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Introduction: Hepatocellular carcinoma (HCC) is the most common type of
cancer worldwide and is a major public health problem in the 21st century.
Disulfidopathy, a novel cystine-associated programmed cell death, plays
complex roles in various tumors. However, the relationship between
disulfidoptosis and prognosis in patients with HCC remains unclear. This study
aimed to explore the relationship between disulfideptosis and the prognosis of
liver cancer and to develop a prognostic model based on amino acid metabolism
and disulfideptosis genes.

Methods: We downloaded the clinicopathological information and gene
expression data of patients with HCC from The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) databases and classified them into different
molecular subtypes based on the expression patterns of disulfidoptosis-
associated amino acid metabolism genes (DRAGs). Patients were then
classified into different gene subtypes using the differential genes between the
molecular subtypes, and the predictive value of staging was assessed using
survival and clinicopathological analyses. Subsequently, risk prognosis
models were constructed based on Cox regression analysis to assess patient
prognosis, receiver operating characteristic (ROC) curves, somatic mutations,
microsatellite instability, tumor microenvironment, and sensitivity to antitumor
therapeutic agents.

Results: Patients were classified into two subtypes based on differential DRAGs
gene expression, with cluster B having a better survival outcome than cluster A.
Three gene subtypes were identified based on the differential genes between the
two DRAGs molecular subtypes. The patients in cluster B had the best prognosis,
whereas those in cluster C had the worst prognosis. The heat map showed better
consistency in the patient subtypes obtained using both typing methods. We
screened six valuable genes and constructed a prognostic signature. By scoring,
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we found that patients in the low-risk group had a better prognosis, higher
immune scores, and more abundant immune-related pathways compared to the
high-risk group, which was consistent with the tumor subtype results.

Discussion: In conclusion, we developed a prognostic signature of
disulfidptosis-related amino acid metabolism genes to assist clinicians in
predicting the survival of patients with HCC and provide a reference value for
targeted therapy and immunotherapy for HCC.
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1 Introduction

According to the International Report on Oncology Statistics,
primary liver cancer is the fourth mostlethal cancer (1). Hepatocellular
carcinoma (HCC) accounts for approximately 80% of primary liver
cancers and is the most common type (2) Currently, The main
treatment options include local radiofrequency ablation, surgery,
radiotherapy, and immunotherapy, which have improved patient
survival (3). However, a high degree of heterogeneity among patients
has led to different outcomes in most patients with HCC after
comprehensive treatment. The complexity and polygenicity of
tumors may explain the limitations of current treatment options;
therefore, there is an urgent need to identify valuable prognostic
models to evaluate targeted and more effective treatments for
individual patients with liver cancer. Recent studies have shown that
the intracellular accumulation of disulfides induces a stress response
that leads to disulfidosis, a new form of programmed cell death (4).
Normally, cancer cells rely on the amino acid transporter protein
SLC7A11 to transport cystine intracellularly to promote tumor growth;
however, cystine is a disulfide that may have cytotoxic effects. To
regulate this balance, cells rapidly convert toxic disulfides into nontoxic
molecules using NADPH (4, 5). NADPH is mainly produced by
glucose metabolism; therefore, when tumor cells lack glucose, it can
trigger disulfidaptosis in tumor cells, which in turn inhibits tumor
growth. However, this process is not cytotoxic to normal tissues (6).
Since the concept of disulfidoptosis was first proposed, it has attracted
considerable attention from the medical community, particularly in
the field of tumor therapy. Therefore, understanding the state of
disulfidoptosis in different HCC populations is important for
exploring targeted therapies for HCC.

Metabolic reprogramming was found to be the main feature in
the analysis of three common tumor metabolites, and amino acid
metabolism plays an important role in tumor development (7).
Several studies have shown that genes related to amino acid
metabolism act as metabolic regulators that meet the demands of
rapid tumor cell proliferation. For example, glutaminase 2 (GLS2)
regulates glutamine metabolism by binding to P53, decreasing the
antioxidant capacity of reduced glutathione and reducing ROS
levels, which in turn enhances the tumor-suppressive function of
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P53 (8, 9). The oncogenic transcription factor cMyc in tumor
cells acts on serine hydroxymethyltransferase (SHMT) to promote
tumor proliferation by depleting serine (10, 11). Argininosuccinate
synthase (ASS), a key enzyme in the arginine synthesis pathway, is
defective in various tumors, including HCC. Some investigators
have developed arginine degradation therapies based on this
feature, which are used to treat patients with this group of tumors
(12). Exploration of amino acid metabolism is important for the
prevention and treatment of HCC. In addition, the immune
microenvironment of HCC provides a suitable growth
environment for tumor development (13), and chimeric antigen
receptor (CAR) T-cell therapies and monoclonal antibodies against
programmed cell death protein 1 (PD-1), thus improving the
prognosis of patients with HCC by altering the pathways where
immune cell checkpoints are located and thus improve the
prognosis of patients with HCC (14). However, it remains unclear
whether amino acid metabolism-related genes are involved in
immune regulation in HCC. Therefore, further studies are
required to determine the prognosis of patients with HCC.

The relationship between disulfidoptosis and amino acid
metabolism, two important processes in tumor development,
has received increasing attention. Amino acid metabolic
reprogramming is an essential feature of abnormal metabolic
changes in tumors that can endow cancer cells with the ability to
proliferate rapidly. However, as a new form of programmed death,
disulfidoptosis is closely related to cysteine/glutamine acid metabolism.
In this study, we developed a prognostic signature combining
disulfide-related genes (DRGs) and amino acid metabolism-related
genes (ARGs), which is valuable for assessing the prognosis of patients
with HCC. A flowchart of the study is presented in Figure 1.

2 Materials and methods
2.1 Collation and collection of data
First, we downloaded clinicopathological information, gene

expression matrix data, and somatic mutation data of patients
with HCC from TCGA database. Another set of data containing
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FIGURE 1

Flow chart of our study. DRGs, disulfidptosis related genes; ARGs, amino acid metabolism-related genes; DRAGs, disulfidptosis related glycolytic
genes TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; TMB, tumor mutational burden; CNV, copy number variation; GSEA, Gene
Set Enrichment Analyses; TME, tumor microenvironment; MSI, microsatellite instability; CSCs, cancer stem cells; IHC, immunohistochemical; DEGs,

Differentially expressed genes.

the survival information of patients with HCC was downloaded
from the GEO database, and joint analysis of data from multiple
databases helped reduce the heterogeneity of individual datasets.
The GSE76427 and TCGA-LIHC data downloaded from the GEO
database were combined using the “merge” package, and the “sva”
package in R language was used to correct for differences and
normalize for different sequencing batches, excluding patients with
missing survival information. We finally obtained 371 patients with
HCC from TCGA database and 115 patients from the GEO
database, which were used for subsequent analysis.

2.2 Clinical sample collection

We randomly collected 23 pairs of fresh HCC and adjacent
normal tissue samples were randomly collected from the First
Hospital of Chongging Medical University (Chongqing, China)
between February and March 2023. Twenty pairs of paraffin-
embedded sections of HCC and paracancerous tissues were
retrospectively collected from patients with HCC who underwent
surgery at the First Affiliated Hospital of Chongqing Medical
University between June 2022 and December 2022 at the
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Diagnostic Pathology Center of Chongqing Medical University
(Chonggqing, China). None of the patients in our study underwent
radiotherapy, chemotherapy, or immunotherapy before surgery.
This study was approved by the Ethics Committee of the First
Affiliated Hospital of Chongqing Medical University and all
patients signed an informed consent form before the study.

2.2.1 Quantitative real time PCR (qRT-PCR)

Total RNA was extracted from 23 pairs of fresh HCC and
paraneoplastic tissues using the TRIZOL reagent (Takara
Biotechnology Co., Ltd., Dalian, China) according to the
manufacturer’s instructions. total RNA was reverse transcribed
into cDNA using the PrimeScripTM RT kit (Takara Biotechnology
Co., Ltd.). The RNA was reverse-transcribed into cDNA.
Polymerase chain reaction (PCR) was performed to detect the
mRNA expression of CD8A in HCC and paraneoplastic tissues
according to the manufacturer’s instructions. The amplification
product was designed by Takara Biotechnology Co., Ltd. with the
following sequence: CD8A: forward,5'-TCATGGC
CTTACCAGTGACC-3,  and reverse, 5-AGGTTCCAGGTCCG
ATCC-3'; B-actin: forward, 5'-AGAAAATCTGGC ACCACACCT-3,;
and reverse, 5'-GATAGCACA GCCTGGATAGCA-3. © Expression
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was normalized to that of B-actin and relative expression was
calculated using the 2-AACt method (15).

2.3 Immunohistochemical staining (IHC)

Immunohistochemical staining was performed on 20 paraffin-
embedded HCC and normal paracancerous tissue samples. The
specific experiments were performed as previously described (16).
Anti-human CD8a antibody (1:5000, Proteintech) was used to
incubate the tissues overnight at 4°C. After application of the
appropriate secondary antibody, the labeled antigen was visualized
using a standard 3,3’-diaminobenzidine (DAB) protocol. The slides
were stained with hematoxylin. Two pathologists evaluated the
staining results in a double-blind manner. The specimens were
divided into high- and low-expression groups according to the
degree of staining, and the number of cells in each group was counted.

2.4 Differential analysis of DRAGs,
genomic features

The expression differences and prognostic characteristics of DRAGs
in HCC samples and normal tissues were assessed by the “limma” and
“survival” packages of R language. Then, the frequency and type of
mutations of 39 DRAGs in patients with HCC were analyzed by the
“maftools” package, and the results were presented as “waterfall plots.” In
addition, the somatic copy number variation (CNV) frequencies of the
above genes were shown by “bubble plots,” and the sites where the
mutations occurred were shown by “circle plots”.

2.5 Consensus clustering
analysis of DRAGs

We retrieved 14 disulfidoptosis-associated genes (Table S1) from
the relevant literature on the MSigDB website (https://www.gsea-
msigdb.org/gsea/msigdb/), and 374 ARGs (Table S2) were extracted
from the MSigDB website (https://www.gsea-msigdb.org/gsea/
msigdb/). Then, we normalized the data from TCGA and GEO
databases using the “limma” package of R language, and obtained 39
disulfidoptosis-related glycolytic genes (DRAGs) with the screening
condition of |cor| > 0.55. Consensus clustering analysis was performed
using the ConsensusClusterPlus R language package to classify the
enrolled HCC patients into different molecular subtypes according to
differences in gene expression. Intragroup associations were enhanced,
and intergroup associations were reduced after clustering.
Heterogeneity between the two groups was assessed using principal
component analysis (PCA). To assess the value of consistent cluster
analysis in the management of patients with HCC, we compared
between-group differences in clinicopathological characteristics of
patients with different subtypes by heat map, which was drawn using
the R language package “survival” and “survminer.” Kaplan-Meier (K-
M) curves were used to determine survival differences between the two
subtypes. The Kyoto Encyclopedia of Genes and Genomes (KEGG)
was used for functional variation analysis (GSVA). In addition,
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differences in immune cell infiltration were analyzed using single-
sample gene set enrichment analysis (ssGSEA) to understand the
differences in immune microenvironments between the groups.

2.6 Screening, functional analysis and
prognostic analysis of differential genes
between molecular subtypes of DRAGs

Differentially expressed genes (DEGs) among the molecular
subtypes of DRAGs were screened using the “limma” package in R
language with FDR<0.05 and [log2fold change (FC)|>0.585 as
criteria. Functional enrichment analysis was performed using GO
and KEGG to further explore the potential gene functions and
enrichment pathways of DRAGs, functional enrichment analysis
was performed using Gene Ontology (GO) and KEGG.

Next, differential genes with prognostic value between the two
subtypes were screened using univariate Cox regression analysis,
and the patients were classified into different gene subtypes based
on these genes. Survival analysis was performed using K-M to verify
the prognostic differences between different gene subtypes. In
addition, differences in the clinicopathological characteristics
between patients with different gene subtypes were evaluated to
guide the development of targeted therapies.

2.7 Construction of prognostic signature

First, genes with prognostic value were screened using
univariate Cox regression analysis for the above differential genes,
and the accuracy of the signature was improved using LASSO
regression analysis. Independent prognostic factors associated with
HCC were screened based on multivariate Cox regression analysis,
and the risk score was calculated using the multivariate Cox
regression coefficients and the expression of DRAGs in patients
with HCC. Then, the prognostic signature was constructed. The
scoring formula was as follows:

risk score = > (Expi * coefi)

where Expi and coefi represent gene expression and regression
coefficients, respectively. Subsequently, all patients with HCC were
randomly divided into training and test groups in a 1:1 ratio.
Patients were further divided into high- and low-risk groups
based on their median prognostic scores.

2.8 Analysis and validation of clinical
relevance of prognostic signature

First, we calculated the differences in risk scores across DRAGs
molecular subtypes and gene clusters to assess whether the risk score
retained its predictive power across subgroups. Differential expression
maps of DRAGs molecules between the high- and low-risk groups were
constructed using the ggplot2 package. The prognostic value of
clinicopathological factors and risk scores was assessed using Cox
regression analysis. Next, survival differences between patients in the
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high- and low-risk groups were assessed using the K-M survival analysis,
and ROC curves were plotted to assess the diagnostic value of this scoring
system. The accuracy of the results was validated in a test group.

2.9 Creation and verification of nomogram

In order to evaluate the prognostic characteristics of patients at 1-,
3- and 5-year, the “rms” package and the “regplot” package of R
language were used to construct the nomogram by combining clinical
information such as gender, age, tumor stage and risk scores of
patients. Each patient’s clinical information corresponded to a score
and the total score was the sum of each index used for the scoring
system of the nomogram. Finally, the scores were used to assess the
probability of survival at 1-,3-,5-year intervals.

2.10 Exploration of tumor immune
microenvironment

The main characteristics of the tumor immune microenvironment
include the level of immune cell infiltration, expression profile of
immune checkpoints, and activity of anti-cancer immune responses.
First, we assessed the correlation between risk scores and the
proportion of immune cell infiltration in patients with HCC using
Spearman’s correlation analysis. We also used the “CIBERSORT”
package in R to quantify the enrichment of different immune cells in
each tumor sample and analyzed the relationship between genes and
immune cells in the signature. To further understand the differences in
the tumor microenvironment (TME) between the high- and low-risk
groups and their relevance to immunotherapy, we evaluated the
differences in immune checkpoint expression between the high- and
low-risk groups. In addition, the ESTIMATE algorithm was applied to
calculate the stromal, immune, and estimated scores in the two tumor
groups, reflecting the degree of stromal and immune cell infiltration
and tumor purity for each risk group, respectively, and a violin plot was
used to visualize the differences in TME scores between the high- and
low-risk groups. In addition, we assessed the enrichment of immune-
related pathways in the high- and low-risk groups using GSEA and the
activity of the seven steps of the anticancer immune response using
ssGSEA to understand the role of risk scores in the tumor immune
microenvironment and thus assess tumor prognosis (17, 18).

2.11 Genomic characterization and drug
sensitivity analysis in prognostic signature

We applied the mutation data downloaded from TCGA to HCC
and analyzed the tumor mutation burden (TMB) and major
mutation types in the different risk groups. TMB has emerged as
a biomarker to predict the efficacy of immunotherapy (19). In
addition, it has been shown that microsatellite instability (MSI) is
associated with tumorigenesis, generally caused by DNA replication
defects (20). We used MSI analysis between different risk groups as
a reference for prognostic assessment. The poor prognosis of HCC
and the emergence of drug resistance are closely related, and studies
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on tumor stem cells (CSCs) indicate that tumor development is
driven by a fraction of stem cells; therefore, it is crucial to explore
the stemness of HCC stem cells (21). We assessed the degree of
similarity between tumors and stem cells by calculating mRNAsi to
quantify the relationship between CSCs and risk scores. Next, to
clarify the efficacy of chemotherapeutic drugs in patients with risk
subgroups of HCC, we calculated the drug concentration (IC50)
values when half of the cells were induced to undergo apoptosis by
drugs used for HCC treatment using the “pRRophetic” package.

2.12 Statistical analysis

We analyzed the data using the R language software (version
4.2.2), performed t-tests for normally distributed data, and applied
Spearman’s test for correlation analysis. GraphPad Prism software
(version 8.0.1) was used for plotting the images, with P<0.05 as the
threshold of significance for all statistical analyses.

3 Results

3.1 Characterization and expression of
DRAGs mutations in HCC

First, we demonstrated the interactions between ARGs using a
Sankey diagram (Figure 2A). TMB analysis of DRAGs showed that 32
(8.63%) of the 371 patients had mutations. Among these, the PSMD1
mutation frequency was the highest (4%), followed by AANAT
(Figure 2B). Next, the somatic copy number variation (CNV)
frequency of DRAGs in HCC was evaluated and alterations were
found in all gene numbers. Among them, most genes, such as
AANAT, RPL35A, EPRS1, PSMD2, and UBA52, had increased CNV
frequencies, whereas PSMB2, RPS15, PSMB9, MTAP, AMDI, and
RPL36 had decreased CNV (Figure 2C). In addition, we showed the
location of CNV of DRAGs occurring on chromatin by a ring plot
(Figure 2D) and found that most DRAGs were located on chromosomes
2,3,4,12,17,and 19. In addition, we compared the differences in DRAGs
expression between HCC and normal tissues and found that most
genes, such as AANAT, ADO, and AMDI, were highly expressed in
tumor tissues (Figure 2E), resulting in a worse patient prognosis (Figures
S1A-P, S2A-P. S3A-C). Figure 2F shows a positive correlation between
DRAGs, which facilitate tumor progression. In addition, most genes
were positively correlated with CNV, suggesting that CNV may affect
gene expression. Therefore, the analysis of mutations and expression of
DRAGs revealed significant differences between HCC and normal
tissues, indicating that this gene cluster may play an important role in
HCC development.

3.2 Construction and prognostic analysis of
molecular subtypes of DRAGs in patients
with hepatocellular carcinoma (HCC)

We evaluated HCC subtypes based on differences in the
expression of DRAGs and performed a cluster analysis of patients
with HCC using TCGA-LIHC and GEO databases (GSE76427).
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A series of analyses about DRAGs. (A) Sankey diagram showing the correlation between DRGs and ARGs. (B) Mutation frequencies and mutation
types of 39 DRAGs in 371 hepatocellular carcinoma (HCC) patients from the TCGA database. (C) Frequency of increased and decreased CNV in DRAGs.
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During the cluster analysis of the 486 samples, k=2 was considered
the best clustering method to minimize the differences between
groups, and patients with HCC were divided into two subtypes:
DRAGS cluster A and DRAGs cluster B (Figure 3A). PCA showed
that the two subtypes could be clearly distinguished, further
confirming the accuracy of the typing analysis (Figure 3B). In the
K-M survival analysis of patients with both subtypes, better survival
outcomes were observed in patients with subtype B (Figure 3C).

3.3 Gene set variation analysis and immune
microenvironment analysis of molecular
subtypes of DRAGs

First, we plotted a heat map using clinicopathological
information, which showed the relationship between sex, age,
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T and N stages, and the DRAGs cluster; DRAGs were
highly expressed in cluster A (Figure 3D). GSVA was performed
for the two subtypes, and the differences in the enrichment
pathways between the two subtypes were compared using KEGG.
DRAGS cluster A was highly enriched in the spliceosome pathway,
whereas the remaining pathways such as the complement
and coagulation cascades, phenylalanine metabolism, and PPAR
signaling pathways were highly enriched in cluster B (Figure 3E).
In addition, we explored the differences in the degree of
immune cell infiltration between the two subtypes using
ssGSEA. Most of the 23 immune cells were highly infiltrated
in cluster A, including activated B cells, CD4 T cells, and
CD8 T cells. However, eosinophils, neutrophils, and Th17 cells
exhibited high levels of immune cell infiltration in cluster
B (Figure 3F).
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FIGURE 3

DRAGcluster analysis. (A) Consensus matrix diagram defining the relevant regions of the two clusters. (B) PCA analysis shows significant differences

between the two subtype groups. (C) K-M analysis shows the prognostic

clinicopathological features and expression levels of DRAGs between the two different subtypes. (E) GSVA of biological pathways between the two
different subtypes, red and blue represent activating and inhibiting pathways, respectively. (F) The extent of infiltration of 23 immune cells in HCC
subtypes. pca, principal component analysis; gsva, gene set variation analysis. ** represents P<0.01, *** represents P<0.001.

characteristics of patients in both subgroups. (D) Differences in

3.4 Construction of gene subtypes based
on differential genes between molecular
subtypes of DRAGs and validation

First, to explore the potential biological behaviors of tumor
cells, we screened a total of 2008 differential genes between
DRAGs cluster A and cluster B by the “limma” package in R
Studio, with the screening condition: log|FC|>0.585, corrected p-
value<0.05. Next, using GO functional enrichment analysis, we
found that the differential genes were mainly enriched in the BP
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functional set, such as cytoplasmic translation and xenobiotic
metabolic processes, and were related to the CC functional set,
such as the cytosolic ribosome and cytosolic large ribosomal
subunit, which play important roles in HCC progression
(Figure 4A; Table S3). KEGG pathway enrichment analysis of
the differentially expressed genes suggested that the main
pathways involved were Glycolysis/Gluconeogenesis and
Glycine, serine, and threonine metabolism (Figure 4B; Table
S4). These results suggest that DRAGs may act by affect the
metabolism of HCC cells.
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We then performed univariate Cox regression analysis to obtain
1139 genes with prognostic value for subsequent analyses. To
further validate this regulatory mechanism, the samples were
typed again according to the 1139 prognostic genes, and the
“ConsensusClusterPlus” algorithm in R language was applied to
obtain a clustering map with k=3 as the best clustering method for
the samples (Figure 4C), and three gene subtypes were obtained,
named gene cluster A, B and C. The cumulative density function
(CDF) curves verified the clustering accuracy (Figure S3D). K-M
analysis suggested that patients with gene cluster C had the worst
prognosis, whereas those with gene cluster B had a higher survival
rate (p< 0.001) (Figure 4D). A heat map of the clinicopathological
features showed that gene cluster C mainly corresponded to DRAGs
cluster B, and that patients with both subtypes had the worst
prognosis (Figure 4E). In addition, analysis of the expression of
DRAG:s in patients with the three gene subtypes revealed that the
expression of DRAGs decreased sequentially in gene clusters C, A,
and B, with statistically significant difterences (Figure 5A).

3.5 Construction and validation of risk
prognostic signature

First, we constructed a prognostic signature for DRAGs from
the differential genes among the three gene subtypes based on
significant gene data obtained from multifactorial Cox regression
analysis using LASSO regression analysis to avoid overfitting
(Figures S2B, C). Six genes were included: CFHR3, GPX7,
FAMS3D, CD8A, EPO and MSC, and the risk score formula was:
Risk score = (-0.1072*expression of CFHR3) + (0.2380*expression
of GPX7) + (0.2382*expression of FAM83D) + (-0.4009*expression
of CD8A) + (0.1751*EPO expression) + (0.2613*MSC expression).
Sankey plots indicated a consistent relationship between the two
molecular subtypes of DRAGs, the three gene subtypes, high- and
low-risk groups for prognostic signatures, and patient survival
(Figure 5B). Second, we evaluated the relationship between the
three gene subtypes and risk scores and observed that subtype A
exhibited a higher risk score than DRAGs cluster B. More
importantly, gene cluster B had the lowest risk score, whereas
subtype C had the highest score, which is consistent with the data
from the survival analysis described above (Figures 5C, D). In
addition, DRAGs were highly expressed in the high-risk group as
potential oncogenic factors that are highly expressed in HCC
tissues (Figure 5E).

Next, we divided the patients from TCGA and GEO databases
equally into training and test groups at a 1:1 ratio. The patients were
divided into high- and low-risk groups based on the median risk
score. K-M analysis suggested that patients with gene cluster C had
the worst prognosis, whereas those with gene cluster B had a higher
survival rate (P< 0.01) (Figures 6A-C). ROC analysis of all patients
with HCC according to the risk-prognosis signature showed that
the areas under the curve (AUC) were 0.753, 0.708, and 0.666 at 1,
3, and 5 years, respectively (Figure 6D). In the training group, the
one-, three-, and 5-year AUCs were 0.814, 0.757, and 0.804,
respectively (Figure 6E), whereas those in the test group were
0.692, 0.661, and 0.575, respectively, confirming the diagnostic
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power of the signature (Figure 6F). Subsequently, we determined
the prognostic value of the tumor stage and risk score in the three
groups using univariate Cox regression analysis. Multivariate Cox
regression analysis suggested that the risk score was an independent
prognostic factor in all groups (Figures 6G-I).

3.6 Creation of nomogram

Owing to the limitations of the scoring system alone in clinical
applications, we combined scores and clinical information to create
a nomogram to predict the survival time of patients at one, three-
and 5-years. Both the T stage and risk score were independent
prognostic factors (Figure 6]). The calibration chart further
confirmed the accuracy of the signature (Figure S3G).

3.7 Assessment of tumor immune
microenvironment and biological
characteristics among different risk groups

First, we assessed the association between risk scores and
immune cells using Spearman’s correlation analysis, and the
results were visualized using scatter plots. Naive B cells, CD8 + T
cells, and follicular helper T cells negatively correlated with risk
scores, whereas M0 macrophages and neutrophils positively
correlated with risk scores (Figures 7A-F). At the same time, the
proportion of HCC-infiltrating immune cells was visualized for
each sample (Figure S3H). In addition, the TME scores indicated
that the low-risk group had higher stromal and immune scores, and
higher tumor purity (Figure 7G). Second, the differences in immune
checkpoint expression suggested that most immune checkpoint
molecules such as CD200, NRP1, and CD276 were highly
expressed in the high-risk group. Interestingly, CD244, CD27,
IDO2, and PDCD1 were highly expressed in the low-risk group
(Figure 7H). Suggesting that immune checkpoints are involved in
tumor progression and are promising candidates for application in
the high-risk group to guide immunotherapy. Finally, based on Hu
et al, we obtained the steps of the cancer immunity cycle dataset
and enrichment scores of the immunotherapy-predicted pathway
dataset (22). “GSVA” and “ggcor” package was used to construct
risk score correlation with the datasets. As suggested by previous
results, the risk score was mostly negatively correlated with the steps
of the cancer immunity cycle, including CD4 + T cell, CD8 + T cell,
and B-cell recruitment (Figure 71; Table S5). Interestingly, the risk
score positively correlated with most of the enrichment scores of the
immunotherapy-predicted pathways, except for IFN-y and APM
signaling (Figure 7]; Table S6).

3.8 Relationship between risk scores and
TMB, MSI, and CSC indices

HCC development is influenced by multiple complex factors
including TMB, MSI, and CSCs. Therefore, it is crucial to explore the
relationships between prognostic signatures and these factors. We
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Genecluster analysis. (A) GO enrichment analysis of DEGs between two DRAGs subtypes. The red part of the graph represents the number of
enriched genes, the redder the color means the more significant gene enrichment; the purple part represents the number of enriched differential
genes. The bar graph represents the proportion of genes. (B) KEGG enrichment analysis of DEGs between two DRAGs subtypes. (C) Consensus
matrix plot defining the three cluster-related regions. (D) Kaplan-Meier curves for the three gene subtypes. (E) Relationship between the three gene
subtypes and clinicopathological features.

included 361 HCC patients with complete mutation information = TMB occurred in 84.57% of the patients in the high-risk group, with
from TCGA database. The 20 genes with the highest mutation  the most significant mutation in TP53 (38%; Figure 8A). TMB
frequencies were selected for visualization using waterfall plots.  occurred in 86.56% of samples in the low-risk group, with the most
Comparative analysis of the high- and low-risk groups showed that  significant mutation in CTNNBI1 (35%; Figure 8B). The difference in

Frontiers in Oncology 09 frontiersin.org


https://doi.org/10.3389/fonc.2023.1204335
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Chen et al.

Gene expression

10.3389/fonc.2023.1204335

geneCluster E9 A £ B E9 €

DRAGcluster B3 A (1 B

Risk score

geneCluster B3 A 1 B (3 C

p<2.22e-16

3e-08

1.1e-13

5.2e-16

N
8

Risk score

0 .

ORAGHuser

geneCiuster Rk Fustat

DRAGcluster

| i

geneCluster

Risk B8 low BE high

o
.

Gene expression

¥.

i

FIGURE 5

Genecluster and its risk prognosis signature. (A) Differential expression of 39 DRAGs in the three gene subtypes. (B) Sankey diagram of different HCC
subtypes and survival outcomes. (C) Differences in risk scores among different DRAGs subtypes. (D) Differences in risk scores among different gene
subtypes. (E) Differences in expression of 39 DRAGs in high and low-risk groups. * represents P<0.05, ** represents P<0.01, *** represents P<0.001.

TMB between the high- and low-risk groups was not statistically
significant (P=0.5) (Figure 8C). Notably, survival analysis suggested a
better prognosis in the low-TMB group (P<0.05) (Figure 8D). In
addition, by combining the risk score and TMB from the prognostic
signature, survival analysis showed statistically significant survival
among the four groups (P<0.001) (Figure 8E). In conclusion,
although the difference in TMB between the high- and low-risk
groups was not statistically significant, TMB combined with the risk
score was a better predictor of OS.

For oncology patients, it has been shown that, the higher the
MSI, the higher the potential for selecting immunotherapy (23).
MSTI has been suggested that MSI is a biomarker for determining the
immune checkpoint therapy response (24). Our analysis of patients
with HCC showed that the MSI-H group had a lower risk score than
the MSS and MSI-L groups(P<0.01; Figures 8F, G).

Frontiers in Oncology

In addition, we assessed the association between tumor cell
stemness (CSC) and the signature risk score, and correlation
analysis showed a positive correlation between CSC and the risk
score (R = 0.21, p< 0.001). These results suggest that patients
with high-risk HCC have more significant tumor stem cell
characteristics, a lower degree of cell differentiation, and a higher
degree of malignancy (Figure 8H).

3.9 Expression and immune infiltration
characteristics of 6 genes in the signature

First, we assessed differences in the expression of the six genes
between the high- and low-risk groups (Figure 9A). We explored
the interactions among the six genes in the training group. CFHR3
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Kaplan-Meier analysis, ROC curves, and nomogram of risk groups. (A) Kaplan-Meier analysis of the Recurrence free survival (RFS) of all-risk and low-
risk groups in the training group (B) Kaplan-Meier analysis of the RFS of high-risk and low-risk groups in the training group. (C) Kaplan-Meier analysis
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expression was significantly and negatively correlated with the
remaining five genes, whereas GPX7, FAM83D, CD8A, EPO, and
MSC expression were positively correlated (Figure 9B). The results
of the test group were consistent (Figure 9C).

In addition, we evaluated the relationship between the six
genes in the signature and immune cells, and found that CD8A
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and CFHR3 were strongly correlated with immune
cells (Figure 9D).

Next, we performed a correlation clustering analysis of
HCC-infiltrating immune cells (Figure 9E). As expected, risk
score-associated immune cells such as naive B cells, CD8 T cells,
and follicular helper T cells were clustered in a correlation set.
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Because the strongest correlation between these six genes

and immune cells was observed, CD8A attracted our attention.
Using qRT-PCR (n=23) and IHC (n=20), the mRNA and protein
expression levels of CD8A were verified in HCC tissues.

CD8A expression was lower in HCC tissues than in normal
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cells (Figure 10).

tissues (Figures 9F, G; Table S7). Based on pan-cancer analysis,
we found that CD8A was positively correlated with most tumor-
infiltrating cells, especially B cells, dendritic cells, CD8+ T cells,
macrophages, regulatory T cells (Tregs), and follicular helper T
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FIGURE 8

Comprehensive analysis of the risk score in HCC. (A, B) Waterfall plots of somatic mutation frequencies and mutation types between different risk
groups. Each column represents an individual patient. The bar above each column shows the TMB, and the number on the right side indicates the
mutation frequency of each gene. The bar on the right shows the proportion of each mutation type. (C) Differences in TMB across risk groups.
(D) Survival differences between high and low TMB groups in HCC. (E) Survival differences between patients with combined TMB and risk score
assessment in HCC. (F, G) Relationship between Risk score and MSI. (H) Relationship between Risk score and CSCs.

3.10 Drug sensitivity analysis

We analyzed the sensitivity of patients in the high- and low-risk
groups to chemotherapeutic agents commonly used to treat HCC.
We and found that patients in the low-risk group were more
sensitive to drugs such as Axitinib, Bicalutamide and Erlotinib.
However, the patients in the high-risk group were more sensitive to
Cisplatin, Docetaxel and Doxorubicin (Figure 11). In conclusion,
there were significant differences in drug sensitivity among different
HCC subtypes, providing a direction for personalized treatment
of HCC.

Frontiers in Oncology

13

4 Discussion

HCC is a highly heterogeneous tumor, particularly in terms of
genomics, transcriptomics, proteomics and metabolomics (25).
Disulfidoptosis is a recently identified rapid mode of programmed
cell death caused by the intracellular accumulation of excess cystine
resulting from disulfide stress, which usually occurs under
conditions of glucose starvation (26). Some studies have
demonstrated the potential of targeting disulfidoptosis in tumor
therapy (4, 6). In recent years, disulfide proteomics has been
proposed. Protein synthesis and degradation are regulated by
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Six risk model genes interaction and core gene verification. (A) Expression of the six genes in the risk signature in the high and low risk groups.

(B) Correlation of the six genes in the train group. (C) Correlation of the six genes in the test group. (D) Correlation between the level of immune
cell infiltration and the six genes in the risk signature. (E) Correlation clustering of HCC infiltrating immune cells. (F) gRT-PCR of CD8A expression
differences in HCC tissues and normal tissues. (G) Normal and cancer images of CD8A expression in liver tissues (100x and 200x) detected by IHC
staining. * represents P<0.05, ** represents P<0.01, *** represents P<0.001.

cysteine redox state (27). The liver is the main organ involved in
amino acid metabolism, and these processes have been shown to be
closely associated with HCC (28). Metabolic variants accelerate
tumor progression. The reprogramming of amino acid metabolism
is an important metabolic variant. Many metabolism-related genes
have been shown to be effective prognostic markers of HCC.
However, studies regarding the role of DRAGs in HCC are lacking.

In the present study, we investigated the correlation between
DRAGs and HCC. Surprisingly, these genes were not significantly
mutated in the HCC cells. However, this did not diminish their
importance as their differential expression in HCC and normal

Frontiers in Oncology

14

10 11 12 13 14 15 16 17 18 19 20 21 22 23

Normal tissues

tissues was more important. Subsequently, we classified patients
with HCC into two different cell subtypes based on the DRAGs.
Patients with DRAG subtype A showed poorer pathological staging
and overall survival than those with DRAGs cluster B. In addition,
there were significant differences in gene expression and metabolic
pathway enrichment between subtypes. Immune cell infiltration
into the TME also differed significantly between the two subtypes.
We obtained three gene subtypes by consensus clustering of
patients with HCC based on differentially expressed genes
between the cell subtypes of the two DRAGs. These results
suggested that DRAGs are promising predictors of HCC
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FIGURE 10
Correlation between the expression of CD8A and the level of infiltration of various immune cells in pan-cancer.

prognosis and sensitivity to immunotherapy. Additionally, we
screened six genes with prognostic value using multifactorial Cox
regression analysis to construct a risk prognostic signature.
Significant differences in the clinicopathological characteristics,
prognosis, TME, immune checkpoint expression, TMB, MSI, CSC
index, and drug sensitivity were observed between the high- and
low-risk groups. In addition, we established a nomogram for better
clinical applicability and found that the signature had high
diagnostic value based on ROC curves. Therefore, accurate
identification of the molecular subtypes of HCC under conditions
of tumor heterogeneity and construction of prognostic signatures
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are crucial for the development of new targeted therapeutic
regimens for personalized precision medicine (29).

From the perspective of prognostic value, among the six genes
used to construct the signature, the protective values of CFHR3 and
CD8A have been demonstrated in a variety of tumors, whereas
GPX7, FAMS83D, EPO, and MSC are involved in tumor
progression. Several factors affect the expression of prognosis-
related genes in patients with HCC. CD8A, a glycoprotein mainly
located on the surface of T lymphocytes, is downregulated in HCC
and acts as a barrier against anti-tumor immunity (30). As the
strongest correlation among the six genes with tumor immune cells,
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Relationship between patients with two risk score subtypes and drug sensitivity

CD8A is a potential hub gene that connects disulfidoptosis and
immune reprogramming. To avoid the influence of the different
ethnic structures of the database and our country, we needed to
verify the low expression of CD8A in HCC before conducting
follow-up research. As expected, IHC and RT-qPCR results were
consistent with the database analysis’s. GPX7, a glutathione
peroxidase, is overexpressed in HCC tissues and has prognostic
and diagnostic value (31). Overall, these genes are closely associated
with tumorigenesis and development.

Multiple factors influence HCC prognosis due to tumor
heterogeneity. The highest percentage of TP53 mutations was
found in the high-risk group (up to 38%) compared with only
15% in the low-risk group. Mutations in the tumor suppressor TP53
are the most common in HCC and often lead to poor prognosis and
reduced immune responses in patients with HCC (13, 32). In
addition, CTNNBI mutations were more frequent in the low-risk
groups. In most cases, CTNNBI1 mutations are associated with
immune rejection and-f-catenin pathway (33). Therefore, the poor
prognosis of patients with HCC in the high-risk group may be
attributed to the high number of TP53 mutations. Therefore,
CTNNBI should be considered as a potential therapeutic target in
low-risk patients.

The liver contains many immune cells and is the largest organ in
the body. Immune cells in the TME play an important role in
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promoting tumor growth and inhibiting cancer progression, and
immunotherapy has become a popular topic in tumor treatment. We
combined Spearman’s correlation analysis of risk scores and immune
cells with activity analysis of the anti-cancer response process and
found that CD8+ T cells showed low infiltration, MO macrophages
and neutrophils showed high infiltration, and neutrophils were more
actively recruited in the high-risk group. Previous studies have shown
that MO macrophages from the bone marrow rest before cell
differentiation, but M0 macrophages are strongly associated with
poor patient prognosis in gliomas (34, 35), and M0 macrophage
infiltration is significantly increased in patients with high-risk
endometrial cancer (36). In addition, neutrophils play an important
role in the tumor immunosuppressive microenvironment, promote
tumor progression, and are potential therapeutic targets for HCC
(37). However, T and Th1 cell recruitment was higher in the low-risk
group. In addition, regarding immune-related enrichment pathways,
our study found that IFN-y and APM signaling were significantly
enriched in the low-risk group. It has been shown that the anti-tumor
effect of IFN-y can be promoted by enhancing the immune response
of Th1 cells in tumor immunotherapy. Additionally, as an anti-tumor
factor, IFN-y plays an immunosuppressive role in tumors such as
melanoma and lung cancer by enhancing the immune response of T
lymphocytes (38). Our study showed that patients in the high-risk
group had lower immune scores and a stronger immunosuppressive
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microenvironment, promoting tumorigenesis and metastasis and
leading to a worse prognosis. However, higher immune checkpoint
expression indicates that the high-risk group is more likely to benefit
from future immunotherapies targeting immune checkpoints.

Our study has several limitations. First, all patient information
was obtained from public databases, mainly Western case data,
which lack representative prospective data. Second, the sample had
limited clinical information and lacked information on important
factors for determining the prognosis of patients with HCC, such as
methemoglobin levels, ascites, portal hypertension, and
postoperative complications. In future studies, we aim to recruit
patients at our hospital who meet the inclusion criteria to further
verify the authenticity and validity of the results.

5 Conclusion

In brief, we developed a prognostic signature for HCC based on
the molecular typing of DRAGs to assist in predicting HCC
progression and provide a reference value for targeted therapy
and immunotherapy for HCC.
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