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VPS4 series proteins play a crucial role in the endosomal sorting complexes

required for the transport (ESCRT) pathway, which is responsible for sorting and

trafficking cellular proteins and is involved in various cellular processes, including

cytokinesis, membrane repair, and viral budding. VPS4 proteins are ATPases that

mediate the final steps of membrane fission and protein sorting as part of the

ESCRT machinery. They disassemble ESCRT-III filaments, which are vital for

forming multivesicular bodies (MVBs) and the release of intraluminal vesicles

(ILVs), ultimately leading to the sorting and degradation of various cellular

proteins, including those involved in cancer development and progression.

Recent studies have shown a potential relationship between VPS4 series

proteins and cancer. Evidence suggests that these proteins may have crucial

roles in cancer development and progression. Several experiments have

explored the association between VPS4 and different types of cancer,

including gastrointestinal and reproductive system tumors, providing insight

into the underlying mechanisms. Understanding the structure and function of

VPS4 series proteins is critical in assessing their potential role in cancer. The

evidence supporting the involvement of VPS4 series proteins in cancer provides a

promising avenue for future research and therapeutic development. However,

further researches are necessary to fully understand the mechanisms underlying

the relationship between VPS4 series proteins and cancer and to develop

effective strategies for targeting these proteins in cancer therapy. This article

aims to review the structures and functions of VPS4 series proteins and the

previous experiments to analyze the relationship between VPS4 series proteins

and cancer.

KEYWORDS
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1 Introduction

Aberrant expression or sporadic mutations in the endosomal sorting complex required

for transport (ESCRT) have been observed in an increasing number of cancers (1),

suggesting a potential link to the ESCRT pathway (2). Vacuolar protein sorting 4

(VPS4) is an ATPase that plays a crucial role in driving membrane constriction (3),
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making it a key functional component in the ESCRT pathway (4). In

this article, we review the structures and functions of VPS4 proteins

and analyze previous experiments to provide a comprehensive

understanding of their role in cancer.
2 The structures and functions
of VPS4

2.1 Overview of ESCRT

ESCRT is a hetero-multimeric protein machinery mediating

inverse membrane remodeling (5). ESCRT proteins assemble on the

cytosolic or nucleoplasmic side of the neck of the forming

involution and work together with the ATPase VPS4 to facilitate

membrane scission or sealing (6). The functions of ESCRTs can be

generalized as follows: cytokinetic abscission, plasma membrane

repair, vesicle budding from plasma membrane, endosomal sorting

and ILV biogenesis (7), autophagy, repair of endo-lysosomal

membranes (3, 8).

ESCRT is a complex of four subunits including ESCRT-0,

ESCRT-I, ESCRT-II, and ESCRT-III. VPS4, as an ATPase, is

required for the disassembly of ESCRT-III polymer (9). ESCRT-0

is responsible for identifying and clustering substrates on

membranes, making it the driving force for cargo clustering in

the ESCRT pathway (3); ESCRT-I and II induce membrane bud

formation and cargo positioning and then localize to the necks of

membrane buds to recruit ESCRT-III subunits and activate scission;

ESCRT-III shears the top of the budding body and releases the

vesicles. This polymerization sequence drives membrane

deformation and fission (10), which requires energy from AAA+

ATPaseVps4. The ESCRT-III subunits are disassembled through

conformational changes induced by the VPS4 ATPases, which

harness the energy derived from ATP hydrolysis (11). Figure 1

illustrates the complete ESCRT pathway.

The initiation of endosomal ESCRT activity is facilitated by the

binding of the ESCRT-0 protein HRS(Hepatocyte growth factor-

regulated tyrosine kinase substrate) to the endosomal lipid,

phosphatidylinositol 3-phosphate (PI3P), as illustrated in Figure 2

(Created with BioRender.com). HRS is a protein that plays a crucial

role in endosomal sorting and trafficking of ubiquitinated cargo.

Together with the ESCRT-0 subunit STAM (Signal Transducing

Adaptor Molecule), HRS binds to ubiquitinated cargo and to the

coat protein clathrin, which helps to concentrate ESCRT-0 in

endosomal microdomains. Other accessory proteins such as

Eps15B, an endocytic adaptor protein that interacts with both

HRS and clathrin and plays a role in the formation of clathrin-

coated vesicles, also contribute to the formation of the endosomal

microdomains that facilitate cargo sorting. HRS contains a PSAP

motif that binds to the ESCRT-I subunit TSG101, thereby recruiting

the heterotetrameric ESCRT-I complex. ESCRT-I can recruit

ESCRT-II, a heterotetramer consisting of two EAP20 subunits,

one EAP30 subunit, and one EAP45 subunit. This recruitment

likely occurs through an interaction between VPS28 and the GLUE

domain of EAP45, which also serves as another PI3P- and
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ubiquitin-binding platform. The two EAP20 subunits of ESCRT-

II directly interact with CHMP6 molecules (12), and ESCRT-I can

also make direct contact with ESCRT-III through interactions

between VPS28 and CHMP6 in their respective subcomplexes

(13). This generates a nucleation complex that drives the

polymerization of ESCRT-III filaments consisting mainly of

CHMP4, along with CHMP2 and CHMP3. The ESCRT-III

subunits interact with the endosomal membrane through clusters

of basic residues in their core domain, myristoylation (in the case of

CHMP6), or an N-terminal amphipathic helix (in the case of

CHMP4) (14). Recent studies suggest that VPS4 also plays an

active role in controlling neck constriction and vesicle scission (15).
2.2 Structures of VPS4

Vps4 enzymes play a crucial role in the ESCRT pathway by

driving the exchange of subunits within ESCRT-III filaments and

recycling them back into the cytoplasm using the energy of ATP

hydrolysis (4). These enzymes are comprised of three distinct

structural components (4): an N-terminal MIT domain, which

binds the tails of ESCRT-III proteins; a central ATPase cassette

includes large and small domains that facilitate tetramerization and

ATP hydrolysis; and a b-domain insert located within the small

ATPase domain, which binds an ATPase activator and ESCRT-III-

binding protein-LIP5 (Vta1).

A study conducted in 2001 demonstrated that human cells

express two non-allelic orthologs of the vacuolar protein sorting 4,

namely hVPS4A and hVPS4B/SKD1, which share 80% identity and

are involved in various intracellular protein trafficking processes (16).

Both VPS4A and VPS4B utilize their microtubule interacting and

transport (MIT) domains to bind to conserved sequence motifs

located at the carboxy termini of the CHMP1-3 class of ESCRT-III

proteins. The interaction between VPS4A/MIT-CHMP1A or VPS4B/

MIT-CHMP2B complexes is reliant on this binding mechanism (17).

The active form of VPS4 is a hexamer complex that binds

substrates in its central pore (18). By translocating ESCRT-III

protein substrates through this pore, VPS4 unfolds them and

drives membrane fission, ultimately leading to the recycling of

ESCRT-III subunits (19). Any alterations to the structure or

function of VPS4 protein could impact the membrane fission

process mediated by ESCRT-III proteins and the subsequent

recovery of ESCRT-III subunits.
2.3 Functions of VPS4

VPS4 ATPases play a crucial role in the ESCRT pathway by

recognizing membrane-associated ESCRT-III assemblies and

catalyzing their disassembly (20). During cytokinesis, the ESCRT

pathway mediates the final membrane fission step of cytokinesis,

which results in the permanent separation of newly formed daughter

cells (21). The midbody adaptor protein CEP55 initiates cytokinesis

by recruiting early-acting ESCRT factors ALIX and ESCRT-I (22).

Subsequently, it promotes the recruitment and polymerization of
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critical ESCRT-II and ESCRT-III subunits, leading to the formation

of filaments inside the midbody (23). These filaments, which are

associated with the membrane, work in conjunction with the AAA

ATPase VPS4 to constrict and cleave the midbody (24, 25).

ESCRTs bind to membranes, and influence their shaping,

organization, properties and functions, either by binding to them

directly or indirectly through other cytoskeleton elements (26).

When binding with negatively charged membranes, the ESCRT-III

components adopt an activated state that allows them to polymerize

into filaments and spirals, and to interact with the AAA-ATPase

Vps4 for polymer remodeling. Researchers Jukic et al. employed

high-speed atomic force microscopy (HS-AFM) to study how the

ESCRT-III proteins CHMP2A and CHMP3 facilitate membrane

scission during cytokinesis. They suggested a model in which the

CHMP2A-CHMP3 helices disassemble inside the cytokinetic necks,

resulting in the constriction of the surrounding membrane tube and

scission. In a study by Azad et.al, the process was observed in real-
Frontiers in Oncology 03
time using fluorescence microscopy and high-speed atomic force

microscopy imaging. Their results confirmed the findings of Jukic

et al. that CHMP2A-CHMP3 proteins play a crucial role in

membrane tube constriction and scission during cytokinesis.

CHMP2A-CHMP3-VPS4 is considered to be the minimum

machinery necessary for membrane fission, which is of great

importance in the formation of vesicles such as exosomes.

Moreover, VPS4 affects multiple cellular functions, including

cell signaling, cell death, etc.
3 Possible mechanisms affecting
carcinoma of VPS4

Recent research has highlighted the important role of VPS4 in

cancer development and progression. Aberrant expression of VPS4

is associated with various types of cancer, including breast cancer,
FIGURE 1

The ESCRT pathway. From the ESCRT protein standpoint, the process is initiated by ESCRT-0, which engages with ubiquitinated cargo (i). The
ESCRT-I and ESCRT-II complexes bind with cargo and each other, which creates an ESCRT-cargo-enriched zone (ii) and is subsequently
sequestered and sorted by ESCRT-III (iv and v). The nucleation site for ESCRT-III assembly is provided by the ESCRT-II complex. (iii), which drives
vesicle budding (iv) and is subsequently disassembled by the Vps4 complex (v).
FIGURE 2

Composition and Molecular Interactions of the ESCRT Machinery. CB, clathrin-box motif; FYVE, Fab1p/YOTB/Vac1p/EEA1 domain; GLUE, GRAM-like
ubiquitin in EAP45 domain; MIT, microtubule interacting and transport domain; Ub, ubiquitin; UEV, ubiquitin conjugated enzyme E2 variant; UIM,
ubiquitin-interacting motif.
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lung cancer, pancreatic cancer, etc, as Supplementary Figures 1, 2

show (27). Consequently, exploring the molecular mechanisms of

VPS4-mediated cancer pathogenesis may pave the way for novel

therapeutic approaches to cancer treatment.
3.1 VPS4 and cell division:
cytokinetic abscission

The ultimate stage of cell division is cytokinetic membrane

abscission (28), by which the cytoplasm of the parent cell is divided

into two daughter cells. This process is controlled by a specialized

organelle called the midbody (29), which forms at the site of cell

division. Once the contractile ring has completed its constriction,

the midbody (29) serves as a platform for the final abscission of the

two daughter cells. This process is spatially and temporally

regulated and requires the coordination of various proteins and

pathways. The ESCRT pathway, especially the VPS4 protein, is

essential for cytokinetic membrane abscission (30) and defects of

VPS4 can lead to cytokinesis failure and the formation of

multinucleated cells. In addition, abnormalities in VPS4 can lead

to dysfunction of the checkpoint, resulting in erroneously replicated

chromosomes still entering the daughter cells (31). Understanding

the control of cytokinetic membrane abscission and the relevance of

the VPS4 protein is critical for understanding basic cellular

processes and developing innovative treatment techniques.

Cytokinetic abscission is influenced by checkpoints (32).

ANCHR (Abscission/NoCut Checkpoint Regulator (33)) plays a

critical role in regulating the abscission checkpoint, which serves to

delay the abscission process in response to various mitotic issues,

including incomplete nuclear pore reformation or chromatin bridges

within the midbody. ANCHR achieves this regulation through its

interactions with the most downstream component of the ESCRT

machinery, namely the ATPase VPS4 (33). During cytokinesis,

ANCHR and CHMP4C hold VPS4, which is capable of separating

the two daughter cells, at the midbody ring until the abscission

checkpoint signal is ended (34). When problems arise during mitosis,

with the dephosphorylated of CHMP4C and assistance of other

ESCRT-III-associated factors, the ANCHR-CHMP4C-VPS4 ternary

complex is separated (4), and VPS4 is removed from the abscission

sites. That results in the postponement of abscission (35).

Checkpoints function as DNA surveillance mechanisms that

prevent the accumulation and propagation of genetic errors during

cell division (36), whereas abnormalities or dysregulation of VPS4

implicate in the loss of the abscission checkpoint function,

increasing the amount of mismatched DNA and allowing

continuous cell division by compromising cells’ ability to exit the

cell cycle. Cancer is associated with inadequate checkpoints, which

allow substandard tumor cells to divide and grow (37).
3.2 VPS4 and cancer migration:
through exosomes

Exosomes are small vesicles that contain a variety of bioactive

substances, including DNA, RNA, and protein (38). Exosomes
Frontiers in Oncology 04
affect acceptor cells by interacting with extracellular receptors or

being uptaken (39). Exosomes have been found to influence many

biological processes through different molecular mechanisms, such

as tumor immunity, tumor invasion, and metastasis (40). Vps4

collaborates with ESCRT-III to carry out specific membrane-

remodeling actions that ultimately facilitate effective membrane

scission during in vivo exosome biogenesis and recycle ESCRT-III

subunits (11, 41). Jackson et al. reported the size and rate of

formation of exosomes are regulated by Vps4 adenosine

triphosphatase activity (42).

Exosomes have been identified as crucial mediators of

intercellular communication in cancer, which ultimately leads to

tumor progression. Furthermore, exosomes have also emerged as

promising and progressing biomarkers for cancer (43). Cancer cells

secrete extracellular vesicles that impact cancer progression by

forming a tumor-promoting matrix and inducing fibroblast

differentiation into cancer-associated fibroblasts (44). This

differentiation depends on the triggering of alpha-smooth muscle

actin expression and TGF-b signaling (45). Cancer-associated

fibroblasts (CAFs) play a critical role in cancer invasiveness, and

they also secrete extracellular vesicles that contribute to cancer cell

invasiveness (46). As a result, extracellular vesicles released by

cancer cells or CAFs have a direct influence on the matrix and

other cells surrounding them, changing their functioning and

driving cancer progression.

Recent studies have demonstrated that exosomes can impact

metastasis by modulating the Epithelial-mesenchymal transition

(EMT) and cancer stem cells (CSCs). Research by Lin H et all

indicated (47), a decrease in miR-4454 can promote Vps4A and

Rab27A expressions, which then induce exosome secretion and

enhance the miR-4454 content in exosomes, thus accelerating the

progression of liver carcinoma. EMT is considered a critical step in

cancer cell metastasis (48). Han Q et al. discovered that Vps4A can

mediate the PM localization and exosome release of b-catenin,
consequently decreasing b-catenin signaling, and thereby inhibiting

EMT and metastasis in HCC (49).

Exosomes secreted by cancer cells play an important part in the

movement of cancer cells and the formation of premetastatic

niches. These exosomes contain various molecules, including

fibronectin, miRNA, proteases, and integrins, which can influence

the extracellular matrix and facilitate cell migration and invasion.

The fibronectin contained in these exosomes has been shown to be

particularly important for cell migration (50). Tumor-derived

exosomes can bind to individual components of the ECM, such

as hyaluronic acid or laminin, and are rich in proteases that can

degrade collagens, laminins, or fibronectin, leading to premetastatic

niche preparation. These exosomes can also transfer metastatic

capability between metastatic and nonmetastatic cancer cells (51).

For example, extracellular vesicles containing miR-200, secreted by

metastatic breast cancer cell lines, were shown to alter gene

expressions and promote the mesenchymal-to-epithelial transition

(MET) in nonmetastatic cells (52). Exosomes can also induce

premetastatic niche formation in distant organs. Costa-Silva et al.

found, in pancreatic ductal adenocarcinoma, exosomes were

demonstrated to induce liver premetastatic niche formation in

naïve mice. TGF-b secretion and fibronectin upregulation in
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recipient hepatic cells create a fibrotic microenvironment, while the

macrophage migration inhibitory factor (MIF) contained within

exosomes counteracts bone-marrow-derived macrophages leading

to metastasis (53). Exosomal integrins also play a crucial role in

determining organ-specific metastasis. Integrins are cell surface

receptors that mediate cell adhesion and signaling, integrins a6b4
and a6b1 were associated with lung metastasis, and integrin aVb4
was linked with liver metastasis (54).

Sylvain Loric et al. proposed that exosomes play an important

role in the formation of mammary stem cells (MaSCs), which are

probable candidates for breast cancer initiation (55, 56). In

addition, Exosomes mediate epithelial-mesenchymal transition

and the formation of cancer stem cells, playing a crucial role in

tumor metastasis. Furthermore, exosomes can influence the

extracellular matrix and facilitate cell migration and invasion.

Stefańska et al. indicated (46) in their review that Exosomes can

also induce immune suppression or promote tumor progression by

affecting immune regulation and extracellular angiogenesis. VPS4

induces exosome formation and is vital in CSCs and cancer cell

migration. Overall, the study of exosomes and their roles in cancer

metastasis is an active area of research and has the potential to

provide new insights into cancer biology and therapy.
3.3 Synthetic lethality between VPS4A gene
and VPS4B gene

Synthetic lethality was first reported in 1968, which refers to the

phenomenon that the simultaneous inactivation of two non-lethal

genes will lead to cell death. At present, poly (ADP-ribose)

polymerase inhibitors (PARPi) operate through a “synthetic

lethality” mechanism with mutant DNA repair pathways genes in

cancer cells, and PARPis are widely used in cancer such as ovarian

cancer (57). There are two forms of VPS4 in the human body and

recently it is confirmed that VPS4A and VPS4B are essential

enzymes for the ESCRT pathway and have no substitution (58),

loss of both is fatal (59).

VPS4B expression was significantly downregulated in colorectal

cancer (CRCs) (60). Sheffer et. al (61) found that in

immunocompromised NU/J mice, injection of HCT116 cells with

the knockout of VPS4B and doxycycline (Dox)‐inducible VPS4A‐

targeting shRNA expression (HCT116 VPS4B −/− shVPS4A)

inhibits tumor growth in mouse. Neggers et al. also reported (62)

that induction of VPS4A suppression in human VPS4Bloss

SMSCTR (rhabdomyosarcoma) and SNU213 (pancreatic ductal

adenocarcinoma) cancer cells result in near-complete tumor

regression (SMSCTR) or potent tumor growth inhibition

(SNU213) and improved survival in both models. They confirmed

that suppression of VPS4A in VPS4B-deficient cells leads to

selective accumulation of ESCRT-III filaments, resulting in

cytokinesis defects, nuclear deformation, G2/M arrest, apoptosis,

and significant tumor regression. In summary, there exists

“synthetic lethality” of the VPS4A gene and VPS4B gene in

cancer, especially in CRCs.

It is found that the ESCRT ATPases VPS4A and VPS4B score as

strong synthetic lethal dependencies. VPS4A is essential in cancers
Frontiers in Oncology 05
harboring loss of VPS4B adjacent to SMAD4 on chromosome 18q

and VPS4B is required in tumors with co-deletion of VPS4A and

CDH1 (E-cadherin) on chromosome 16q (62). As a result, VPS4A

and VPS4B may become high-priority therapeutic targets for

malignancies characterized by 18q or 16q deletion. However,

there is no experimental evidence that VPS4B depletion causes

cell death in tumors with low or absent VPS4A levels.
3.4 VPS4 and signaling pathways

The role of Vps4 has been studied in various cellular signaling

pathways, including the Wnt pathway. Rodahl et.al (63) reported

that double deficiency in dVps4 and JNK signaling leads to the

formation of neoplastic tumors in drosophila. Wnt signaling is one

of the key cascades regulating development and stemness and is

proven to be tightly associated with cancer (64). Typical Wnt

signaling requires inhibition of Glycogen Synthase Kinase 3

(GSK3) activity (3). Taelman et al. reported that Wnt signaling

triggers the sequestration of GSK3 from the cytosol into

multivesicular bodies (MVBs), so that this enzyme becomes

separated from its many cytosolic substrates (65). Furthermore,

they investigated the role of Vps4 in the Wnt signaling pathway. A

point mutation in the ATPase site of VPS4 (Vps4-EQ), cause a

potent dominant-negative form that inhibited the formation of

intraluminal vesicles and blocked Wnt3a signaling. They also tested

the requirement of the ESCRT machinery for axis induction by

Siamois, a homeobox gene activated by Wnt signaling, and found

that Vps4-EQ mRNA was unable to inhibit Siamois secondary axes.

This suggests that Vps4 is important not only for GSK3

sequestration but also for other downstream events in the Wnt

signaling pathway. Overall, Vps4 plays a crucial role in the Wnt

signaling pathway and could have implications for understanding

diseases associated with disrupted Wnt signaling.
3.5 VPS4 and cell death: pyroptosis
and ferroptosis

Cancer cells often have defects in cell death executioner

mechanisms, which is one of the main reasons for therapy

resistance. How to effectively induce cancer cell death, including

cancer cell pyroptosis (41), ferroptosis, etc., has become a focus in

the development of anticancer drugs. Many cells need to complete a

set of effector programs before they die, which dependents on the

ESCRT-drive membrane repair to allow cells to complete the

programs before they die (66). ESCRT-III components primarily

play a role in repairing damage to the plasma membrane and

maintaining cell survival before cell lysis (67). VPS4, as the last step

of the ESCRT pathway, plays important roles in various cellular

death processes, and dysregulation or deficiency of VPS4 can affect

cell death to varying degrees.

Pyroptosis is a form of regulated necrosis induced by the pore-

forming protein gasdermin D (GSDMD) that damages the plasma

membrane. Nara et al. proposed that during pyroptosis, after

cytosolic caspases cleave GSDMD to form nanoscale membrane
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pores, CHMP4B is recruited to the plasma membrane and clusters

around the neck to remove the GSDMD pores and preserving

plasma membrane integrity, thus limiting proinflammatory

cytokine interleukin-1b (IL-1b) and IL-18 release through

GSDMD pores to inhibit pyroptosis (67). VPS4B ATPase is

activated to dismantle the ESCRT-III complex after membrane

scission (68).

Cancer cells exhibit an increased iron demand to enable growth

compared with normal cells. This iron dependency can make cancer

cells more vulnerable to iron-catalyzed necrosis, referred to as

ferroptosis (69). As reported, the membrane damage caused by

ferroptosis stimulus can be repaired by ESCRT-III-dependent

membrane scission machinery (7, 70), Dai et al. also suggested

that ESCRT-III confers resistance to ferroptosis cell death, allowing

cell survival under stress conditions (71). If VPS4 is abnormal or

dysfunctional, it could potentially disrupt the ESCRT pathway,

leading to a reduced ability to repair the membrane damage and

an increased likelihood of ferroptosis in cancer cells.

Dysregulation or deficiency of VPS4 can affect various cellular

death processes, including pyroptosis, and ferroptosis. Additionally,

dysfunctional VPS4 can reduce the ability to repair membrane

damage, increasing the likelihood of ferroptosis in cancer cells.

Defects in Vps4 can also affect pyroptosis, suggesting that targeting

VPS4 could be a potential strategy for inducing cancer cell death.
3.6 VPS4 and Autophagy

Autophagy is a cellular mechanism in which the cell “self-eats”

misfolded proteins and dysfunctional organelles to autophagosomes

(APs) and subsequently deliver them to lysosomes for degradation

(72). The study found that ESCRTs repair small lysosomal

membrane pores by d i rec t membrane sea l ing (73) .

Autophagosome biogenesis has a close relationship with ESCRTs

(74), including VPS4. Defects in the fusion of APs and lysosomes

are associated with Vps4 mutants in human cells (75). SKD1 is a

member of the family of ATPases associated with cellular activities.

Fujita et al. described that when a mutant of SKD1 that lacks

ATPase activity [SKD1(E235Q)] was overexpressed in mammalian

cells will cause an accumulation of basolateral recycling receptors,

SKD1 regulates multiple steps of membrane transport out of early

endosomes and the reformation of lysosomes from a hybrid

organelle (76). It has been proven that the function of Vps4 in

maintaining axonal autophagy is conserved in mammals, and Vps4

is essential and sufficient to promote autophagic flux (77).

VPS4 plays a crucial role in various cellular processes such as

endosomal sorting, membrane trafficking, cytokinesis, and cell

signaling transduction. Recent research has highlighted the

significance of VPS4 dysregulation in cancer development and

progression. Targeting the synthetic lethality of VPS4A and B genes

may provide a novel therapeutic strategy for cancer treatment. In vitro

and in vivo studies have shown that inhibiting VPS4 can reduce cancer

cell migration and invasion. In conclusion, VPS4 plays a crucial role in

various cellular processes, and its dysregulation has been linked to

cancer development and progression.
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4 Application of VPS4 in carcinoma

Research has shown that VPS4 expression levels are often altered

in various types of cancer, and this dysregulation can have significant

effects on tumor development and progression. In addition, VPS4 has

been proven to affect a range of cellular processes, which are

important for tumor cell survival and growth. Current research

shows that VPS4 is related to tumor staging, prognosis, and

treatment, and further relationships need to be explored.
4.1 VPS4B and Staging

The expression levels of VPS4B in different types of cancer have

been shown to be associated with varying clinical and pathological

factors, as well as with patient survival outcomes. Lin et al.

conducted that there is a negative correlation between VPS4B

expression and EGFR abundance in breast tumors, and high-

grade or recurrent breast carcinomas have decreased levels of

VPS4B expression, which indicates that VPS4B may have a

tumor-suppressive role in breast cancer (78). Lin et al. conducted

that in 2D and 3D culture systems of EGFR/HER2-expressing

SKBR3 breast cancer cells whose VPS4B is selectively

downregulated under hypoxic conditions, EGF-induced EGFR

degradation is attenuated. EGFR signaling was responsible for cell

growth, invasion, and metastasis in breast cancer (79). There is a

negative correlation between VPS4B expression and EGFR stability

in breast tumors (78). VPS4B is also positively associated with

pancreatic cancer development. Transplantation of VPS4B-

deficient pancreatic tumors into immune competent mice impairs

autophagy and resulting in increased accumulation of CD8 T cell-

derived granzyme B and tumor cell lysis (80).

In NSCLC, VPS4B showed high expression and a significant

correlation with tumor size, histological differentiation, clinical

stage, and Ki-67. Experimenters found, knocking down the

expression of VPS4B (81) and analyzing the proliferation of A549

NSCLC cells via Western blot, CCK8, and flow cytometry assays

indicate that loss of VPS4B could inhibit cell cycle progress and

abolish the proliferation of A549 cells (82).Correspondingly, Y. Liu

et al. also confirmed that knocking down VPS4B led to cell cycle

arrest and reduced cell proliferation of HCC cells (82).

In summary, high expression of VPS4B is associated with tumor

proliferation and poor prognosis, suggesting that VPS4B may

become an important assessment factor in tumor staging.
4.2 Prognosis

As mentioned in 3.1, VPS4B is associated with the prognosis of

various tumors. In order to have a further understanding of the

relationship between the expression of the VPS4 gene and tumor,

we downloaded the unified and standardized pan-cancer data set

from the UCSC (83) database: TCGA TARGET GTEx (PANCAN,

N=19131, G=60499), and further we extracted ENSG00000132612

(VPS4A) and ENSG00000119541(VPS4B) gene expression data in
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each sample. In addition, we also obtained from the TCGA

prognosis study (84) previously published on Cell obtained a

high-quality TCGA prognosis data set, obtained TARGET follow-

up data from UCSC’s cancer browser (83) as a supplement, and

excluded samples whose follow-up time was less than 30 days.

Expression data and disease-specific survival data of corresponding

samples are as follows (27) (Supplementary Figure 1, 2).

There is evidence to suggest that high expression of VPS4 may

be associated with poor prognosis in certain diseases. It is important

to note, however, that the relationship between VPS4 expression

and prognosis is likely to be complex and may vary depending on

the specific disease and context. Further research is needed to fully

understand the role of VPS4 in disease progression and its potential

as a therapeutic target.
4.3 Feasibility of application in therapy

So far, exosomes are emerging as promising new carriers for

drugs and biotherapeutics in glioblastoma (85, 86). By combining

exosome research with nanotechnology, exosome-like systems can

be developed as a competitive approach for innovative targeted

anti-cancer therapies (87). Moreover, exosomes contain

microRNAs, proteins, and other biomolecules which reflect the

physiological state and pathological characteristics of secretory cells.

The use of exosomes as biomarkers is a promising approach in the

era of liquid biopsy, especially in NSCLC (88) and glioma (89).

VPS4A and VPS4B are vesicle-fusing ATPases, which belong to

the AAA-type (ATPase associated with a variety of cell activities)

ATPase superfamily and promote the reaction of hydrolysis of ATP

in the positive progress. The majority of AAA ATPases are singular

(type I) or dual-looped (type II) homo-hexamers as their operative

entities. The VPS4A/B end lysosomal sorting ATPase is typical type

I (90). Specific AAA ATPase inhibitors are necessary in several well-

studied forms of AAA ATPases due to structural differences (91).

Drugs that operate directly on VPS4 are still under investigation. To

learn more about the druggability of VPS4 proteins, we searched a

public cancer comprehensive knowledge base canSAR(https://

cansar.ai/) and found that VPS4A and VPS4B have druggable

structures or enzymes, which are listed in Table 1 (92).

VPS4A has a predicted structure in the alpha-fold database,

which means 3d-based ligandability has been assessed and
Frontiers in Oncology 07
available. There are 3 chains 3D Structure of VPS4A, and

experimental structural coverages 77 positions of 3 chains

(93). Ligandable cavities of VPS4B are primarily in the

ATPase family associated with various cellular activities

(AAA) domains.

In general, VPS4A and VPS4B druggability is an attractive field

of research, and it will be interesting to see how these proteins can

be targeted for drug development.
5 Conclusion

VPS4 is critical for tumor biology through its roles in cell

division, cell metastasis, cell death, signaling induction, etc. These

functions of VPS4 make it a potential target for cancer diagnosis

and treatment. As an important link in the formation of MVB,

VPS4 may have a close relat ionship with the tumor

microenvironment and immunomodulation, which is not

confirmed yet. Moreover, VPS4B regulates apoptosis of

chondrocytes via p38 Mitogen-Activated Protein Kinases

(MAPK) in osteoarthritis (94) and Crohn’s disease (95),

providing a possible pathway by which VPS4 series proteins affect

tumors. Therefore, continued in-depth investigation is required. In

conclusion, a thorough understanding of VPS4 will improve cancer

clinical translational potential.
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TABLE 1 The druggable structures of VPS4A and VPS4B screened by the can SAR database.

Compound Name Ligand
efficiency

Bioactivity
Type

VPS4A
3450612

(S)-2-amino-N-(5-(6-chloro-5-(phenylsulfonamido)pyr idin-3-yl)-4-methylthiazol-2-yl)-3-
methylbutanamide;

0.12 IC50 280 nM

VPS4B 3446053 NMS694; canSAR3446053 0.14 IC50 260 nM

3446029 NMS-485A; canSAR3446029 0.15 IC50 500nM

3231320 canSAR3231320 0.1 IC50 710nM
frontiersin.org

https://cansar.ai/
https://cansar.ai/
https://doi.org/10.3389/fonc.2023.1203359
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2023.1203359
Acknowledgments

We thank Biorender (https://www.biorender.com/) for the

assistance of graphics during the preparation of this manuscript.
Conflict of interest

The authors declare that there are no conflicts of interest

regarding the publication of this article.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or
Frontiers in Oncology 08
claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1203359/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

VPS4A expression in different cancers

SUPPLEMENTARY FIGURE 2

VPS4B expression in different cancers

SUPPLEMENTARY FIGURE 3

VPS4A expression and disease-specific survival in cancer

SUPPLEMENTARY FIGURE 4

VPS4B expression and disease-specific survival in cancer
References
1. Lucchesi JC. Synthetic lethality and semi-lethality among functionally related
mutants of drosophila melanfgaster. Genetics (1968) 59(1):37–44. doi: 10.1093/
genetics/59.1.37

2. Alfred V, Vaccari T. When membranes need an ESCRT: endosomal sorting and
membrane remodelling in health and disease. Swiss Med Wkly (2016) 146:w14347.
doi: 10.4414/smw.2016.14347

3. Wollert T, Hurley JH. Molecular mechanism of multivesicular body biogenesis by
ESCRT complexes. Nature (2010) 464(7290):864–9. doi: 10.1038/nature08849

4. Monroe N, Hill CP. Meiotic clade AAA ATPases: protein polymer disassembly
machines. J Mol Biol (2016) 428(9 Pt B):1897–911. doi: 10.1016/j.jmb.2015.11.004

5. Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell (2011) 21
(1):77–91. doi: 10.1016/j.devcel.2011.05.015

6. Schmidt O, Teis D. The ESCRT machinery. Curr Biol (2012) 22(4):R116–20.
doi: 10.1016/j.cub.2012.01.028

7. Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of
ceramides and lysosomes in extracellular vesicle biogenesis, cargo sorting and release.
Int J Mol Sci (2022) 23(23). doi: 10.3390/ijms232315317

8. Borah S, Dhanasekaran K, Kumar S. The LEM-ESCRT toolkit: repair and
maintenance of the nucleus. Front Cell Dev Biol (2022) 10:989217. doi: 10.3389/
fcell.2022.989217

9. Hurley JH, Hanson PI. Membrane budding and scission by the ESCRT
machinery: it’s all in the neck. Nat Rev Mol Cell Biol (2010) 11(8):556–66.
doi: 10.1038/nrm2937

10. Pfitzner AK, Mercier V, Jiang X, Moser von Filseck J, Baum B, Šarić A, et al. An
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Glossary

ESCRT endosomal sorting complexes required for the transport

VPS4 Vacuolar protein sorting 4

MVB multivesicular bodies

IVL intraluminal vesicles

TCGA-ACC Adrenocortical carcinoma

TCGA-BLCA Bladder Urothelial Carcinoma

TCGA-BRCA Breast invasive carcinoma

TCGA-CESC
Cervical squamous cell carcinoma and endocervical
adenocarcinoma

TCGA-CHOL Cholangiocarcinoma

TCGA-COAD Colon adenocarcinoma

TCGA-
COADREAD

Colon adenocarcinoma/Rectum adenocarcinoma
Esophageal carcinoma

TCGA-DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

TCGA-ESCA Esophageal carcinoma

TCGA-FPPP FFPE Pilot Phase II

TCGA-GBM Glioblastoma multiforme

TCGA-
GBMLGG

Glioma

TCGA-HNSC Head and Neck squamous cell carcinoma

TCGA-KICH Kidney Chromophobe

TCGA-KIPAN Pan-kidney cohort (KICH+KIRC+KIRP)

TCGA-KIRC Kidney renal clear cell carcinoma

TCGA-KIRP Kidney renal papillary cell carcinoma

TCGA-LAML Acute Myeloid Leukemia

TCGA-LGG Brain Lower Grade Glioma

TCGA-LIHC Liver hepatocellular carcinoma

TCGA-LUAD Lung adenocarcinoma

TCGA-LUSC Lung squamous cell carcinoma

TCGA-MESO Mesothelioma

TCGA-OV Ovarian serous cystadenocarcinoma

TCGA-PAAD Pancreatic adenocarcinoma

TCGA-PCPG Pheochromocytoma and Paraganglioma

TCGA-PRAD Prostate adenocarcinoma

TCGA-READ Rectum adenocarcinoma

TCGA-SARC Sarcoma

TCGA-STAD Stomach adenocarcinoma

TCGA-SKCM Skin Cutaneous Melanoma

TCGA-STES Stomach and Esophageal carcinoma

TCGA-TGCT Testicular Germ Cell Tumors

(Continued)
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TCGA-THCA Thyroid carcinoma

TCGA-THYM Thymoma

TCGA-UCEC Uterine Corpus Endometrial Carcinoma

TCGA-UCS Uterine Carcinosarcoma

TCGA-UVM Uveal Melanoma

TARGET-OS Osteosarcoma

TARGET-ALL Acute Lymphoblastic Leukemia

TARGET-NB Neuroblastoma

TARGET-WT High-Risk Wilms Tumor
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