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Angiogenesis is an essential process in the growth andmetastasis of cancer cells,

which can be hampered by an anti-angiogenesis mechanism, thereby delaying

the progression of tumors. However, the benefit of this treatment modality could

be restricted, as most patients tend to develop acquired resistance during

treatment. Vasculogenic mimicry (VM) is regarded as a critical alternative

mechanism of tumor angiogenesis, where studies have demonstrated that

patients with tumors supplemented with VM generally have a shorter survival

period and a poorer prognosis. Inhibiting VM may be an effective therapeutic

strategy to prevent cancer progression, which could prove helpful in impeding

the limitations of lone use of anti-angiogenic therapy when performed

concurrently with other anti-tumor therapies. This review summarizes the

mechanism of VM signaling pathways in urological tumors, i.e., prostate

cancer, clear cell renal cell carcinoma, and bladder cancer. Furthermore, it

also summarizes the potential of VM as a therapeutic strategy for

urological tumors.
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1 Introduction

Urological cancers include cancers of the urinary system, including kidneys, urinary

tract epithelium (including bladder, ureter, and urethra), prostate, testes, and penis. The

American Cancer Society predicted in 2022 that there would be 1,918,030 new cases of

cancer diagnosed with estimated 31,990 death from urological cancers in the United States.

Prostate cancer is the most common malignancy and the third leading cause of cancer-

related deaths in men, while kidney and bladder cancer are regarded among the top ten

most common malignancies in the United States (1). The growth, invasion, and metastasis

of malignant tumors are closely related to angiogenesis, which has become one of the hot

topics in cancer research (2). Over the past few decades, it has been thought that the growth

of tumors is dependent on angiogenesis. Tumors larger than 2mm in diameter cannot rely

solely on diffusion for oxygen supply, and without the intervention of neovascularization,
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tumors cannot continue to grow (3). Based on this hypothesis, it has

been proposed that antiangiogenic drugs should be able to inhibit

the growth of all solid tumors (4). However, anti-angiogenic

therapy has so far shown only limited efficacy in patients. As

early as before, researchers have proposed the idea of non-

angiogenic tumors. But only recently has the special biological

status of non-angiogenic tumors been formally described (5).

Non-angiogenic tumors grow through two main mechanisms in

the absence of angiogenesis. One way is to utilize pre-existing blood

vessels by infiltrating cancer cells and occupying normal tissue, this

is called vessel co-option. The second is through the formation of

channels that provide blood flow through the cancer cells

themselves, known as vasculogenic mimicry (6). To ensure

sufficient nutrient supply, tumors release angiogenic factors that

promote neovascularization. The coexistence of angiogenesis and

VM is common in invasive tumors, and anti-angiogenic agents have

been found to have little to no effect on VM (7). The VM can replace

the angiogenesis role, providing tumors with oxygen and nutrients.

Further, Qu et al. reported that anti-angiogenic therapy might even

facilitate the formation of VM (8). As research progresses, more and

more scientists are paying attention to the potential of vasculogenic

mimicry (VM) in cancer treatment, and it has been found that a

treatment plan using a combination of anti-angiogenic and anti-

VM drugs is imperative. Currently, VM is of particular interest in

the three types of cancers mentioned above. This review will focus

on the research progress made regarding VM in prostate, kidney,

and bladder tumors.
2 Forms of tumor angiogenesis

2.1 Angiogenesis and vasculogenesis

Angiogenesis is the process of forming new blood vessels from

pre-existing ones through sprouting, which is stimulated by

endothelial growth factors promoting paracrine signaling, leading

to the proliferation and migration of endothelial cells, in addition to

recruitment of other cell types such as smooth muscle cells (9).

Angiogenesis occurs under physiological conditions, such as during

embryonic development or adult wound healing. However, half a

century ago, Dr. Judah Folkman proposed that pathological

angiogenesis is mandatory for the growth of solid tumors (10).

Cancer is characterized by the dysregulated function of

angiogenesis, where the newly formed blood vessels no longer

regulated by the body will promote tumor growth, metastasis, and

invasion (11). The classical angiogenesis theory believes that there

are two modes of tumor angiogenesis: angiogenesis based on the

original blood vessel (12). The other is vasculogenesis (13). At

present, more research is angiogenesis, that is, host mature vascular

endothelial cells are exposed to pro-angiogenic factors in the tumor

microenvironment, such as vascular endothelial growth factor

(VEGF), basic fibroblast growth factor (bFGF), platelet-derived

growth factor (PDGF). Under the action of these angiogenic

factors and chemokines, a new collateral blood vessel of the

tumor tissue is formed to provide nutrients to the tumor tissue

(14). Another form of tumor angiogenesis is vasculogenesis, which
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hematopoietic cells, called endothelial progenitor cells (EPCs) (15).

And through growth factors, cytokines and hypoxia-related

signaling pathways recruited to the tumor site, where they

differentiate into mature endothelial cells, and under the

stimulation of angiogrowth factor, division, proliferation,

endothelial cells clump together to form a vascular channel to

supply nutrients to tumor cells (16, 17). Targeting tumor

angiogenesis has become an important target in cancer treatment,

as angiogenesis plays a significant role in tumor progression.

Targeted drugs such as bevacizumab, Sorafenib, and Sunitinib

have been successfully used in clinical practice, advocating the

success of anti-angiogenic therapy in cancer treatment (18).

However, some studies have reported that these drugs have poor

therapeutic effects on certain patients and could even promote

tumor progression (19, 20). Therefore, some researchers speculated

that new microcirculation patterns might exist for tumor blood

nutrition supply.
2.2 Vessel co-option

Vessel co-option(VCO) is a phenomenon associated with tumor

growth and progression, which differs from the traditional tumor

angiogenic process. In tumor co-selection, tumor cells do not induce

new angiogenesis, but choose to “borrow” existing blood vessels

from surrounding normal tissues to supply their own nutritional

and oxygen needs (6). In some cases, cells from malignant tumors

move along existing vascular pathways, invading and occupying the

blood vessels of normal tissue, thereby obtaining nutrients and

oxygen from the blood (21). VCO causes less prominent vascular

structures in morphology, making tumors more difficult to detect

(22). VCO has been observed in a variety of cancers, such as liver,

brain, skin, lymph node, and many others (23–25). Several studies

have shown that many solid tumors can progress through vascular

co-selection, and blocking co-selection and anti-angiogenic therapy

can more effectively inhibit tumor growth (26–28). And the effect of

inhibiting VCO can be achieved by targeting the signaling pathways

related to VCO, such as targeting the Ang-2 pathway, VEGF

pa thway and YAP-TAZ pa thway ( 29 ) . Th e r e f o r e ,

understanding tumor co-selection is essential to develop more

precise treatment strategies and predict tumor growth

patterns (Figure 1).
2.3 Vasculogenic mimicry

In 1999, Maniotis et al. discovered the formation of tumor

blood vessels lacking endothelial cells in highly invasive melanoma

tissue samples. These vessels were positive for PAS staining, but

staining of endothelial cell markers (Factor VIII-related antigen and

CD31) failed to stain the luminal contents of the vessels (30).

Similarly, culturing highly invasive cell lines in a 3D extracellular

matrix (ECM) demonstrated that tumor cells cultured in vitro

produce patterned vascular channels and are PAS-positive,

indicating its functionality as a blood vessel. This phenomenon
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was named VM (30). With further research, VM was also reported

in other invasive tumors such as breast, ovarian and liver cancer and

some urological tumors (31–35). VM is closely related to tumor

growth, invasion, metastasis, and patient prognosis, and patients

with VM generally had a shorter survival time and poorer

prognosis (36).

Current research suggests that VM formation may be primarily

related to cancer stem cells (CSCs) and epithelial-mesenchymal

transition (EMT). CSCs are a subset of tumor cells with self-renewal

and differentiation capabilities and are considered the main drivers

of tumor growth, metastasis, and recurrence (37). Among them, the

VEGF (vascular endothelial growth factor) pathway is considered

the most important, promoting the generation of new blood vessels

through signal transduction mediated by VEGFR. Mirshahi et al.

found that CD133+/CD34+ stem cells derived from acute leukemia

(AL) patients could secrete more IGF-1 and SDF-1, leading to the

formation of VM in Matrigel (38). In melanoma, Lai et al. found

that a population of cells with stem cell-like characteristics, marked

by CD133, drove tumor growth by promoting VM formation and

the morphogenesis of a specialized perivascular niche (39).

EMT is the process by which epithelial cells transform into

mesenchymal cells and plays a vital role in embryonic

development, inflammation, fibrosis, and cancer progression (40).

It has been reported that EMT activation triggers cancer cell invasion

and metastasis and contributes to VM (41). During EMT, epithelial

cells lose polarity and epithelial characteristics and acquire

mesenchymal cell features (13). These cells can attract endothelial

cells by releasing various cytokines and signaling molecules,

promoting endothelial cell migration and invasion, thereby

promoting angiogenesis and expansion of the vascular network. In

addition, EMT also releases some matrix-degrading enzymes, such as

MMPs, which can degrade the matrix and provide more space for
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new blood vessels (42). On the other hand, tumor vasculature can

also inversely affect the process of EMT. Newly formed tumor vessels

can release various factors such as VEGF and TGF-b (transforming

growth factor-b), promoting EMT of tumor cells, thereby enhancing

their invasive and metastatic ability (43–45). In addition, the lack of

tumor vasculature can lead to tumor cell hypoxia, thereby promoting

the occurrence and progression of EMT (Figure 2).

Moreover, some studies have suggested an interaction between

tumor angiogenesis and immune evasion. Vasculogenic mimicry

can weaken the body’s immune system’s attack on tumors by

forming immune escape areas on the vascular wall (46).

Therefore, simultaneously inhibiting tumor vasculogenic mimicry

and enhancing the immune system’s ability to attack tumors may be

an important therapeutic strategy in treating tumors.
3 Factors involved in urological tumor
vasculogenic mimicry

3.1 Vasculogenic mimicry in
prostate cancer

Prostate cancer (PCa) is one of the most common solid

malignancies in the male urogenital system, second only to lung

cancer in incidence, and ranked second among male malignant

tumors (47). The treatment for localized PCa includes radical

surgery and radiation therapy, while androgen deprivation

therapy (ADT) is used for metastatic PCa. However, after 18

months, most metastatic PCa eventually progresses to ADT-

resistant PCa (48). In patients with PCa, the incidence of VM is

higher in those with higher Gleason scores, TNM staging, more

lymph nodes, and distant metastases (32).
FIGURE 1

Molecular mechanisms related to VM in urological tumors. This figure summarizes the signal pathways involved in VM regulation in urological
tumors. Red represents VM related signaling pathway in prostate cancer, yellow represents VM related signaling pathway in renal cell carcinoma, and
the green represents VM related signaling pathway in bladder cancer.
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The presence of VM in prostate cancer is associated with higher

expression of certain related factors, like HIF1a, EphA2, ZEB1, and
Sp1. Luo et al. found that MCT1 can stabilize HIF1a through

lactylation by introducing MCT1 into PCa cells, thereby promoting

the transcriptional activity of KIAA1199 (49). KIAA1199 further

reduces the expression of Sema3A, increases the expression of VE-

cadherin and phosphorylated EphA2, and enhances angiogenesis

and vasculogenic mimicry in prostate cancer by enhancing

hyaluronic acid-mediated VEGFA signaling (49). EphA2 is a

receptor tyrosine kinase expressed in most epithelial cells (50). In

gastric cancer cells, cancer-associated fibroblasts overexpressing

EphA2 promote VM formation by activating the EphA2-PI3K

pathway (51). While PI3K is a heterodimeric protein composed

of a catalytic subunit (p110a/b/g/d) and a regulatory subunit

(p85a/b) (52). Wang et al. demonstrated that higher levels of

EphA2 expression and PI3K activity were associated with VM in

more invasive prostate cancer cell lines PC3 and DU-145, but with

no significant correlation between EphA2 and PI3K expression

levels (53), Luo et al. suggested that PI3K is necessary for VM in

PCa and may function by regulating the phosphorylation of

EphA2 (53).

ZEB1 is a critical activator of EMT, which upregulates tumor

cell plasticity and EMT to acquire cancer stem cell properties (54).

In a previous study, Peng et al. found that ZEB1 promotes EMT in

lung cancer cells by activating Fak/Src signaling (55). Wang et al.

found that ZEB1 is required for VM formation in vitro, mediating

the expression of EMT-related and CSC-related proteins in PCa

cells.The study data showed that ZEB1 knockdown reduced the
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inhibition of Src phosphorylation at the p-Src527 site in PCa cells

while reducing the formation of VMs. They further confirmed that

treating PCa cells with the Src inhibitor PP2 resulted in a decrease in

VM formation, while Src overexpression in stable ZEB1 knockdown

cells restored VM formation (56). Where similar results were also

observed in in vivo studies, indicating depletion of ZEB1 protein in

PC3 cells inhibited the growth of xenograft tumors in mice (56).

The transcription factor Sp1 is overexpressed in many types of

cancer cells, including PCa, and is associated with various

fundamental biological processes. It has been shown to play an

important role in cell growth, differentiation, apoptosis, and

carcinogenesis (57). Han et al. found that Sp1 controls the nuclear

expression of the transcription factor twist to regulate the expression

of VE-cadherin in PC3 cells. Sp1 induces the upregulation of twist/

VE-cadherin, activating the AKT pathway, activated AKT enhances

the expression of matrix metalloproteinases (MMPs) such as MMP-2

and -14, leading to VM formation by remodeling the extracellular

matrix including LAMC2, leading to VM occurrence and

development (58). Sp1, Twist, VE-cadherin, and AKT form a loop,

and targeting Sp1 expression may provide a new therapeutic strategy

for PCa patients with VM.

As mentioned earlier, VM formation involves proliferation,

migration, and invasive changes. Therefore, the treatment for

inhibiting VM can target any of these processes. Kaempferol is a

natural flavonol found in many fruits and vegetables, which was

reported to significantly inhibit the proliferation of AR-positive

prostate cancer cell line LNCaP and promote apoptosis (59).

Resveratrol (3,5,4’-trihydroxy-trans-stilbene, RES) is one of the
FIGURE 2

Angiogenesis is under the action of these angiogenic factors and chemokines, a new collateral blood vessel of the tumor tissue is formed to provide
nutrients to the tumor tissue. Vasculogenesis is endothelial cells clump together to form a vascular channel to supply nutrients to tumor cells. Vessel
co-option(VCO) is the tumor cell choose to “borrow” existing blood vessels from surrounding normal tissues to supply their own nutritional and
oxygen needs.
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most well-known phytochemicals found in red wine, grapes, berries,

and peanuts with potent antioxidant and anticancerous properties

(60). Han et al. found that RES inhibited the VM structure

formation at non-cytotoxic concentrations by inactivating EphA2

and reducing twist-mediated VE-cadherin expression when co-

cultured with prostate cancer cell line PC-3 cells (61). Chrysin,

also known as 5,7-dihydroxyflavone, is another natural compound

with anti-tumor properties, chrysin inhibits the growth and VM

formation of prostate cancer cell line PC-3 by inhibiting HIF-1a,
SPHK-1, and phosphorylation of the AKT/GSK-3b signaling

pathway (62).
3.2 Vasculogenic mimicry in renal
cell carcinoma

Renal cell carcinoma (RCC) accounts for 3.8% of all cancers and

2.5% of all cancer deaths worldwide (63). Early-stage RCC is

commonly treated with partial or radical nephrectomy, with a 5-

year survival rate of 92.6%. However, about 25% of RCC patients

are diagnosed at the metastatic stage and one-third of patients

undergoing local tumor resection experience recurrence (64).

Angiogenesis is a key aspect of pathogenesis, and anti-angiogenic

drugs such as Sunitinib have been shown to significantly reduce

tumor blood flow. However, most Sunitinib-treated patients

eventually experience tumor progression after several months of

treatment (65). More than a decade ago, Amalia A Vartanian et al.

found through retrospective studies that RCC patients who tested

positive for VM had a significantly lower disease-free survival rate

and a significantly increased risk of recurrence (66). Therefore, VM

as a novel neovascularization pathway cannot be ignored in

treating RCC.

The MMP family plays a role in promoting VM progression in

various cancers. Lin et al. found that MMP9 was overexpressed in

RCC patient tissues, which was positively correlated with clinical

stage, pathological grade, RCC metastasis, and VM formation (67).

Targeted inhibition of MMP9 prevented the formation of VM in

RCC cell lines 786-O and 769-P that were originally able to form

VM (67). Vimentin (VIM) is a major component of the

intermediate filament (IF) protein family and a hallmark of EMT

(68). In RCC, VIM overexpression is one of the independent

predictors of poor clinical outcomes (69). Many studies have also

shown that VIM plays an important role in the formation of VM

(67, 69–71). Bai et al. found that TR4 downregulates the expression

of miR490-3p, which upregulates VIM expression, thereby

promoting RCC VM formation and metastasis (72). Lin et al.

further validated the role of VIM in promoting VM in RCC by

inducing EMT through hypoxia, upregulating VIM and AXL, and

downregulating E-cadherin expression to promote RCC cell VM

formation (71). He et al. found Sunitinib regulates ERb signaling to

increase cancer stem cell and angiogenic mimicry formation (73),

However, first-line anti-angiogenesis drugs such as Sunitinib or

Bevacizumab cannot inhibit VM and may even induce VM, Ding

et al. found that targeting ERb/circDGKD by downregulating VE-

cadherin reduced RCC growth and proliferation and significantly

weakened the VM formation, which is envisaged to enhance the
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efficacy of Sunitinib providing a new combinational therapy

strategy to prevent RCC progression (74).

Paired-related homeobox 1 (PRRX1) is a novel inducer of EMT,

and its expression is associated with metastasis and prognosis in

multiple tumors (75, 76). Protein phosphatase 2A (PP2A) is an

effective tumor suppressor that acts on various oncogenic

transcription factors (77). CIP2A is an important oncogene that

inhibits the activity of PP2A, thereby maintaining the malignant

phenotype of tumor cells and playing an important role in the

occurrence, development, and biological behavior of tumor cells

(78). Both PRRX1 and CIP2A are major inducers of EMT. Wang

et al. investigated the roles of PRRX1, CIP2A, and VM in RCC and

found that PRRX1 expression was negatively correlated with VM

and CIP2A, whereas CIP2A expression was positively correlated

with VM development. Low PRRX1 expression combined with high

VM and CIP2A was associated with poor prognosis and metastasis

in RCC (79). However, Wang et al. only observed this correlation in

RCC patient specimens and did not perform animal or cell line

investigations to explore the underlying mechanisms. Further

research is needed to clarify the mechanisms involved.

Androgen receptor (AR) has an oncogenic function in RCC,

promoting progression and hematogenous metastasis (80). You

et al. showed that a long non-coding RNA, lncRNA-TANAR,

regulated by AR transcription, increased the stability of TWIST1

mRNA by directly binding to its 5′UTR, disrupting UPF1-mediated

nonsense-mediated TWIST1 mRNA decay, thereby leading to a

decrease in VM formation (81).

Tumor-associated macrophages (TAMs) play a crucial role in

reshaping the tumor microenvironment (TME) to promote tumor

development (82). Numerous studies have shown that TAMs can

promote tumor cell proliferation, invasion, and migration (83, 84).

Polarized macrophages commonly exist as either M1 or M2

macrophages. Unlike M1 macrophages, which have pro-

inflammatory and immune-stimulatory effects, M2 polarized

macrophages are similar to TAMs and have pro-tumor functions

(85). It has been found that macrophages can affect cancer

progression through miRNAs carried by extracellular vesicles

(86). Liu et al. evaluated ten VM-related genes in RCC cells co-

cultured with or without TAMs using protein imprinting and found

that TIMP2, which was restrained by TAMs, might be a key VM

regulatory factor in RCC (87). Subsequently, through

bioinformatics analysis and experimental validation, Liu et al.

found that miR-193a-5p derived from macrophage-derived

extracellular vesicles targeted TIMP2 in RCC cells, enhancing VM

and cell invasion capability (87).

Metabolic reprogramming is a hallmark of cancer and is critical

in tumor progression. Accumulation of the tumor metabolite L-2-

hydroxyglutarate (L-2HG) occurs in cancer due to hypoxia (88),

which is also an important factor in VM formation. Wang et al.

found that tumors with high levels of L-2HG exhibited more VM

structures than tumors with low levels of L-2HG. They also

compared RNA sequencing analysis of RCC cell lines with and

without L-2HG treatment and found that PHLDB2 was

downregulated by L-2H (89). PHLDB2 (also known as LL5b) is a
protein containing a PH domain that plays an important role in

mediating cell migration by forming complexes with partners such
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as CLASPs and Prickle 1 (90). Wang et al. found that inhibiting

PHLDB2 reduced VM formation while restoring PHLDB2

expression levels reversed this phenomenon. They also found that

decreasing PHLDB2 expression increased ERK1/2 phosphorylation,

but there was no statistically significant difference in ERK1/2

phosphorylation due to limited replicates. However, the trend of

changes in ERK1/2 phosphorylation was consistent in each group

(89). Therefore, the L-2HG/PHLDB2 pathway may be a potential

signaling pathway for treating VM in RCC.
3.3 Vasculogenic mimicry in
bladder cancer

It is estimated that there are reported 500,000 new cases and

200,000 deaths from bladder cancer (BCa) globally. Over 80,000

new cases are reported in the United States alone, with 17,000

deaths from BCa annually (91). Despite various treatments such as

surgery, bladder infusion, and immunotherapy being used in

clinical practice, the rate of tumor progression within 5 years is

still very high (92). In particular, the treatment options for advanced

BCa are minimal (93). Early on, Fujimoto et al. found that ECV304,

derived initially from BCa epithelial cells and now known as the

T24/83 BCa epithelial cell line, can connect with blood vessels

around the normal endothelial source, forming tumor tissues with

vascular characteristics and is typically found in highly invasive

tumors with poor prognosis (94).

A protein TG2, which has been demonstrated to be associated

with endothelial cell-derived angiogenesis (95), can be

overexpressed under pathological and stress conditions, leading to

increased cell surface externalization and deposition into the

extracellular matrix (ECM), thereby exerting crosslinking effects

with various ECM proteins such as fibronectin and laminin, etc.

(96). Moreover, previous studies have suggested that exogenous

TG2 added to a rat dorsal skin flap wound healing model can

enhance angiogenesis (97). Jones et al. found that TG2 was not

detected in normal human fibroblast C378, while there was an

abundant expression of TG2 in ECV304 cells. Targeted inhibition of

TG2 expression in ECV304 cells could block cell migration, thereby

preventing the formation of the actin cytoskeleton and focal

adhesion (98).

MicroRNAs (miRNAs) are evolutionarily conserved small non-

coding RNAs that function as endogenous regulators of gene

expression (99). Dysregulation of certain miRNAs has been

associated with numerous tumorigenic changes, including growth,

apoptosis, metastasis, and tumor angiogenesis (100). It has been

reported that miR-124 inhibits the malignant potential,

proliferation, and invasiveness of malignant tumor cells by

targeting multiple proteins (101–103). Studies have shown that

UHRF1 is an oncogene promoting cancer cell development (104). In

different types of cancers, the expression of UHRF1 incurs many

changes getting out of control. The expression or activity of this

protein is often modified, leading to transformation and increased

proliferation, motility, and invasiveness, as well as providing tumor

cells with resistance to chemotherapy (105). Wang et al. found that

miR-124 and UHRF1 are negatively correlated in BCa tissue, where
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miR-124 inhibited BCa invasiveness by reducing UHRF1

expression (106).

Many studies have proposed that EMT is crucial for VM

formation and tumor progression, with ZEB1 as an essential EMT

inducer that is elevated in colorectal cancer specimens showing

EMT features both in vivo and in vitro (107). Li et al. found that

ZEB1 is also highly expressed in BCa, and to further elucidate the

relationship between VM and ZEB1 in BCa, they performed 3D

culture assays after transfection with specific siRNA to reduce ZEB1

expression in bladder transitional cell carcinoma cell lines.

Moreover, after ZEB1 restoration, VM formation was inhibited in

UM-UC-3 and J82 cell lines (35). However, Li et al. did not observe

changes in EMTmarkers after suppressing ZEB1 expression in BCa,

suggesting that ZEB1 is an intermediate step in BCa VM formation,

regulated or influenced by some unknown upstream molecules and

downstream genes, and it may not have a direct relationship with

epithelial phenotype (35).

It is well known that the tumor microenvironment exists in a

hypoxic state (108). In the hypoxic microenvironment, tumor cells

form new blood vessels to obtain the oxygen and nutrients they

need to support their continued proliferation. Numerous studies

have shown that hypoxia is closely related to the development of

VM. For example, in the melanoma mouse model, mice in the

ischemic model group were found to exhibit higher VMs compared

to the control group, which was positively correlated with HIF-1a
and HIF-2a expression, indicating that hypoxia promoted VM

(109). Liu et al. developed and validated a novel hypoxia risk

score that can predict clinical outcomes and TME characteristics

of BLCA, and for patients in the high-risk score group, they may

benefit from immunotherapy, chemotherapy, and radiotherapy,

and patients in the low-risk score group may benefit from

targeted therapy with VM-associated signaling pathways (WNT-

b-catenin network, PPARG network, and FGFR3 network),

contributing to the development of BCa precision medicine (108).

In recent years, there has been increasing evidence that the

status and formation of angiogenic mimetics (VMs) in the tumor

microenvironment is regulated by various factors, especially the

immune factors present in the tumor microenvironment (110).

BCATRANSFERASE 2 (BCAT2) is a core enzyme in sulfur amino

acid metabolism (111). Cai et al. found that BCAT2 has the effect of

modulating TME immune status, and patients with high BCAT2

expression may have better efficacy in anti-VM therapy (112).

Siglec15, a member of the sialic acid-bound immunoglobulin-like

lectin family, is an emerging broad-spectrum target for normalizing

cancer immunotherapy (113). Jiao et al. found that BCa patients in

the high Siglec15 group were more sensitive to targeting vascular

mimicry-related signaling pathways (b-catenin, PPAR-g, and

FGFR3 pathways) (114, 115). Therefore, Siglec15 may be used as

an indicator of targeted therapy for VM.

In BCa, DNA methylation plays a key role in early diagnosis,

predicting prognosis, predicting therapeutic opportunities, and

serving as a potential therapeutic target (116), 5-Methylcytosine

(5mC) in DNA is the most important epigenetic modification that

shapes TME by influencing genomic stability, determining cancer

cell differentiation status, and selecting cell identity (117, 118).

Jiao et al. found that the high 5 mC score group may not be
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sensitive to neoadjuvant chemotherapy, but there are several

immunosuppressive oncogenic pathways significantly enriched in

the heterogeneous high 5 mC score group associated with VM,

including WNT-b-catenin network, FGFR3 network, and VEGFA

(114, 119–121). These VM pathways may provide promising

therapeutic opportunities for BLCA patients in the high 5mC

scoring group.

The utilization of glucose in tumor cells significantly increases,

producing a large number of intermediate metabolites through

glycolysis to meet the needs of tumor cell proliferation. Increasing

evidence indicated that accumulated lactate, as the final product of

glycolysis, is a key regulatory factor in tumor development, immune

escape, metastasis, and angiogenesis (122, 123). Hepatitis B X-

interacting protein (HBXIP), also known as LAMTOR5, is a

conserved protein that is often expressed in various tissues in

mammals (124). HBXIP is highly expressed in several types of

cancers and is associated with a series of clinical pathological

features and poor prognosis (125). Overexpression of HBXIP in

BCa tissues is related to clinical staging, lymph node metastasis,

tumor recurrence, and patient survival. In addition, silencing

HBXIP reduces the proliferation, migration, and invasion of BCa

cells in vitro and tumor formation in vivo (126). Moreover, the high

expression of HBXIP in high-grade tissues suggests that HBXIP

may be an important indicator for judging the prognosis of BCa

patients. Some studies have shown that the PI3K/AKT/mTOR

pathway is a central signaling pathway that coordinates aerobic

glycolysis and cell biosynthesis in malignant tumor cells (127). Liu

et al. provided evidence that HBXIP as an oncogene regulates

glycolysis of BC cells through the AKT/mTOR pathway, thereby

promoting VM in BCa cells (128). They found that reducing HBXIP
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in BCa cells affected the migration and angiogenesis of HUVECs

and decreased the expression of VEGF and EPO. Both glucose and

lactate stimulation reversed the cell viability, migration, and tubular

formation of HUVECs co-cultured with HBXIP-silenced BCa cells.

Glucose stimulation demonstrated that HBXIP further promotes

glycolysis by regulating glucose uptake by tumor cells, while lactate

stimulation demonstrated that glycolysis further promotes VM,

suggesting HBXIP plays a key role in VM (Figure 3) (128) (Table 1).
4 Potential targeted drugs for
vasculogenic mimicry

4.1 Targeting VEGF and VEGFR

It is now widely believed that VM plays a crucial role in tumor

growth, proliferation, and metastasis formation. VEGF is one of the

important promoting factors for VM, and the VEGF and its

receptor are one of the main inducers of tumor angiogenesis

(129). Inhibitors targeting the VEGF/VEGFR system have been

used clinically. Clinical trials using VEGF molecules can induce

moderate improvement in overall survival, measured in weeks to

just a few months, and tumors respond differently to these drugs

(130). Antibodies targeting VEGF, such as Bevacizumab, can

effectively inhibit tumor angiogenesis and growth and have been

widely used to treat various cancers (130). In addition to directly

inhibiting VEGF, tumor angiogenesis can also be inhibited by

hindering the activity of VEGF receptors. Sorafenib and Sunitinib

are tyrosine kinase inhibitors that block VEGFR-2, which are

currently approved for treating cancers such as hepatocellular
FIGURE 3

VM is regulated by various mechanisms. CSCs promote the occurrence of VM phenomenon by releasing IGF-1, SDF-1, and VEGF. During EMT, some
matrix degrading enzymes are released, such as MMPs, which can promote the occurrence of the VM phenomenon. At the same time, new tumor
blood vessels release various factors, such as VEGF and TGF- b, thereby promoting the occurrence and progress of EMT.
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carcinoma, neuroendocrine pancreatic tumors, and metastatic renal

cell carcinoma (130, 131). However, tumor cells are prone to

develop resistance to these drugs, resulting in poor clinical

efficacy (132).

Studies have shown that when VEGF is blocked, other

angiogenic factors modulate sensitivity against VEGF therapy and

allow regeneration of the tumor-associated vasculature (133). A

phase III trial by Rini et al. on bevacizumab plus interferon a in

patients with metastatic renal cell carcinoma showed that

bevacizumab blocked the VEGF pathway and that patients with

bevacizumab plus IFN-a had significantly improved PFS and OS

compared with IFN-a alone (134). Although the data emphasize the

importance of VEGF signaling, there are many intracellular

pathways in tumorigenesis VM, and inhibitors targeting

individual signaling pathways have limited inhibitory effect on

VMs because other signaling pathways immediately compensate

and eventually resume the process of switching to the VM

phenotype (135). Therefore, exploring multi-target combination

therapies to limit VM-mediated tumor resistance is expected to

maximize anti-tumor efficacy in the future.
4.2 Targeting extracellular matrix

An extracellular matrix (ECM) is a complex extracellular

biological macromolecular network involved in angiogenesis.
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Drugs targeting ECM can inhibit angiogenesis by interfering with

the biological functions of ECM. MMPs is particularly important in

ECM degradation. Under hypoxic conditions, high expression of

MMP-9 molecules increases tumor invasiveness and promotes VM

(136). Therefore, MMP inhibitors can inhibit MMP activity, thus

blocking ECM degradation and remodeling and reducing VM. In

addition, ECM is an important structure for cell adhesion, and

inhibiting the binding of ECM to cells can inhibit the proliferation

and migration of endothelial cells. For example, using RGD peptide

sequences can block the binding of ECM to cells, thereby inhibiting

VM (137).
4.3 Targeting PI3K/Akt/mTOR

The PI3K/Akt/mTOR signaling pathway is a crucial pathway in

regulating cell proliferation, survival, and metabolism and is

considered an important regulatory mechanism for tumor

angiogenesis and development (138). Drugs targeting this

pathway, such as Rapamycin, have been extensively studied to

inhibit tumor angiogenesis and growth, thereby suppressing

tumor progression and metastasis (139). Huang et al. found that

under normal oxygen or hypoxic conditions, with the increase of

rapamycin concentration, the duct-forming structure of glioma cell

line U87-MG in stromal gum decreased, demonstrating that

inhibition of mTOR can eliminate glioma VM formation (139).
TABLE 1 Genes and their functions related to vascular mimicry in urological tumors.

Cancer
Type

Factors Signaling pathway Function Ref.

Prostate cancer KIAA1199 EphA2-PI3K pathway reduces the expression of Sema3A, increases the expression of VE-cadherin and
phosphorylated EphA2

(49)

ZEB1 Fak-Src pathway a critical activator of EMT, upregulates tumor cell plasticity and EMT to acquire cancer
stem cell properties

(55,
56)

Sp1 Twist-VE-cadherin pathway induces the upregulation of twist/VE-cadherin (58)

Renal cell
carcinoma

TR4 miR490-3p/vimentin signals
pathway

downregulates the expression of miR490-3p (72)

VE-
cadherin

ERb/circDGKD pathway reduced RCC growth and proliferation and significantly weakened the VM formation (74)

PRRX1 a novel inducer of EMT (76)

PP2A an effective tumor suppressor that acts on various oncogenic transcription factors (77)

CIP2A inhibits the activity of PP2A (78)

AR increased the stability of TWIST1 mRNA by directly binding to its 5′UTR (81)

L-2HG L-2HG/PHLDB2 pathway downregulated PHLDB2 (89)

PHLDB2 L-2HG/PHLDB2 pathway mediating cell migration (89)

Bladder cancer TG2 increased cell surface externalization and deposition into the extracellular matrix (ECM) (96)

miR-124 miR-124 inhibited BCa invasiveness by reducing UHRF1 expression (106)

BCAT2 the effect of modulating TME immune status (112)

Siglec15 b-catenin, PPAR-g, FGFR3
pathways

an emerging broad-spectrum target for normalizing cancer (113)

HBXIP PI3K/AKT/mTOR pathway promotes glycolysis by regulating glucose uptake by tumor cells (128)
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Therefore, Huang et al. deduced that the mTOR signaling pathway

is related to VM formation and that mTOR is an upstream molecule

of HIF-1a. In the final stage of the VM signaling pathway, express

and activate MMP-14 to activate MMP-2. MMP-2 combined with

MMP-14 cuts Ln-5-g2 chains into migration fragments. The release

of fragments of these into the tumor microenvironment can

increase the migration of tumor cells, invasion, and eventually

lead to VM (139). It is worth mentioning that since PI3K/Akt/

mTOR signaling pathway also plays an important physiological role

in normal cells, these drugs lack selective activity on cancerous cells

and thus may adversely affect the normal cells (140). The results of a

recent study have shown a delicate balance between the growth-

promoting activity of AKT and the growth-promoting activity of

p53, which is essential for preventing cellular aging and cancer

(141). PI3K/AKT/mTOR inhibition also has associated clinical

adverse effects, including hyperglycemia, hyperlipidemia,

myelosuppression, and severe hepatotoxicity (142). Further

research and optimization of targeted therapy for the PI3K/Akt/

mTOR signaling pathway are imperative to improve treatment

efficacy and reduce the incidence of adverse reactions.
4.4 Targeting perivascular cells

The tumor microenvironment contains a series of non-cancer

cells around the tumor, such as fibroblasts, macrophages, and

endothelial cells, as well as some ECM and molecular signaling

substances. These non-cancerous cells and molecules play an

important role in tumorigenesis, growth, invasion, metastasis, and

tumor angiogenesis (143). In tumor angiogenesis, tumor cells

release some promoting factors, such as VEGF, PDGF, etc., to

stimulate tumor cells to generate VM. At the same time, tumor cells

induce surrounding fibroblasts and macrophages to transform into

tumor-related cell types, releasing various factors that promote

tumor growth and invasion (144). Therefore, targeting non-

cancer cells and molecules in the tumor microenvironment has

become a strategy for treating tumor angiogenesis. Among them,
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drugs targeting fibroblasts and macrophages, such as Imatinib and

Dasatinib.Studies have shown that dasatinib can effectively inhibit

the growth of fibroblasts by inhibiting PDGF receptor signaling at

biologically relevant concentrations (145, 146). PDGF is normally

expressed in a variety of cell types, including fibroblasts, neuronal

cells, macrophages, smooth muscle cells, platelets, and

preosteoclastic cells. They typically use autocrine or paracrine

mechanisms to perform their biological functions, and Imatinib

can target inhibition of PDGFR (147), can inhibit the proliferation

and function of these cells, thereby reducing their promotion of VM

(148). In addition, drugs targeting endothelial cells, such as

Bevacizumab and Ramucirumab, can inhibit the migration and

proliferation of endothelial cells(EC), thereby reducing tumor

vascular density and tumor growth rate (149). Bevacizumab is the

first humanized anti-VEGF neutralizing antibody approved by the

FDA for the treatment of metastatic colon cancer (150),

Bevacizumab treatment blocked extracellular VEGF-induced

apoptosis, inhibiting EC proliferation (149). In short, targeting

non-cancer cells and molecules in the tumor microenvironment

can effectively inhibit tumor angiogenesis and growth, a potential

tumor treatment strategy (Table 2).
5 Conclusion and future directions

The review on VM in urinary tumors provides in-depth new

ideas and solutions for treating urinary tumors. Tumor growth and

metastasis can be slowed down by targeted inhibition of tumor VM,

and VM inhibitors can also be used in combination with other

therapeutic methods to increase anti-cancer effects.

However, the current study faces some challenges. First,

different VM targeted inhibitors may have different efficacy for

different urinary tumors. Secondly, the dose and timing of VM

inhibitors in clinical application and the combination regimen and

sequence of combination therapy strategies require further research.

With the in-depth study of tumor VM, the efficacy and safety of

treatments targeting to inhibit VM will continue to improve.
TABLE 2 Potential drugs that inhibit vascular mimicry and their targets inhibition.

Agents Target Tumor type Cell/animal Ref.

Kaempferol AR Prostate cancer HEK293/PC3/LNCaP (59)

RES EphA2/VE-cadherin Prostate cancer PC3 (61)

Chrysin SPHK/HIF-1a Prostate cancer PC3 (62)

Sorafenib VEGFR-2 Metastatic RCC Human (131)

Sunitinib VEGFR-2 Metastatic RCC Human (151)

Bevacizumab VEGF Metastatic RCC Human (134, 152)

MMP inhibitor ECM Oral squamous cell carcinoma UMSCC1 (136)

RGD peptide ECM – Mice (137)

Rapamycin PI3K/Akt/mTOR Gliomas Human (139)

Imatinib PDGFR Ovarian cancer Human (147)

Dasatinib PDGF ccRCC Human (146, 153)
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Combinational use of VM targeted inhibitors with other antitumor

methods is envisaged to improve the therapeutic effect further and

reduce the side effects. Therefore, we can expect targeted therapy for

tumor VM to play an increasingly important role in the future.
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