,

and the patients were classified into different gene subtypes based

on these genes. Survival analysis was performed using K-M to verify

the prognostic differences between different gene subtypes. In

addition, differences in the clinicopathological characteristics

between patients with different gene subtypes were evaluated to

guide the development of targeted therapies.
2.7 Construction of prognostic signature

First, genes with prognostic value were screened using

univariate Cox regression analysis for the above differential genes,

and the accuracy of the signature was improved using LASSO

regression analysis. Independent prognostic factors associated with

HCC were screened based on multivariate Cox regression analysis,

and the risk score was calculated using the multivariate Cox

regression coefficients and the expression of DRAGs in patients

with HCC. Then, the prognostic signature was constructed. The

scoring formula was as follows:

risk score =o(Expi ∗ coefi)

where Expi and coefi represent gene expression and regression

coefficients, respectively. Subsequently, all patients with HCC were

randomly divided into training and test groups in a 1:1 ratio.

Patients were further divided into high- and low-risk groups

based on their median prognostic scores.
2.8 Analysis and validation of clinical
relevance of prognostic signature

First, we calculated the differences in risk scores across DRAGs

molecular subtypes and gene clusters to assess whether the risk score

retained its predictive power across subgroups. Differential expression

maps of DRAGsmolecules between the high- and low-risk groups were

constructed using the ggplot2 package. The prognostic value of

clinicopathological factors and risk scores was assessed using Cox

regression analysis. Next, survival differences between patients in the
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high- and low-risk groupswere assessedusing theK-Msurvival analysis,

andROCcurveswereplotted toassess thediagnosticvalueof this scoring

system. The accuracy of the results was validated in a test group.
2.9 Creation and verification of nomogram

In order to evaluate the prognostic characteristics of patients at 1-,

3- and 5-year, the “rms” package and the “regplot” package of R

language were used to construct the nomogram by combining clinical

information such as gender, age, tumor stage and risk scores of

patients. Each patient’s clinical information corresponded to a score

and the total score was the sum of each index used for the scoring

system of the nomogram. Finally, the scores were used to assess the

probability of survival at 1-,3-,5-year intervals.
2.10 Exploration of tumor immune
microenvironment

Themain characteristics of the tumor immunemicroenvironment

include the level of immune cell infiltration, expression profile of

immune checkpoints, and activity of anti-cancer immune responses.

First, we assessed the correlation between risk scores and the

proportion of immune cell infiltration in patients with HCC using

Spearman’s correlation analysis. We also used the “CIBERSORT”

package in R to quantify the enrichment of different immune cells in

each tumor sample and analyzed the relationship between genes and

immune cells in the signature. To further understand the differences in

the tumor microenvironment (TME) between the high- and low-risk

groups and their relevance to immunotherapy, we evaluated the

differences in immune checkpoint expression between the high- and

low-risk groups. In addition, the ESTIMATE algorithmwas applied to

calculate the stromal, immune, and estimated scores in the two tumor

groups, reflecting the degree of stromal and immune cell infiltration

and tumorpurity for each risk group, respectively, anda violinplotwas

used to visualize the differences in TME scores between the high- and

low-risk groups. In addition, we assessed the enrichment of immune-

related pathways in the high- and low-risk groups usingGSEA and the

activity of the seven steps of the anticancer immune response using

ssGSEA to understand the role of risk scores in the tumor immune

microenvironment and thus assess tumor prognosis (17, 18).
2.11 Genomic characterization and drug
sensitivity analysis in prognostic signature

We applied the mutation data downloaded from TCGA to HCC

and analyzed the tumor mutation burden (TMB) and major

mutation types in the different risk groups. TMB has emerged as

a biomarker to predict the efficacy of immunotherapy (19). In

addition, it has been shown that microsatellite instability (MSI) is

associated with tumorigenesis, generally caused by DNA replication

defects (20). We used MSI analysis between different risk groups as

a reference for prognostic assessment. The poor prognosis of HCC

and the emergence of drug resistance are closely related, and studies
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driven by a fraction of stem cells; therefore, it is crucial to explore

the stemness of HCC stem cells (21). We assessed the degree of

similarity between tumors and stem cells by calculating mRNAsi to

quantify the relationship between CSCs and risk scores. Next, to

clarify the efficacy of chemotherapeutic drugs in patients with risk

subgroups of HCC, we calculated the drug concentration (IC50)

values when half of the cells were induced to undergo apoptosis by

drugs used for HCC treatment using the “pRRophetic” package.
2.12 Statistical analysis

We analyzed the data using the R language software (version

4.2.2), performed t-tests for normally distributed data, and applied

Spearman’s test for correlation analysis. GraphPad Prism software

(version 8.0.1) was used for plotting the images, with P<0.05 as the

threshold of significance for all statistical analyses.
3 Results

3.1 Characterization and expression of
DRAGs mutations in HCC

First, we demonstrated the interactions between ARGs using a

Sankey diagram (Figure 2A). TMB analysis of DRAGs showed that 32

(8.63%) of the 371 patients had mutations. Among these, the PSMD1

mutation frequency was the highest (4%), followed by AANAT

(Figure 2B). Next, the somatic copy number variation (CNV)

frequency of DRAGs in HCC was evaluated and alterations were

found in all gene numbers. Among them, most genes, such as

AANAT, RPL35A, EPRS1, PSMD2, and UBA52, had increased CNV

frequencies, whereas PSMB2, RPS15, PSMB9, MTAP, AMD1, and

RPL36 had decreased CNV (Figure 2C). In addition, we showed the

location of CNV of DRAGs occurring on chromatin by a ring plot

(Figure 2D) and found thatmostDRAGswere located on chromosomes

2, 3, 4, 12, 17, and19. Inaddition,wecompared thedifferences inDRAGs

expression between HCC and normal tissues and found that most

genes, such as AANAT, ADO, and AMD1, were highly expressed in

tumor tissues (Figure 2E), resulting in aworse patient prognosis (Figures

S1A–P, S2A–P. S3A–C). Figure 2F shows a positive correlation between

DRAGs, which facilitate tumor progression. In addition, most genes

were positively correlated with CNV, suggesting that CNV may affect

gene expression. Therefore, the analysis of mutations and expression of

DRAGs revealed significant differences between HCC and normal

tissues, indicating that this gene cluster may play an important role in

HCC development.
3.2 Construction and prognostic analysis of
molecular subtypes of DRAGs in patients
with hepatocellular carcinoma (HCC)

We evaluated HCC subtypes based on differences in the

expression of DRAGs and performed a cluster analysis of patients

with HCC using TCGA-LIHC and GEO databases (GSE76427).
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During the cluster analysis of the 486 samples, k=2 was considered

the best clustering method to minimize the differences between

groups, and patients with HCC were divided into two subtypes:

DRAGs cluster A and DRAGs cluster B (Figure 3A). PCA showed

that the two subtypes could be clearly distinguished, further

confirming the accuracy of the typing analysis (Figure 3B). In the

K-M survival analysis of patients with both subtypes, better survival

outcomes were observed in patients with subtype B (Figure 3C).

3.3 Gene set variation analysis and immune
microenvironment analysis of molecular
subtypes of DRAGs

First, we plotted a heat map using clinicopathological

information, which showed the relationship between sex, age,
Frontiers in Oncology 06
T and N stages, and the DRAGs cluster; DRAGs were

highly expressed in cluster A (Figure 3D). GSVA was performed

for the two subtypes, and the differences in the enrichment

pathways between the two subtypes were compared using KEGG.

DRAGs cluster A was highly enriched in the spliceosome pathway,

whereas the remaining pathways such as the complement

and coagulation cascades, phenylalanine metabolism, and PPAR

signaling pathways were highly enriched in cluster B (Figure 3E).

In addition, we explored the differences in the degree of

immune cell infiltration between the two subtypes using

ssGSEA. Most of the 23 immune cells were highly infiltrated

in cluster A, including activated B cells, CD4 T cells, and

CD8 T cells. However, eosinophils, neutrophils, and Th17 cells

exhibited high levels of immune cell infiltration in cluster

B (Figure 3F).
D

A B

E F

C

FIGURE 2

A series of analyses about DRAGs. (A) Sankey diagram showing the correlation between DRGs and ARGs. (B) Mutation frequencies and mutation
types of 39 DRAGs in 371 hepatocellular carcinoma (HCC) patients from the TCGA database. (C) Frequency of increased and decreased CNV in DRAGs.
(D) Location of CNVs in DRAGs on 24 chromosomes. Red dots indicate increased copy number, and blue dots indicate decreased copy number.
(E) Expression of 39 DRAGs between normal and HCC tissues. ** represents P<0.01, *** represents P<0.001. (F) Interaction relationship between
DRAGs in HCC. The thickness of the connecting line indicates the strength of the correlation effect between genes, pink represents a positive
correlation, blue represents a negative correlation.
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3.4 Construction of gene subtypes based
on differential genes between molecular
subtypes of DRAGs and validation

First, to explore the potential biological behaviors of tumor

cells, we screened a total of 2008 differential genes between

DRAGs cluster A and cluster B by the “limma” package in R

Studio, with the screening condition: log|FC|≥0.585, corrected p-

value<0.05. Next, using GO functional enrichment analysis, we

found that the differential genes were mainly enriched in the BP
Frontiers in Oncology 07
functional set, such as cytoplasmic translation and xenobiotic

metabolic processes, and were related to the CC functional set,

such as the cytosolic ribosome and cytosolic large ribosomal

subunit, which play important roles in HCC progression

(Figure 4A; Table S3). KEGG pathway enrichment analysis of

the differentially expressed genes suggested that the main

pathways involved were Glycolysis/Gluconeogenesis and

Glycine, serine, and threonine metabolism (Figure 4B; Table

S4). These results suggest that DRAGs may act by affect the

metabolism of HCC cells.
D

A B

E F

C

FIGURE 3

DRAGcluster analysis. (A) Consensus matrix diagram defining the relevant regions of the two clusters. (B) PCA analysis shows significant differences
between the two subtype groups. (C) K-M analysis shows the prognostic characteristics of patients in both subgroups. (D) Differences in
clinicopathological features and expression levels of DRAGs between the two different subtypes. (E) GSVA of biological pathways between the two
different subtypes, red and blue represent activating and inhibiting pathways, respectively. (F) The extent of infiltration of 23 immune cells in HCC
subtypes. pca, principal component analysis; gsva, gene set variation analysis. ** represents P<0.01, *** represents P<0.001.
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We then performed univariate Cox regression analysis to obtain

1139 genes with prognostic value for subsequent analyses. To

further validate this regulatory mechanism, the samples were

typed again according to the 1139 prognostic genes, and the

“ConsensusClusterPlus” algorithm in R language was applied to

obtain a clustering map with k=3 as the best clustering method for

the samples (Figure 4C), and three gene subtypes were obtained,

named gene cluster A, B and C. The cumulative density function

(CDF) curves verified the clustering accuracy (Figure S3D). K-M

analysis suggested that patients with gene cluster C had the worst

prognosis, whereas those with gene cluster B had a higher survival

rate (p< 0.001) (Figure 4D). A heat map of the clinicopathological

features showed that gene cluster C mainly corresponded to DRAGs

cluster B, and that patients with both subtypes had the worst

prognosis (Figure 4E). In addition, analysis of the expression of

DRAGs in patients with the three gene subtypes revealed that the

expression of DRAGs decreased sequentially in gene clusters C, A,

and B, with statistically significant differences (Figure 5A).
3.5 Construction and validation of risk
prognostic signature

First, we constructed a prognostic signature for DRAGs from

the differential genes among the three gene subtypes based on

significant gene data obtained from multifactorial Cox regression

analysis using LASSO regression analysis to avoid overfitting

(Figures S2B, C). Six genes were included: CFHR3, GPX7,

FAM83D, CD8A, EPO and MSC, and the risk score formula was:

Risk score = (-0.1072*expression of CFHR3) + (0.2380*expression

of GPX7) + (0.2382*expression of FAM83D) + (-0.4009*expression

of CD8A) + (0.1751*EPO expression) + (0.2613*MSC expression).

Sankey plots indicated a consistent relationship between the two

molecular subtypes of DRAGs, the three gene subtypes, high- and

low-risk groups for prognostic signatures, and patient survival

(Figure 5B). Second, we evaluated the relationship between the

three gene subtypes and risk scores and observed that subtype A

exhibited a higher risk score than DRAGs cluster B. More

importantly, gene cluster B had the lowest risk score, whereas

subtype C had the highest score, which is consistent with the data

from the survival analysis described above (Figures 5C, D). In

addition, DRAGs were highly expressed in the high-risk group as

potential oncogenic factors that are highly expressed in HCC

tissues (Figure 5E).

Next, we divided the patients from TCGA and GEO databases

equally into training and test groups at a 1:1 ratio. The patients were

divided into high- and low-risk groups based on the median risk

score. K-M analysis suggested that patients with gene cluster C had

the worst prognosis, whereas those with gene cluster B had a higher

survival rate (P< 0.01) (Figures 6A–C). ROC analysis of all patients

with HCC according to the risk-prognosis signature showed that

the areas under the curve (AUC) were 0.753, 0.708, and 0.666 at 1,

3, and 5 years, respectively (Figure 6D). In the training group, the

one-, three-, and 5-year AUCs were 0.814, 0.757, and 0.804,

respectively (Figure 6E), whereas those in the test group were

0.692, 0.661, and 0.575, respectively, confirming the diagnostic
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power of the signature (Figure 6F). Subsequently, we determined

the prognostic value of the tumor stage and risk score in the three

groups using univariate Cox regression analysis. Multivariate Cox

regression analysis suggested that the risk score was an independent

prognostic factor in all groups (Figures 6G–I).
3.6 Creation of nomogram

Owing to the limitations of the scoring system alone in clinical

applications, we combined scores and clinical information to create

a nomogram to predict the survival time of patients at one, three-

and 5-years. Both the T stage and risk score were independent

prognostic factors (Figure 6J). The calibration chart further

confirmed the accuracy of the signature (Figure S3G).
3.7 Assessment of tumor immune
microenvironment and biological
characteristics among different risk groups

First, we assessed the association between risk scores and

immune cells using Spearman’s correlation analysis, and the

results were visualized using scatter plots. Naive B cells, CD8 + T

cells, and follicular helper T cells negatively correlated with risk

scores, whereas M0 macrophages and neutrophils positively

correlated with risk scores (Figures 7A–F). At the same time, the

proportion of HCC-infiltrating immune cells was visualized for

each sample (Figure S3H). In addition, the TME scores indicated

that the low-risk group had higher stromal and immune scores, and

higher tumor purity (Figure 7G). Second, the differences in immune

checkpoint expression suggested that most immune checkpoint

molecules such as CD200, NRP1, and CD276 were highly

expressed in the high-risk group. Interestingly, CD244, CD27,

IDO2, and PDCD1 were highly expressed in the low-risk group

(Figure 7H). Suggesting that immune checkpoints are involved in

tumor progression and are promising candidates for application in

the high-risk group to guide immunotherapy. Finally, based on Hu

et al., we obtained the steps of the cancer immunity cycle dataset

and enrichment scores of the immunotherapy-predicted pathway

dataset (22). “GSVA” and “ggcor” package was used to construct

risk score correlation with the datasets. As suggested by previous

results, the risk score was mostly negatively correlated with the steps

of the cancer immunity cycle, including CD4 + T cell, CD8 + T cell,

and B-cell recruitment (Figure 7I; Table S5). Interestingly, the risk

score positively correlated with most of the enrichment scores of the

immunotherapy-predicted pathways, except for IFN-g and APM

signaling (Figure 7J; Table S6).
3.8 Relationship between risk scores and
TMB, MSI, and CSC indices

HCC development is influenced by multiple complex factors

including TMB, MSI, and CSCs. Therefore, it is crucial to explore the

relationships between prognostic signatures and these factors. We
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included 361 HCC patients with complete mutation information

from TCGA database. The 20 genes with the highest mutation

frequencies were selected for visualization using waterfall plots.

Comparative analysis of the high- and low-risk groups showed that
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TMB occurred in 84.57% of the patients in the high-risk group, with

the most significant mutation in TP53 (38%; Figure 8A). TMB

occurred in 86.56% of samples in the low-risk group, with the most

significant mutation in CTNNB1 (35%; Figure 8B). The difference in
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FIGURE 4

Genecluster analysis. (A) GO enrichment analysis of DEGs between two DRAGs subtypes. The red part of the graph represents the number of
enriched genes, the redder the color means the more significant gene enrichment; the purple part represents the number of enriched differential
genes. The bar graph represents the proportion of genes. (B) KEGG enrichment analysis of DEGs between two DRAGs subtypes. (C) Consensus
matrix plot defining the three cluster-related regions. (D) Kaplan-Meier curves for the three gene subtypes. (E) Relationship between the three gene
subtypes and clinicopathological features.
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TMB between the high- and low-risk groups was not statistically

significant (P=0.5) (Figure 8C). Notably, survival analysis suggested a

better prognosis in the low-TMB group (P<0.05) (Figure 8D). In

addition, by combining the risk score and TMB from the prognostic

signature, survival analysis showed statistically significant survival

among the four groups (P<0.001) (Figure 8E). In conclusion,

although the difference in TMB between the high- and low-risk

groups was not statistically significant, TMB combined with the risk

score was a better predictor of OS.

For oncology patients, it has been shown that, the higher the

MSI, the higher the potential for selecting immunotherapy (23).

MSI has been suggested that MSI is a biomarker for determining the

immune checkpoint therapy response (24). Our analysis of patients

with HCC showed that the MSI-H group had a lower risk score than

the MSS and MSI-L groups(P<0.01; Figures 8F, G).
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In addition, we assessed the association between tumor cell

stemness (CSC) and the signature risk score, and correlation

analysis showed a positive correlation between CSC and the risk

score (R = 0.21, p< 0.001). These results suggest that patients

with high-risk HCC have more significant tumor stem cell

characteristics, a lower degree of cell differentiation, and a higher

degree of malignancy (Figure 8H).
3.9 Expression and immune infiltration
characteristics of 6 genes in the signature

First, we assessed differences in the expression of the six genes

between the high- and low-risk groups (Figure 9A). We explored

the interactions among the six genes in the training group. CFHR3
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FIGURE 5

Genecluster and its risk prognosis signature. (A) Differential expression of 39 DRAGs in the three gene subtypes. (B) Sankey diagram of different HCC
subtypes and survival outcomes. (C) Differences in risk scores among different DRAGs subtypes. (D) Differences in risk scores among different gene
subtypes. (E) Differences in expression of 39 DRAGs in high and low-risk groups. * represents P<0.05, ** represents P<0.01, *** represents P<0.001.
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expression was significantly and negatively correlated with the

remaining five genes, whereas GPX7, FAM83D, CD8A, EPO, and

MSC expression were positively correlated (Figure 9B). The results

of the test group were consistent (Figure 9C).

In addition, we evaluated the relationship between the six

genes in the signature and immune cells, and found that CD8A
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and CFHR3 were s t rong ly corre la ted wi th immune

cells (Figure 9D).

Next, we performed a correlation clustering analysis of

HCC-infiltrating immune cells (Figure 9E). As expected, risk

score-associated immune cells such as naïve B cells, CD8 T cells,

and follicular helper T cells were clustered in a correlation set.
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FIGURE 6

Kaplan-Meier analysis, ROC curves, and nomogram of risk groups. (A) Kaplan-Meier analysis of the Recurrence free survival (RFS) of all-risk and low-
risk groups in the training group (B) Kaplan-Meier analysis of the RFS of high-risk and low-risk groups in the training group. (C) Kaplan-Meier analysis
of the RFS of high-risk and low-risk groups in the training group. (D) ROC curves predict 1-, 3-, and 5-year survival of all group patients. (E) ROC
curves predicting 1-, 3-, and 5-year survival rates for patients in the train group. (F) ROC curves predicting 1-, 3-, and 5-year survival rates for test
group patients. (G) The multivariate Cox regression analysis of clinical characteristics and risk score in all groups. (H) The multivariate Cox regression
analysis of clinical characteristics and risk score in train group. (I) The multivariate Cox regression analysis of clinical characteristics and risk score in
test group. (J) Construction of a nomogram based on clinical characteristics and risk score for prognostic signature. (J) ROC, receiver operating
characteristic. * represents P<0.05, ** represents P<0.01, *** represents P<0.001.
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Because the strongest correlation between these six genes

and immune cells was observed, CD8A attracted our attention.

Using qRT-PCR (n=23) and IHC (n=20), the mRNA and protein

expression levels of CD8A were verified in HCC tissues.

CD8A expression was lower in HCC tissues than in normal
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tissues (Figures 9F, G; Table S7). Based on pan-cancer analysis,

we found that CD8A was positively correlated with most tumor-

infiltrating cells, especially B cells, dendritic cells, CD8+ T cells,

macrophages, regulatory T cells (Tregs), and follicular helper T

cells (Figure 10).
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FIGURE 7

Risk score and analysis of infiltrating immune cells in HCC. (A–F) Correlation of Risk score with immune cells. (G) Correlation of risk score with an
immune score, stromal score, and tumor purity. (H) Differences in expression of immune checkpoints in high- and low-risk groups. (I) Correlation
between Risk score and enrichment of immunotherapy-related pathways. (J) Correlation between Risk score and tumor immune response process.
* represents P<0.05, ** represents P<0.01, *** represents P<0.001.
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3.10 Drug sensitivity analysis

We analyzed the sensitivity of patients in the high- and low-risk

groups to chemotherapeutic agents commonly used to treat HCC.

We and found that patients in the low-risk group were more

sensitive to drugs such as Axitinib, Bicalutamide and Erlotinib.

However, the patients in the high-risk group were more sensitive to

Cisplatin, Docetaxel and Doxorubicin (Figure 11). In conclusion,

there were significant differences in drug sensitivity among different

HCC subtypes, providing a direction for personalized treatment

of HCC.
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4 Discussion

HCC is a highly heterogeneous tumor, particularly in terms of

genomics, transcriptomics, proteomics and metabolomics (25).

Disulfidoptosis is a recently identified rapid mode of programmed

cell death caused by the intracellular accumulation of excess cystine

resulting from disulfide stress, which usually occurs under

conditions of glucose starvation (26). Some studies have

demonstrated the potential of targeting disulfidoptosis in tumor

therapy (4, 6). In recent years, disulfide proteomics has been

proposed. Protein synthesis and degradation are regulated by
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FIGURE 8

Comprehensive analysis of the risk score in HCC. (A, B) Waterfall plots of somatic mutation frequencies and mutation types between different risk
groups. Each column represents an individual patient. The bar above each column shows the TMB, and the number on the right side indicates the
mutation frequency of each gene. The bar on the right shows the proportion of each mutation type. (C) Differences in TMB across risk groups.
(D) Survival differences between high and low TMB groups in HCC. (E) Survival differences between patients with combined TMB and risk score
assessment in HCC. (F, G) Relationship between Risk score and MSI. (H) Relationship between Risk score and CSCs.
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cysteine redox state (27). The liver is the main organ involved in

amino acid metabolism, and these processes have been shown to be

closely associated with HCC (28). Metabolic variants accelerate

tumor progression. The reprogramming of amino acid metabolism

is an important metabolic variant. Many metabolism-related genes

have been shown to be effective prognostic markers of HCC.

However, studies regarding the role of DRAGs in HCC are lacking.

In the present study, we investigated the correlation between

DRAGs and HCC. Surprisingly, these genes were not significantly

mutated in the HCC cells. However, this did not diminish their

importance as their differential expression in HCC and normal
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tissues was more important. Subsequently, we classified patients

with HCC into two different cell subtypes based on the DRAGs.

Patients with DRAG subtype A showed poorer pathological staging

and overall survival than those with DRAGs cluster B. In addition,

there were significant differences in gene expression and metabolic

pathway enrichment between subtypes. Immune cell infiltration

into the TME also differed significantly between the two subtypes.

We obtained three gene subtypes by consensus clustering of

patients with HCC based on differentially expressed genes

between the cell subtypes of the two DRAGs. These results

suggested that DRAGs are promising predictors of HCC
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FIGURE 9

Six risk model genes interaction and core gene verification. (A) Expression of the six genes in the risk signature in the high and low risk groups.
(B) Correlation of the six genes in the train group. (C) Correlation of the six genes in the test group. (D) Correlation between the level of immune
cell infiltration and the six genes in the risk signature. (E) Correlation clustering of HCC infiltrating immune cells. (F) qRT-PCR of CD8A expression
differences in HCC tissues and normal tissues. (G) Normal and cancer images of CD8A expression in liver tissues (100× and 200×) detected by IHC
staining. * represents P<0.05, ** represents P<0.01, *** represents P<0.001.
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prognosis and sensitivity to immunotherapy. Additionally, we

screened six genes with prognostic value using multifactorial Cox

regression analysis to construct a risk prognostic signature.

Significant differences in the clinicopathological characteristics,

prognosis, TME, immune checkpoint expression, TMB, MSI, CSC

index, and drug sensitivity were observed between the high- and

low-risk groups. In addition, we established a nomogram for better

clinical applicability and found that the signature had high

diagnostic value based on ROC curves. Therefore, accurate

identification of the molecular subtypes of HCC under conditions

of tumor heterogeneity and construction of prognostic signatures
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are crucial for the development of new targeted therapeutic

regimens for personalized precision medicine (29).

From the perspective of prognostic value, among the six genes

used to construct the signature, the protective values of CFHR3 and

CD8A have been demonstrated in a variety of tumors, whereas

GPX7, FAM83D, EPO, and MSC are involved in tumor

progression. Several factors affect the expression of prognosis-

related genes in patients with HCC. CD8A, a glycoprotein mainly

located on the surface of T lymphocytes, is downregulated in HCC

and acts as a barrier against anti-tumor immunity (30). As the

strongest correlation among the six genes with tumor immune cells,
FIGURE 10

Correlation between the expression of CD8A and the level of infiltration of various immune cells in pan-cancer.
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CD8A is a potential hub gene that connects disulfidoptosis and

immune reprogramming. To avoid the influence of the different

ethnic structures of the database and our country, we needed to

verify the low expression of CD8A in HCC before conducting

follow-up research. As expected, IHC and RT-qPCR results were

consistent with the database analysis’s. GPX7, a glutathione

peroxidase, is overexpressed in HCC tissues and has prognostic

and diagnostic value (31). Overall, these genes are closely associated

with tumorigenesis and development.

Multiple factors influence HCC prognosis due to tumor

heterogeneity. The highest percentage of TP53 mutations was

found in the high-risk group (up to 38%) compared with only

15% in the low-risk group. Mutations in the tumor suppressor TP53

are the most common in HCC and often lead to poor prognosis and

reduced immune responses in patients with HCC (13, 32). In

addition, CTNNB1 mutations were more frequent in the low-risk

groups. In most cases, CTNNB1 mutations are associated with

immune rejection and-b-catenin pathway (33). Therefore, the poor

prognosis of patients with HCC in the high-risk group may be

attributed to the high number of TP53 mutations. Therefore,

CTNNB1 should be considered as a potential therapeutic target in

low-risk patients.

The liver contains many immune cells and is the largest organ in

the body. Immune cells in the TME play an important role in
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promoting tumor growth and inhibiting cancer progression, and

immunotherapy has become a popular topic in tumor treatment. We

combined Spearman’s correlation analysis of risk scores and immune

cells with activity analysis of the anti-cancer response process and

found that CD8+ T cells showed low infiltration, M0 macrophages

and neutrophils showed high infiltration, and neutrophils were more

actively recruited in the high-risk group. Previous studies have shown

that M0 macrophages from the bone marrow rest before cell

differentiation, but M0 macrophages are strongly associated with

poor patient prognosis in gliomas (34, 35), and M0 macrophage

infiltration is significantly increased in patients with high-risk

endometrial cancer (36). In addition, neutrophils play an important

role in the tumor immunosuppressive microenvironment, promote

tumor progression, and are potential therapeutic targets for HCC

(37). However, T and Th1 cell recruitment was higher in the low-risk

group. In addition, regarding immune-related enrichment pathways,

our study found that IFN-g and APM signaling were significantly

enriched in the low-risk group. It has been shown that the anti-tumor

effect of IFN-g can be promoted by enhancing the immune response

of Th1 cells in tumor immunotherapy. Additionally, as an anti-tumor

factor, IFN-g plays an immunosuppressive role in tumors such as

melanoma and lung cancer by enhancing the immune response of T

lymphocytes (38). Our study showed that patients in the high-risk

group had lower immune scores and a stronger immunosuppressive
FIGURE 11

Relationship between patients with two risk score subtypes and drug sensitivity.
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microenvironment, promoting tumorigenesis and metastasis and

leading to a worse prognosis. However, higher immune checkpoint

expression indicates that the high-risk group is more likely to benefit

from future immunotherapies targeting immune checkpoints.

Our study has several limitations. First, all patient information

was obtained from public databases, mainly Western case data,

which lack representative prospective data. Second, the sample had

limited clinical information and lacked information on important

factors for determining the prognosis of patients with HCC, such as

methemoglobin levels, ascites, portal hypertension, and

postoperative complications. In future studies, we aim to recruit

patients at our hospital who meet the inclusion criteria to further

verify the authenticity and validity of the results.
5 Conclusion

In brief, we developed a prognostic signature for HCC based on

the molecular typing of DRAGs to assist in predicting HCC

progression and provide a reference value for targeted therapy

and immunotherapy for HCC.
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SUPPLEMENTARY FIGURE 1

(A–P) The Kaplan–Meier curves for survival status and survival time in the high

and low expression groups of DRAGs. (A) AANAT. (B) ADO. (C) AMD1. (D)
BCAT1. (E) ENOPH1. (F) GLS. (G) MTAP. (H) OAZ1. (I) PAPSS1. (J) PSMA1. (K)
PSMB2. (L) PSMB3. (M) PSMB6. (N) PSMD1. (O) PSMD2. (P) PSMD5.

SUPPLEMENTARY FIGURE 2

(A-P) The Kaplan–Meier curves for survival status and survival time in the high
and low expression groups of DRAGs. (A) PSMD6. (B) PSMD8. (C) PSMD9. (D)
PSMD13. (E) PSME3. (F) PSME4. (G) RPL24. (H) RPL35A. (I) RPL36. (J) RPL37A.
(K) RPL41. (L) RPLP2. (M) RPS3A. (N) RPS9. (O) RPS15. (P) RPS27A.

SUPPLEMENTARY FIGURE 3

(A-E) The Kaplan–Meier curves for survival status and survival time in the high

and low expression groups of DRAGs. (A) SERINC3. (B) SMS. (C) UBA52. (D)
Cumulative density function (CDF) curves validate the clustering accuracy.

(E, F) LASSO regression analysis and consistency test. (G) Calibration plot of
the nomogram. (H) Histogram of the percentage of infiltrating immune cells

in patients with liver cancer.
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