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Comprehensive analysis and
molecular map of Hippo
signaling pathway in lower grade
glioma: the perspective toward
immune microenvironment
and prognosis

Yu-Duo Guo1†, Jie Sun2†, Chao Zhao1†, Le Han3,
Chun-Jiang Yu1 and Hong-Wei Zhang1*

1Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China,
2Rehabilitation Department of Integrated Chinese and Western Medicine, Beijing Xiaotangshan
Hospital, Beijing, China, 3Chinese Academy of Sciences (CAS) Key Laboratory of Infection and
Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
Background: The activation of YAP/TAZ transcriptional co-activators,

downstream effectors of the Hippo/YAP pathway, is commonly observed in

human cancers, promoting tumor growth and invasion. The aim of this study was

to use machine learning models and molecular map based on the Hippo/YAP

pathway to explore the prognosis, immune microenvironment and therapeutic

regimen of patients with lower grade glioma (LGG).

Methods: SW1783 and SW1088 cell lines were used as in vitro models for LGG,

and the cell viability of the XMU-MP-1 (a small molecule inhibitor of the Hippo

signaling pathway) treated group was evaluated using a Cell Counting Kit-8

(CCK-8). Univariate Cox analysis on 19 Hippo/YAP pathway related genes

(HPRGs) was performed to identify 16 HPRGs that exhibited significant

prognostic value in meta cohort. Consensus clustering algorithm was used to

classify the meta cohort into three molecular subtypes associated with Hippo/

YAP Pathway activation profiles. The Hippo/YAP pathway’s potential for guiding

therapeutic interventions was also investigated by evaluating the efficacy of small

molecule inhibitors. Finally, a composite machine learning models was used to

predict individual patients’ survival risk profiles and the Hippo/YAP pathway

status.

Results: The findings showed that XMU-MP-1 significantly enhanced the

proliferation of LGG cells. Different Hippo/YAP Pathway activation profiles

were associated with different prognostic and clinical features. The immune

scores of subtype B were dominated by MDSC and Treg cells, which are known

to have immunosuppressive effects. Gene Set Variation Analysis (GSVA) indicated

that subtypes B with a poor prognosis exhibited decreased propanoate

metabolic activity and suppressed Hippo pathway signaling. Subtype B had the

lowest IC50 value, indicating sensitivity to drugs that target the Hippo/YAP

pathway. Finally, the random forest tree model predicted the Hippo/YAP

pathway status in patients with different survival risk profiles.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1198414/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1198414/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1198414/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1198414/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1198414/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1198414/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1198414&domain=pdf&date_stamp=2023-05-12
mailto:zhanghongwei@ccmu.edu.cn
https://doi.org/10.3389/fonc.2023.1198414
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1198414
https://www.frontiersin.org/journals/oncology


Guo et al. 10.3389/fonc.2023.1198414

Frontiers in Oncology
Conclusions: This study demonstrates the significance of the Hippo/YAP

pathway in predicting the prognosis of patients with LGG. The different Hippo/

YAP Pathway activation profiles associated with different prognostic and clinical

features suggest the potential for personalized treatments.
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Introduction

Lower grade gliomas (LGG) are a group of slow-growing brain

tumors that arise from glial cells. LGG are defined as World Health

Organization (WHO) grade II or III tumors, whichmeans that they are

considered less aggressive than high-grade gliomas (WHO grade IV).

Although these tumors are considered low grade, they can still be

difficult to treat and have a significant impact on patient quality of life.

Surgery remains the primary treatment option for LGGs, with the goal

of achieving maximal safe resection while preserving neurologic

function (1). However, the location and size of the tumor, as well as

its proximity to critical brain structures, can make complete resection

challenging (2). Despite these advances, treatment for LGGs remains a

major challenge. The slow-growing nature of these tumors means that

patients may experience significant disease progression before

treatment is initiated. Additionally, the potential for recurrence is

high, even after aggressive treatment.

Recent studies have shown that the Hippo signaling pathway is

involved in the development and progression of LGG. The classical

Hippo pathway plays a crucial role in regulating organ size and tissue

homeostasis, and its dysregulation has been implicated in several

cancers, including LGG (3). The Hippo pathway plays a central role

in regulating organ size and maintaining dynamic tissue balance.

Aberrant activation or inactivation of Hippo signaling components,

such as YAP and TAZ, has been reported in LGG, and is associated

with tumor growth, invasion, and prognosis (4). However, the precise

mechanisms by which the Hippo pathway contributes to LGG

development and progression, as well as its relationship with the

immune microenvironment, remain to be fully elucidated. MST1/2

plays a selective role in the homeostasis and priming of CD8+ T cells,

mediated by dendritic cells (5). Understanding the molecular map of

the Hippo signaling pathway in LGG and its interaction with the

immune microenvironment could provide new insights into LGG

pathogenesis and identify potential therapeutic targets for

this disease.

Hence, this study aimed to explore the prognosis, immune

microenvironment, and therapeutic regimen of patients with LGG

using a machine learning model, such as random forest (RSF),

gradient boosting machine (GBM), survival support vector machine

(Survival-SVM), supervised principal components (SuperPC), ridge

regression, partial least squares regression for Cox (plsRcox),

CoxBoost, Stepwise Cox (StepCox), and elastic network (Enet),
02
etc. Results showed that different Hippo/YAP Pathway activation

profiles were associated with different prognostic and clinical

features. Subtype B had the worst prognosis, subtype C had the

best prognosis, and subtype A was in between. Importantly, Subtype

B had the lowest IC50 value, indicating sensitivity to targeted drugs

based on the Hippo/YAP pathway. Our approach aimed to identify

a comprehensive molecular signature associated with Hippo

signaling in LGG, which could provide a more complete

understanding of the biological mechanisms involved in LGG

development and progression. Our study’s molecular map could

help improve LGG diagnosis and prognosis, as well as identifying

potential targets for LGG treatment.
Materials and methods

Cell culture

The SW1783 and SW1088 cell lines served as in vitromodels for

Low Grade Glioma (LGG), based on previous research (6), due to

their shared molecular and genetic characteristics with human

LGG. The cell lines were provided by Procell, Wuhan, China. The

SW1783 and SW1088 cells were cultured using Gibco BRL’s

Dulbecco’s Modified Eagle Medium (DEME) containing 10% fetal

bovine serum. We dissolved the XMU-MP-1 (Catalog number

S8334, Selleck Chemicals) in Dimethyl sulfoxide (DMSO) and

added it to the medium at final concentrations of 0.1% or 0.2%

(7). XMU-MP-1 is a small-molecule inhibitor of the Hippo

signaling pathway.
Cell counting kit-8
A 96-well plate was used to culture SW1783 and SW1088 cells,

with 2500 cells per well, and varying final concentrations of XMU-

MP-1. The plate was incubated at 37°C for two hours, after which

absorbance was measured at 450 nm using 10 mL of the CCK-8

reagent (Dojindo Molecular Technologies, Japan). Assays were

performed every 24 h.
Edu and colony formation
To perform the EdU assay, 2×104 treated cells per well were

seeded into plate and allowed to attach before conducting the assay
frontiersin.org
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following the manufacturer’s recommended protocol (Ribobio,

China) for 5-Ethynyl-2’-deoxyuridine (EdU) incorporation. To

initiate the colony formation experiment, we seeded 1×103 cells

per well into a 6-well plate and incubated them for 14 days. The cells

were washed twice with PBS before fixing them in 4%

paraformaldehyde for 15 minutes, followed by staining with

Crystal violet (Solarbio, China).

Pre-processing of raw data
The present study included transcriptomic data and clinical

information from 481 samples obtained from the The Cancer

Genome Atlas (TCGA) database, in accordance with previously

established inclusion and exclusion criteria (8). Furthermore,

transcriptomic data and clinical information from the Chinese

Glioma Genome Altas (CGGA)-693 project (332 patients) and

the CGGA325 project (162 patients) were downloaded from the

CGGA database using the same criteria. Notably, all data analyzed

in this study were obtained from RNA-Seq assays, with no duplicate

sequencing samples, and exclusively from WHO grade II-III

tumors. The data mentioned above were subjected to log

normalization via TPM transformation, followed by batch effect

correction using the Combat function within the “sva” R package

(9). A total of 19 Hippo pathway-related genes (HPRGs) were

obtained from the previous references (10), because it has been

previously reported to be related to the Hippo pathway.

After hematoxylin and eosin (H&E) staining, the presence of

inflammatory cells and other cells can be observed due to the

distinctive characteristics of inflammatory cells, which typically

have large nuclei and high nucleoplasm ratios. Specifically, the

nuclei of inflammatory cells stain a distinct blue color with

hematoxylin, while the cytoplasm is stained with eosin in varying

shades of pink to peachy red. Furthermore, the intracytoplasmic

eosinophilic granules appear bright red and highly reflective.

Moreover, representative H&E-stained sections in different

subtypes were downloaded from the TCGA database in svs

format.These samples were obtained from the GDC Data Portal

(https://portal.gdc.cancer.gov/). Due to the general treatment of

H&E-stained section staining in TCGA database, we can only

determine whether it is a high-inflammatory through the local area.

Consensus clustering analysis
We utilized the expression levels of the 19 HPRGs to establish the

optimal number of clusters via unsupervised consensus clustering

analysis, employing the “ConsensusClusterPlus” package. The

effectiveness of this clustering approach was then evaluated through

principal component analysis (PCA). The following was the parameter

settings: reps=100, pItem=0.8, distance=“euclidean”, and

clusterAlg=“km” (11, 12). By “clusters,” we mean groups of patients

with similar gene expression patterns. These clusters were identified

using unsupervised clustering analysis.
Enrichment analysis
The “limma” package was utilized to identify genes with

significant expression changes, with a cut-off of an absolute log-

fold change greater than 0.5 and a adj.p-value less than 0.05 (13).
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The “clusterProfiler” R package was applied to further annotate

common differentially expressed genes (DEGs) (14), using a p-value

and false discovery rate (FDR) q-value threshold of less than 0.05.

To investigate differences in biological pathways between subtypes,

gene set variation analysis (GSVA) was performed using the KEGG

gene set, with an FDR threshold of less than 0.05 (15).

Machine learning-derived risk score
We implemented a previously established workflow to develop a

consensusprognosismodel forLGGpatients (16). Inbrief,we combined

101machine learning algorithms, such as random forest (RSF) based on

‘randomForestSRC’ package, gradient boosting machine (GBM) based

on ‘gbm’ package, and survival support vectormachine (Survival-SVM)

based on ‘e1071’ package, among others, based on their features. We

selectedmodels with variable filtering capabilities as antecedentmodels.

Using the workflow, we generated signatures from all Hippo pathway-

related genes in an expression file, employing the TCGA-LGG cohort

and 101 combinations. Subsequently, we calculated risk scores based on

these signatures in theTCGA-LGGandCGGAcohorts.Weassessed the

mean C-index of the three cohorts and selected the optimal consensus

prognostic model.

Immune microenvironment analysis
The immune microenvironment was assessed using the

Estimation of STromal and Immune cells in MAlignant Tumor

tissues using Expression data (ESTIMATE) algorithm, which

provided an overall measure of the immune status. Additionally,

we utilized the ssGSEA algorithm, following references (17), to

determine immune cell scores and to evaluate the distribution of

specific immune cell types.

Drug sensitivity analysis
The “pRRophetic” package utilizes expression profiles of cell

lines from Cancer Cell Line Encyclopedia (CCLE) database and

their corresponding IC50 data as primary inputs (18). A predictive

model is constructed using ridge regression and applied to predict

the chemotherapeutic response in bulk RNA-seq data from clinical

samples. We selected representative drugs targeting the Hippo

pathway, including WZ.4003, FG-3019, XAV.939, verteporfin,

and XMU-MP-1.

Statistical analysis
All statistical analyses were conducted using R software (version

4.1.2). Detailed descriptions of the statistical methods are provided

in previous sections and references (19, 20). Statistical significance

was set at P < 0.05.
Results

Hippo/YAP pathway influences
proliferation of LGG cells

In numerous human cancers, the YAP/TAZ transcriptional co-

activators, which are downstream effectors of the Hippo/YAP pathway,
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have been observed to be abnormally activated, resulting in the

promotion of tumor growth and invasion (21). Conversely, the core

kinase cassette of the Hippo pathway, which comprises MST1/2 and

LATS1/2, has demonstrated tumor suppressive effects in several cancer

types (3). We employed the gene set of the Hippo/YAP signaling

pathway to develop a machine learning model to explore the prognosis

of patients with LGG and forecast the IC50 of drugs targeting the

Hippo/YAP signaling pathway, as illustrated in Figure 1A. XMU-MP-1

is a selective small molecule inhibitor of the Hippo/YAP pathway,

which has been shown to specifically target and inhibit the activity of

the downstream effector protein YAP (22). Based on previous research,

we utilized SW1783 and SW1088 cell lines as in vitromodels for LGG

(10). These cell lines have been widely used in previous studies as they

share similar molecular and genetic characteristics with human LGG.

The cell viability of SW1783 (Figure 1B) and SW1088 (Figure 1C) was

evaluated using CCK8 kit. The findings demonstrated that the OD450

value of the XMU-MP-1 treated group was substantially higher than

that of the control group. Moreover, there was a dose-dependent

increase in cell viability with increasing XMU-MP-1 concentration.

Remarkably, EdU assay demonstrated enhanced proliferative capacity

in the SW1783 (Figure S1A) and SW1088 (Figure S1B) cell lines treated

with XMU-MP-1 concentration at 0.2% compared to normal medium.

Likewise, colony Formation experiments have yielded consistent results

(Figures S1C, D). The results indicate that XMU-MP-1 significantly

enhances the proliferation of LGG cells. As the Hippo pathway has the

potential to modulate the proliferation of t cells, we conducted an

investigation into the impact of Hippo pathway-related gene (HPRGs)

on prognosis at the bulk transcriptome level. Upon performing

univariate Cox analysis on 19 Hippo/YAP pathway related genes in

the literature, we were able to identify 16 HPRGs that exhibited

significant prognostic value in meta cohort (Figure 1D).

This finding highlights the importance of Hippo/YAP signaling

pathway in predicting the prognosis of patients with LGG.
Identification of different activated states
of the Hippo/YAP pathway in LGG cohorts

Using the consensus clustering algorithm with k=3 (Figure 2A),

the meta cohort was classified into three molecular subtypes

associated with Hippo/YAP Pathway activation profiles: A

(n=351), B (n=214), and C (n=410). According to PCA

(Figure 2B), the subtypes were significantly heterogeneous and

discrete from each other. Figure 2C demonstrates that subtype B

had the worst prognosis, subtype C had the best prognosis, and

subtype A was in between. Heat mapping of clinicopathological

factors and HPRGs was performed for subtypes in LGG patients.

Genes such as STK3, LATS2, and TEAD4 were significantly

activated in the poor prognosis B subtype in the TCGA-LGG

cohort (Figure 2D), and similar results were observed in the

CGGA cohort (Figure 2E). These analysis results, including the

Kaplan-Meier survival curves, consistently demonstrated the same

patterns of gene expression changes with the LGG prognosis, which

enhances the robustness and reliability of our findings
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These results support the theory that different subtypes based

on HPRGs profiles are associated with different prognostic and

clinical features. To be specific, subtype B had the worst prognosis,

subtype C had the best prognosis.
Tumor microenvironment variances among
Hippo/YAP pathway activation states

Recent studies have highlighted the importance of the tumor

microenvironment (TME) in shaping cancer progression, with

evidence suggesting that TME variances may affect the activation

status of the Hippo/YAP pathway (21). Understanding how TME

differences contribute to Hippo/YAP activation and subsequent cancer

development could provide new insights into the mechanisms of LGG

growth and metastasis. The human leukocyte antigen (HLA) system

plays a crucial role in the recognition and presentation of antigens by

the immune system. Significantly elevated expression of HLA-related

molecules was observed in subtype B, which was associated with a poor

prognosis (Figure 3A). In greater detail, subtype B was observed to

exhibit a high enrichment of immune cells according to ssGSEA.

Specifically, the immune scores of subtype B were dominated by

MDSC and Treg cells, which are known to have immunosuppressive

effects (Figure 3B). Moreover, we employed the ESTIMATE algorithm

to assess the TME landscape of various samples, which yielded

consistent outcomes (Figure 3C). Nonetheless, it is noteworthy that

the aforementioned MDSC and other cells may lead to immune

evasion. Histopathological examination (HE) is a conventional

method for distinguishing fibroblasts from inflammatory cells based

on differences in cell and nucleus morphology and size. This approach

enables identification of the distinct cell types present within a tissue

sample and provides important insights into the cellular composition

of the tumor microenvironment. As anticipated, subtype A exhibited

increased infiltration of inflammatory cells (Figure 3D).

These results highlight the significance of TME variances in

modulating cancer progression and their association with Hippo/

YAP activation.
Pathway enrichment analysis identifies
suppressed Hippo/YAP pathway activity in
subtype B with worst prognosis

To investigate the activation of representative pathways across

different subtypes, we analyzed differential gene expression. A total of

2855 genes were found to be dysregulated in subtype C compared to

subtype B (Figure 4A), while 769 genes were dysregulated in subtype

C compared to subtype A (Figure 4B), and 2090 genes were

dysregulated in subtype A compared to subtype B (Figure 4C).

Eventually, we identified 144 common genes after overlapping the

above genes (Figure 4D). Upon conducting KEGG enrichment

analysis of 114 genes, the Hippo/YAP pathway was unsurprisingly

found to be the most significant item (Figure 4E). The GSVA

indicated that subtypes B with a poor prognosis exhibited
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decreased propanoate metabolic activity and suppressed Hippo

pathway signaling (Figure 4F).

In this section, we investigated pathway activation across

different subtypes through differential gene expression analysis,

identifying a total of 2855, 769, and 2090 dysregulated genes, with

144 common genes overlapping, and KEGG analysis indicating

the Hippo/YAP pathway as the most significant; furthermore,

GSVA revealed that subtypes B with poor prognosis displayed

decreased propanoate metabolism and suppressed Hippo

pathway signaling.
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Immune and targeted therapeutic efficacy
is enhanced in subtype B

Recent studies have shown that inhibition of the Hippo/YAP

pathway (Figure 5A) can sensitize cancer cells to chemotherapy and

radiotherapy, indicating that targeting this pathway could enhance the

efficacy of these treatments (23, 24). Hence, we aimed to investigate the

potential of the different subtypes to guide therapeutic interventions in

this section. WZ.4003 is a small molecule inhibitor that targets the

oncogenic transcriptional co-activator YAP (25). FG-3019 is a
B

C

D

A

FIGURE 1

In vitro assays confirm the role of Hippo/YAP pathway in promoting proliferation of LGG cells. (A) Flowchart depicting the study design. (B, C) Cell
viability assays of SW1783 and SW1088 cells treated with XMU-MP-1 reveal a dose-dependent increase in cell proliferation. (D) Univariate Cox
analysis identifies 16 Hippo pathway-related genes (HPRGs) that exhibit significant prognostic value in the meta-cohort.
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monoclonal antibody that targets the ECM protein, connective tissue

growth factor (CTGF), which is a downstream effector of the Hippo

pathway (26). Inhibition of tankyrase by XAV.939 stabilizes the

transcriptional co-activator protein YAP/TAZ, leading to enhanced

Hippo pathway signaling and subsequent tumor suppression (27).

Specifically, verteporfin inhibits the interaction between YAP and

TEAD transcription factors. Of concern, suboptimal prognosis
Frontiers in Oncology 06
subtype B exhibited sensitivity to drugs WZ.4003 (Figure 5B), FG-

3019 (Figure 5C), XAV.939 (Figure 5D), verteporfin (Figure 5E), and

XMU-MP-1 (Figure 5F). Specifically, subtype B had the lowest IC50

value compared to the other subtypes. Moreover, the elevated

expression levels of numerous immune checkpoints suggest that

subtype B may respond favorably to immune checkpoint inhibitor

(ICI) therapy (Figure 5G).
B

C

D E

A

FIGURE 2

Molecular subtypes of LGG patients associated with Hippo/YAP pathway activation and their clinical outcomes. (A) Consensus clustering algorithm
with k=3 classification of the meta cohort into three molecular subtypes. (B) Principal component analysis (PCA) of the three subtypes, showing
significant heterogeneity and discreteness. (C) Kaplan-Meier survival analysis of the three subtypes, with subtype B having the worst prognosis. (D)
Heat map showing the expression levels of HPRGs and clinicopathological factors in the TCGA cohort. (E) Heat map showing the expression levels
of HPRGs and clinicopathological factors in the CGGA cohorts. LGG, lower-grade glioma; TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma
Genome Atlas.
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Development of an integrated Hippo/YAP
pathway-related signature

The analyses presented above were conducted on a patient cohort

with LGG. To predict individual patients with different survival risk

profiles, we used a composite machine learning model. Moreover, this

model predicted status of the Hippo/YAP pathway in these patients.

Among the variousmodels we tested, the random forest tree model had

the highest C-index and was thus determined to be the best model
Frontiers in Oncology 07
(Figure 6A). As training progressed, the error rate remained stable

(Figure 6B). The rank of importance of 19 HPRGs was displayed, and

LATS2 was found to be the most important gene in the model

(Figure 6C). Using the internal risk score of the model, we

determined 27.86 as the optimal cutoff value for identifying patients

with high and low survival risk (Figure 6D). Risk stratification was

carried out on three cohorts, TCGA-LGG, CGGA-325, and CGGA-

693, using consistent cut-off values. The Kaplan-Meier curves

demonstrated that the low-risk group exhibited significantly
B

C D

A

FIGURE 3

TME differences contribute to Hippo/YAP activation and subsequent cancer development. (A) HLA-related molecules expression in three molecular
subtypes associated with Hippo/YAP pathway activation profiles. (B) Immune infiltration of three subtypes based on ssGSEA scores. (C) TME scores
of three subtypes determined by the ESTIMATE algorithm. (D) HE images of the tumor microenvironment of three subtypes. ***P < 0.001. HLA:
human leukocyte antigen; TME: tumor microenvironment; LGG: low-grade glioma; ssGSEA: single-sample gene set enrichment analysis; ESTIMATE:
Estimation of STromal and Immune cells in MAlignant Tumors using Expression data.
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prolonged overall survival in the TCGA-LGG cohort (Figure 7A).

Similarly, this trend was observed in both the CGGA-693 (Figure 7B)

and CGGA-325 (Figure 7C) testing cohorts. In the TCGA-LGG cohort

(Figure 7D), the area under the receiver operating characteristic curve

(AUC) for 1-, 3-, and 5-year overall survival (OS) were all greater than

0.9, indicating high predictive accuracy. Similar findings were observed
Frontiers in Oncology 08
in the test set, with AUC values greater than or near 0.7, particularly

around 0.8 in the CGGA-693 cohort (Figures 7E, F). We have

successfully identified individual patients with high-risk scores, which

were found to be primarily concentrated in subtype B, in both the

training and validation sets, confirming our initial suspicions

(Figures 7G–I).
B C

D E

F

A

FIGURE 4

Activation of representative pathways across different subtypes. (A) Volcano plot of differentially expressed genes between subtype C and subtype B.
(B) Volcano plot of differentially expressed genes between subtype C and subtype A. (C) Volcano plot of differentially expressed genes between
subtype A and subtype B. (D) Overlap of dysregulated genes among different subtypes. (E) KEGG enrichment analysis of common genes. (F) GSVA
showing decreased propanoate metabolic activity and suppressed Hippo pathway signaling in subtype B with poor prognosis. KEGG, Kyoto
Encyclopedia of Genes and Genomes; GSVA, gene set variation analysis.
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Discussion

Our study aimed to investigate the potential use of the Hippo/

YAP pathway in predicting prognosis, immune microenvironment,

and therapeutic regimen in patients with LGG. The results of the

study showed that the activation of the Hippo/YAP pathway was
Frontiers in Oncology 09
associated with different prognostic and clinical features, and could

be used to guide personalized treatment strategies for LGG. The use

of machine learning models in many aspects has been gaining

increasing attention in recent years (28–30). We used a composite

machine learning model to predict individual patients’ survival risk

profiles and the Hippo/YAP pathway status. The results of the
B C

D E

F

G

A

FIGURE 5

Hippo/YAP pathway-targeted drugs exhibit efficacy in suboptimal prognosis ubtype B. (A) Schematic diagram illustrating the Hippo/YAP pathway and
its inhibitors. (B) Sensitivity of subtype B to WZ.4003, a small molecule inhibitor that targets the transcriptional co-activator YAP. IC50 values are
presented for each subtype, with subtype B exhibiting the lowest IC50 value. (C) Sensitivity of subtype B to FG-3019, a monoclonal antibody that
targets the ECM protein CTGF, a downstream effector of the Hippo pathway. IC50 values are presented for each subtype. (D) Sensitivity of subtype B
to XAV.939, a tankyrase inhibitor that stabilizes the transcriptional co-activator protein YAP/TAZ, leading to enhanced Hippo pathway signaling and
subsequent tumor suppression. IC50 values are presented for each subtype. (E) Sensitivity of subtype B to verteporfin, which inhibits the interaction
between YAP and TEAD transcription factors. IC50 values are presented for each subtype. (F) Sensitivity of subtype B to XMU-MP-1, showing a dose-
dependent increase in cell proliferation. IC50 values are presented for each subtype. (G) Elevated expression levels of immune checkpoints suggest
that subtype B may respond favorably to immune checkpoint inhibitor (ICI) therapy. **P < 0.01; ***P < 0.001, ns indicates no statistical significance.
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model showed that the Hippo/YAP pathway status could be used as

a predictor of patient survival in LGG. This is an important finding,

as predicting patient survival is crucial for developing effective

treatment strategies.

We also investigated the efficacy of small molecule inhibitors

targeting the Hippo/YAP pathway. The results of the study showed

that the XMU-MP-1 inhibitor significantly enhanced the

proliferation of LGG cells, indicating that targeting the Hippo/
Frontiers in Oncology 10
YAP pathway could be an effective therapeutic strategy for LGG.

The small molecular compound XMU-MP-1 is a potent and

selective inhibitor of MST1/2 (22). While inhibition of Hippo

signaling may increase proliferation in LGG cells, it is also

possible that it could lead to apoptosis or senescence, which could

limit tumor growth (31). More studies are needed to fully

understand the therapeutic potential of Hippo pathway inhibition

in LGG. Similarity, the restoration of cell viability and reversal of
B

C

D

A

FIGURE 6

Composite machine learning model predicts survival risk profiles and Hippo/YAP pathway status in LGG patients. (A) Comparison of C-index values
for various machine learning models tested. Random forest tree model showed the highest C-index and was thus chosen as the best model. (B) Plot
of error rate versus number of trees grown in the random forest model. The error rate remained stable as the number of trees increased, indicating
robust performance of the model. (C) Sequence of importance of 19 Hippo pathway-related genes (HPRGs) in the random forest model. (D) Optimal
cutoff value of 27.86 was determined for identifying patients with high and low survival risk.
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HHT-induced hepatocellular carcinoma apoptosis were observed

following treatment with XMU-MP-1 (32). Chao et al. (33) reported

that MST1 down-regulation promoted glioma cell proliferation and

growth, while inhibiting apoptosis. Conversely, MST1

overexpression inhibited glioma cell proliferation by modulating

the AKT/mTOR pathway. Our finding is supported by previous

studies, which have shown that targeting the Hippo/YAP pathway
Frontiers in Oncology 11
can suppress tumor growth and invasion in various types of

cancer (31).

Consensus clustering algorithm was used to classify the meta

cohort into three molecular subtypes associated with Hippo/YAP

Pathway-related profiles. The results of the study showed that

different Hippo/YAP Pathway activation profiles were associated

with different prognostic and clinical features. Subtype B, for
frontiersin.or
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FIGURE 7

Risk stratification and predictive accuracy in LGG cohorts. (A-C) Kaplan-Meier curves were plotted for overall survival (OS) in low-risk and high-risk
groups of TCGA-LGG, CGGA-325, and CGGA-693 cohorts, respectively. (D) The area under the receiver operating characteristic curve (AUC) for 1-,
3-, and 5-year OS in the TCGA-LGG cohort. (E) The area under the receiver operating characteristic curve (AUC) for 1-, 3-, and 5-year OS in the
CGGA-693 cohort. (F) The area under the receiver operating characteristic curve (AUC) for 1-, 3-, and 5-year OS in the CGGA-325 cohort (G–I) The
distribution of high risk scores, primarily concentrated in subtype B, was observed in TCGA-LGG, CGGA-325, and CGGA-693 cohorts, respectively.
LGG, lower-grade glioma; TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas.
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example, had the lowest IC50 value, indicating sensitivity to drugs

that target the Hippo/YAP pathway. This suggests that patients with

subtype B LGG may benefit from treatment with Hippo/YAP

pathway inhibitors. Furthermore, GSVA revealed that subtypes B

with poor prognosis displayed decreased propanoate metabolism

and suppressed Hippo pathway signaling. The Hippo signaling

pathway is highly conserved from Drosophila melanogaster to

mammals and plays a crucial role in organ size control, tissue

regeneration, and tumor suppression. When the pathway is

activated, resulting in YAP/TAZ retention (inactivity) and

degradation in the cytoplasm (34). Therefore, our study suggests

that targeting individuals with low YAP expression and activating

the Hippo pathway could be a crucial step towards personalized

therapy. Verteporfin, a drug that has been approved by the FDA for

use in photodynamic therapy for macular degeneration, has been

shown to inhibit YAP (35). Despite its effectiveness as an inhibitor,

verteporfin has yet to be approved for clinical tumor treatment due

to its unclear function.

In addition, the study also investigated the immune

microenvironment of LGG. The immune scores of subtype B

were dominated by MDSC and Treg cells, which are known to

have immunosuppressive effects. Interestingly, using a murine

prostate adenocarcinoma model, Wang et al. (36) demonstrated

that cancer cells producing CXCL5 under the control of YAP can

recruit MDSCs to the tumor site via heterotypic CXCL5 binding to

CXCR2 receptors. Moreover, YAP was discovered to function

downstream of the PRKCI oncogene to upregulate TNFa
expression, recruit MDSCs, and inhibit the function of cytotoxic

T cells (CTLs) (37). Proposals have been made by various groups

that suggest PD-L1 can promote chemotherapy resistance,

metastasis, and also signal within cancer cells to evade

cytotoxicity (38, 39). It is surprising that PD-L1 can upregulate

YAP expression levels in NSCLC lines. Recently, Tung et al.

reported that increased generation of reactive oxygen species

(ROS) associated with PD-L1 expression in NSCLC lines led to

upregulation of hypoxia-inducible factor 1a (HIF1a) (40). This

finding suggests that the Hippo/YAP pathway may play a role in

regulating the immune microenvironment of LGG, and targeting

this pathway may enhance the efficacy of immunotherapy for LGG.

Despite the promising findings of this study, there are several

limitations that must be acknowledged. In the methodology, we

only used one model for clustering, which is principal component

analysis (PCA). However, it would be useful to cross-validate our

results using different clustering methods in the future. First, the in

vitro models used in this study may not completely reflect the

complexity of tumor microenvironments and the heterogeneity of

patient populations, which may limit the generalizability of the

results. Second, although a comprehensive list of Hippo/YAP

pathway-related genes was used in this study, it is possible that

other genes or pathways may also contribute to the development

and progression of LGG. Third, the sample size of this study is

relatively small, and larger studies are needed to validate the

findings and improve the accuracy of the machine learning
Frontiers in Oncology 12
model. Finally, this study only focused on the Hippo/YAP

pathway, and further studies are needed to investigate the

potential interactions between this pathway and other signaling

pathways involved in LGG.
Conclusions

In conclusion, this study demonstrates the potential use of the

Hippo/YAP pathway in predicting the prognosis, immune

microenvironment, and therapeutic regimen of patients with

LGG. The different Hippo/YAP Pathway activation profiles

associated with different prognostic and clinical features suggest

the potential for personalized treatments. Further studies are

needed to validate the findings of this study and to develop

effective therapeutic strategies targeting the Hippo/YAP pathway

in LGG.
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Edu and colony formation. (A) Edu assay treated with different media in
SW1783. (B) Edu assay treated with different media in SW1088. (C) Colony

formation treated with different media in SW1783. (D) Colony formation assay

treated with different media in SW1088.
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