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Autophagy is a lysosomal self-degradation pathway that plays an important

protective role in maintaining intracellular environment. Deregulation of

autophagy is related to several diseases, including cancer, infection,

neurodegeneration, aging, and heart disease. In this review, we will summarize

recent advances in autophagy-mediated nanomaterials for tumor therapy.

Firstly, the autophagy signaling pathway for tumor therapy will be reviewed,

including oxidative stress, mammalian target of rapamycin (mTOR) signaling and

autophagy-associated genes pathway. Based on that, many autophagy-

mediated nanomaterials have been developed and applied in tumor therapy.

According to the different structure of nanomaterials, we will review and evaluate

these autophagy-mediated nanomaterials’ therapeutic efficacy and potential

clinical application.
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1 Introduction

Autophagy is the process of isolation and degradation of cytoplasmic components by

autophagosomes, a multistep lysosomal degradation pathway that supports nutrient

cycling and metabolic adaptation. The primary role of autophagy is to label damaged

organelles, cytoplasmic macromolecules and aggregated proteins and deliver them to

lysosomes. Lysosomes are then degraded by lysosomal hydrolases to produce organic

molecules such as amino acids, nucleotides, sugars and ATP, which are eventually recycled

back into the cytoplasm (1). Autophagy is essential because it acts as a cytoprotective

mechanism by technically avoiding the accumulation of damaged intracellular

components, thus maintaining cellular homeostasis and energy metabolism and thus

ensuring cell survival under conditions of stress and nutrient starvation (2). In terms of

morphological and protein components involved in the core mechanisms, autophagy

manifests itself as an extremely conserved intracellular process from yeast to mammals (3,

4). Depending on the pathway of action, autophagy is divided into three categories:

macroautophagy, molecular chaperone-mediated autophagy, and microautophagy.

Autophagy is usually referred to as macroautophagy (5, 6). Autophagy is associated with
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many physiological and pathological processes, such as

neurodegenerative diseases, infections, and cancer.
1.1 Mechanism of autophagy

Autophagy acts as a catalytic process leading to autophagic

lysosomal degradation of major cytoplasmic contents (abnormal

protein aggregates and excess or damaged organelles). Prior to

autophagic lysosome assembly autophagic signaling is mediated by

activation of the ULK complex consisting of ULK1 or ULK2, FIP200

and mATG13 (7). The ULK1 complex is the bridge in vivo that

connects the upstream nutrient or energy receptors mTOR and

AMPK with downstream autophagosome formation.ULK1 and

ULK2 are highly phosphorylated and ULK1 has been reported to

have Over forty phosphorylation sites have been reported (8). The

ULK1 complex upon activation chimerizes to the membrane of the

phagocytic vesicle and then other complexes are recruited to the site

(9). Phosphorylated ULK1 has long been recognized as a key

regulator of autophagy, and two kinases, AMPK and mTOR, have

been found to catalyze the phosphorylation of ULK1, which plays a

very important role in autophagy. Under starvation conditions,

AMPK activates and mTOR inactivates, and the activated AMPK

catalyzes phosphorylation of serines 317, 467, 555, 574, 637 and 777
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of ULK1 to promote autophagy. Under nutrient-sufficient conditions

AMPK inactivation, mTOR can bind to ULK1 serine at position 757

to inhibit ULK1-AMPK interaction, leading to inactivation of ULK1

and ultimately shutting down autophagic signaling (10, 11). mTOR

kinase is an important regulatory molecule of autophagy (12) and

activated mTOR (Akt and MAPK signaling) can inhibit autophagy,

while negative regulation of mTOR (AMPK and p53 signaling)

promotes autophagy (Figure 1). Three related serine/threonine

kinases, UNC-51-like kinase -1, -2, and -3 (ULK1, ULK2, UKL3)

(13), play a similar role to yeast Atg1 as downstream mTOR

complexes. ulk1 and ulk2 are related to the mammalian homolog

of the Atg gene product (mAtg13), the scaffolding protein FIP200

(homolog of yeast Atg17) to form a large class III PI3K complex. The

complex includes hVps34, Beclin-1 (mammalian homolog of yeast

Atg6), p150 (mammalian homolog of yeast Vps15) and Atg14-like

protein (Atg14L or Barkor) or UVRAG (ultraviolet irradiation

resistant associated gene), all required for autophagy induction (4,

14). Atg genes control autophagosome formation through the Atg12-

Atg5 and LC3-II (Atg8-II) complexes (15). Atg12 is coupled to Atg5

in a ubiquitin-like reaction requiring Atg7 and Atg10 (E1 and E2-like

enzymes, respectively). The Atg12-Atg5 linker then reacts non-

covalently with Atg16 to form a larger complex. The C-terminus of

LC3/Atg8 is cleaved by Atg4 protease to generate cytoplasmic LC3-

I.LC3-I is also linked to phosphatidylethanolamine (PE) in a
FIGURE 1

Schematic representation of the basic mechanism of macroautophagy.
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ubiquitin-like reaction that requires Atg7 and Atg3 (respectively E1

and E2-like enzymes). Finally, a lipid form of LC3, LC3-II (16), is

formed and adsorbed on the autophagosomal membrane. There is

both a positive and negative link between apoptosis and autophagy,

and there is an extensive signaling “conversation” between the two

processes. Autophagy has a pro-survival function when nutrients are

lacking, but excessive autophagy leads to autophagic cell death, a

morphologically distinct process from apoptosis. Some pro-apoptotic

signals, such as TNF, TRAIL and FADD, can also induce autophagy.
1.2 Nanomaterials and autophagy

Nanomaterials are generally defined as particles in the size

range between 10 and 100 nm (17), and their shape is directly

related to the efficacy of biodistribution as a carrier and interaction

with the target tissue (18). The most common are nanospheres and

nanorods, but new nanocrystals have been developed. Their

physicochemical characteristics (nanomaterial composition,

concentration, size, surface charge, surface area, functionalization,

dispersion state, protein corona, and cellular uptake) constitute a

great advantage in autophagy (19). Compounds in autophagy

modulation tend to have low bioavailability and can benefit from

delivery using nanoparticles. Delivery using nanoparticles can

benefit them (20). Nanoparticles have the ability to regulate

autophagy (21, 22) (Figure 2). Changes in autophagy levels can

lead to differences in cell biological behavior (23), which could be a

potential therapeutic strategy to help in disease treatment. In tumor

cells, the intervention of autophagy has been proposed as a target

for cancer therapy. Many studies have revealed the role of

autophagy generated by nanoparticles in tumor therapy based on

their toxic effects (24), including gold nanoparticles, silver

nanoparticles, and zinc oxide nanoparticles. Therapeutic

interventions using nanoparticles to modulate autophagy can

sensitize cancer cells to certain therapies (25). Nanoparticles can

enter cells through the site of deposition and can also reach distant

organs through a variety of mechanisms (26). Nanomaterials from

many different compositions (e.g., metals, metal oxides, carbon,
Frontiers in Oncology 03
silica, and quantum dots) have shown cytotoxic effects in different

biological systems (27–31). The cytotoxic potential of

nanomaterials can be used to treat a wide range of diseases and

conditions, as dysregulated pathways of apoptosis are a common

feature of cancer, neurodegenerative diseases and neurological

disorders (32, 33), and thus the apoptosis-modulating effects of

nanomaterials are of great potential therapeutic value (34).
2 Nanomaterials and autophagy
regulation mechanisms

Nanomaterials, as a novel regulator of autophagy, can affect

autophagy through a variety of mechanisms. There are various

types of nanomaterial-mediated autophagy. Oxidative stress has

been widely recognized as one of the main causes of cytotoxicity of

nanomaterials and is thought to play an important role in the

regulation of autophagic processes (35, 36).There is a complex

interaction between ROS and autophagy. With elevated levels of

reactive oxygen species and H2O2, the AMPK pathway can be

activated, thus inhibiting the mTOR pathway (37) (Figure 3).

Meanwhile, ROS can directly affect the activity of ATG4.

Oxidative stress leads to ATG4 oxidation and inactivation, which

causes ATG8 lipidation and induction of autophagy (38, 39). There

is also evidence that ROS increase Beclin1 (33) expression. In

addition, degradation of nanomaterials in lysosomes can directly

induce ROS (40). Nanomaterials can release redox-active metal

ions, such as Fe2+ from gold-coated IONPS, which are involved in

ROS generation (41). Lysosomes are a frequent target of

nanomaterial autophagy, as most nanomaterials enter the cell by

endocytosis. The accumulation of nanomaterials in lysosomes leads

to the expansion of lysosomes and the release of histone proteases

that accompany and sustain the increase of ROS and autophagy. On

the one hand, autophagy is promoted as a cytoprotective

mechanism to compensate for the lack of lysosomal degradation

capacity (42). On the other hand, there is increasing evidence that

nanomaterials cause lysosomal alkalinization, leading to lysosomal
FIGURE 2

Relationship between autophagy and apoptosis induced by nanomaterials.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1194524
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liao et al. 10.3389/fonc.2023.1194524
damage, affecting the fusion of lysosomes with autophagosomes,

and ultimately leading to blocked autophagy. As novel regulators of

autophagy, nanomaterials are mainly regulated through oxidative

stress, direct regulation of autophagic signaling pathways and

alteration of autophagy-related gene or protein expression levels

(43, 44). Studies have shown that nanomaterials with smaller sizes

(<1.4 nm) are more cytotoxic and induce necrosis, while

nanoparticles larger than 1.4 nm usually induce apoptosis usually

induce apoptosis (45, 46). Moreover, in addition to nanoparticle

size its surface charge can also be a major factor in the mode of cell

death induced. Related studies (47, 48) showed that charged gold

nanoparticles induce apoptosis, while neutral nanoparticles trigger

necrosis. In recent years, nanomaterial-induced autophagy has

attracted increasing attention. Numerous studies have confirmed

the potential of many types of nanomaterials in inducing cellular

autophagy and apoptosis, including quantum dots (49–51), carbon-

based nanomaterials (52–56), rare earth oxide nanocrystals (57),

gold nanoparticles (58, 59), silver nanoparticles (35, 60), and silica

nanoparticles (45, 61–63), among others.
2.1 Nanomaterials and oxidative stress

Oxidative stress is considered to be one of the main causes of

nanoparticle-induced cytotoxicity and plays a very important role in

the regulation of induced cellular autophagy (64). Oxidative stress

induced by the massive production of ROS is often a mechanism of

greater interest to researchers, as oxidative stress causes oxidative

damage leading to a range of phenomena such as apoptosis, necrosis
Frontiers in Oncology 04
and ERS (65). Nanomaterial-induced autophagy production of ROS

is often considered as an upstream signaling molecule to initiate the

ERS-mediated apoptotic pathway. In tumor cells mitochondria-

produced ROS’s play a very important role. On the one hand,

nanomaterials can increase ROS production by interacting with

mitochondria, and on the other hand, excited electrons on the

surface of nanomaterials can also lead to an increase in

intracellular ROS. ROS are involved in the regulation of the

mTOR signaling pathway, activating or inhibiting mTORC1

activity in a dose- and time-dependent manner, and regulating

autophagy and apoptosis. Lysosomes are considered as a regular

target for nanoparticle-induced cytotoxicity and autophagy (66). The

accumulation of nanoparticles in lysosomes leads to lysosomal

swelling and release of histone proteases accompanied by increased

levels of reactive oxygen species and autophagy. The accumulation of

nanoparticles in lysosomes leads to lysosomal alkalinization and

lysosomal damage, which can achieve selective lysosome induction

in cancer cells potentially producing efficient anticancer effects and

very low side effects (67). Related studies have shown that TiO2 NPS

was able to increase ROS production in hepatocellular carcinoma

cells, induce ERS and activate the PERK/ATF6/Bax signaling

pathway, which inhibited the growth of hepatocellular carcinoma

cells and the increase in tumor tissue volume (68). Studies have also

noted that oxidative stress-mediated ERS is the main mechanism of

neurotoxicity in human neuroblastoma (SH-SY5Y) cells (69). Given

the relevant properties of nanoparticles in tumor cells, they hold

great promise for application in the treatment of tumors through

autophagy-induced generation of reactive oxygen species,

broadening the therapeutic horizon of tumor patients.
FIGURE 3

Mechanism of nanomaterials regulating autophagy.
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2.2 Nanomaterials and regulation of
autophagic signaling pathway

Nanoparticles can also directly interact with the mTOR

signaling pathway to regulate autophagy and thus inhibit tumor

cell growth, and in most cases, nano-induced autophagy accelerates

cell death (70, 71). The induction of autophagy is strongly related to

the physical properties of nanoparticles (e.g., dose, size, potential,

physical properties, pH, etc.). Usually, high doses of nanomaterials

are able to induce mTOR-mediated autophagy causing autophagic

cell death (72). The ability of nanoparticles to generate autophagy in

cells also lies in their physical shape and size (73). In BEAS-2B cells

and two Si NP-treated groups, respectively, Nano-Si40 and Nano-

Si60, induced PI3K/Akt/mTOR- controlled autophagy in a size-

dependent manner. Upon elucidating the difference between MoS2

nanosheets with five-layer (2D NPs) and MoS2 nanosheets Upon

elucidating the difference between MoS2 nanosheets with five-layer

(2D NPs) and MoS2 nanosheets with 40-layer (3D NPs), they both

activated the mTOR signaling pathway but the five-layer

nanosheets, for the most part, only bound to the cell surface.

proving that the cellular disturbance without NPs internalization

also has medical and toxicological significance (74). In addition, pH

sensitivity is one of the most effective factors in autophagy

activation (72). Cationic PAMAM G3-activated autophagy is

regulated by the Akt-TSC 2-mT0R pathway, but the anionic

PAMAM G5.5 failed to elicit this response (75). Direct

interaction of nanoparticles with the mTOR signaling pathway

can inhibit tumor cell growth. During endocytosis, nanoparticles

affect the recruitment/activation of PI3K/Akt in local regions of the

cell membrane, thus altering the ability of Akt to activate mTORC1

In KP-SeNP nanomaterial-treated AGS cells, phosphorylation of

PI3K/Akt/mTOR pathway markers and downstream targets is

reduced, exerting anticancer effects through autophagy and

apoptosis (76). In addition, there are related experiments

verifying that Pt NCs regulate tumor cell apoptosis through PI3K-

AKT-mTOR signaling that regulates autophagy (77). The role of

autophagy and its related mechanisms in nanotoxicity cannot be

ignored. It has been reported that due to their small size and other
Frontiers in Oncology 05
physicochemical properties (78), nanoparticles may cause damage

to lysosomal and mitochondrial functions, inhibit autophagic

processes through mTOR regulation, and even contribute to

cytotoxicity. Therefore, for future human-friendly utilization of

nanomaterials, physical properties such as concentration, size and

surface charge of NPs should be carefully evaluated to present

different roles in autophagy regulation, leading to normal cell

survival or cancer cell death.
3 Application of nanomaterials in
autophagy

In recent years, autophagy induced by nanomaterials has

attracted increasing attention. Numerous studies have confirmed

the potential of many types of nanomaterials to provide

homeostasis of autophagy in vivo, and the different types of

nanoparticles will be described in detail in this section (Table 1).
3.1 Gold nanomaterials

Gold nanoparticles possess many advantages such as simple

preparation, stable physicochemical properties, controllable optical

properties, and no apparent toxicity (85), and are the most widely

used nanomaterials representing autophagy-induced nanomaterials.

Indeed, an increasing number of reports demonstrate the clinical

potential of gold nanoparticles as drug carriers (86), components of

photothermal therapy (87), contrast factors (88), and therapeutic

agents with significant cytotoxic activity (89) in the treatment of

many cancers such as breast cancer (90), gastrointestinal tract cancer

(91), lung cancer (92), and ovarian cancer (93). Lysosomal

alkalinization and membrane permeabilization induced by gold

nanoparticles, inhibition of autophagic flux can reduce the M2

polarization of TAMs and targeted autophagic intervention in

antitumor immunotherapy (58). Mitochondria are the main targets

of nanomaterial-induced oxidative stress, and once nanoparticles

enter the mitochondria, pathways involving impaired electron
TABLE 1 Nanoparticles in the regulation of autophagy for cancer therapy.

Nanomaterials Cancer type Remarks Refs

Au nanoparticles Neuroglioma Down-regulation of mTOR and PI3K/Akt
Up-regulation of LC3-II and ERK
Inducing autophagy

(79)

Silver nanomaterials Bladder cancer Triggering Akt and ERK signaling pathway
Inducing autophagy

(80)

Iron nanomaterials Breast cancer PI3K/Akt expressions
Up-regulation of LC3-II and ERK
Inducing autophagy

(81)

Rare earth nanomaterials Lung Cancer Up-regulation of LC3 and Beclin1 expression Inducing autophagy (82)

Zinc Nanomaterials Breast cancer Up-regulation of ATG5
Inducing autophagy

(83)

Graphene nanomaterials Rectal Cancer Triggering AMPK/mTOR/ULK-1signaling pathway
Inducing autophagy

(84)
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transport chain, structural damage, NADPHase activation and

mitochondrial membrane depolarization are initiated within the

membrane. It has been shown (94) that the physicochemical

properties of gold nanoparticles, especially the surface charge,

strongly determine the mechanism of oxidative stress induction.

Low-dose exposure to phytosynthetic gold nanoparticles combined

with glutamine deprivation promotes cell death in cancer cells HeLa

through oxidative stress-mediated mitochondrial dysfunction and

G0/G1 cell cycle block (95). Properly modified gold nanoparticles

have promising applications in cancer therapy.
3.2 Silver nanomaterials

Silver nanoparticles, with diameters ranging from 1 to 100 nm,

are increasingly used in nanotechnology and nanomedicine

applications and research because their smaller particle size is

more readily absorbed by cells and has more opportunities to

interact with cellular components. Silver nanoparticles enter cells

into vesicles mainly through cytokinesis. Some related studies have

shown that silver nanoparticles can induce autophagy in cells,

which is associated with oxidative stress, manifested by an

increase in reactive oxygen species (96). Mechanistic studies have

shown that silver nanoparticles phosphorylation activates the PI3K/

AKT/mTOR signaling pathway and induces the autophagic process.

Silver nanoparticles can further trigger apoptosis by upregulating

caspase-3 and Bax and downregulating Bcl-2 in cells (60). AgNPs

impede autophagic flux by inhibiting the fusion of autophagosomes

with lysosomes, thereby exacerbating AgNPs-induced neurotoxicity

(97). In some undesirable malignancies, the radiosensitizing effect

of silver nanoparticles on malignant gliomas was revealed to

provide promising radiation therapy (98), and reactive oxygen

species were associated with the autophagy-stimulating and

radiosensitizing effects of silver nanoparticles (99). In human

epithelial rectal cancer, silver nanoparticles killed cancer cells by

inducing oxidative stress and DNA damage, induced a decrease in

NFKB expression and an increase in IKB expression during

autophagy, and autophagosome formation was accelerated by an

increase in p53 and light chain 3 (LC3) II expression. In addition,

inhibition of Akt and mTOR also played a key role in autophagy

formation. Finally, autophagy overexpansion promotes apoptosis

(100). Silver nanoparticles have been shown to induce nuclear

translocation of transcription factor EB through a well-established

mechanism involving dephosphorylation of transcription factor EB

at serine 211 and serine 142, and nuclear translocation of

transcription factor EB precedes autophagy stimulation (101), and

even promotes increased expression levels of autophagy-essential

genes through silver nanoparticle therapy, which positions TFEB as

a potential target.
3.3 Iron nanomaterials

Iron nanoparticles are frequently used for various biomedical

applications, and oxide nanoparticles, especially magnetic iron
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most promising and popular iron oxide candidates because of their

good chemical stability, magnetic responsiveness, and

biocompatibility (102). The central mechanism of iron oxide

induced autophagy is the Fenton reaction, which is summarized

as chemodynamic therapy (CDT). Iron nanomaterials induce

autophagy by reacting with endogenous H2O2 through Fenton or

Fenton-like reactions, resulting in the in situ production of

cytotoxic hydroxyl radicals to kill cancer cells (103). It has been

shown that the effective inhibition of hepatocellular carcinoma

growth by iron oxide in combination with other drugs achieves

tumor suppression by enhancing intracellular iron retention

inducing sustained reactive oxygen species (ROS) production

through the Fenton reaction thereby inhibiting autophagosome

and lysosome fusion (104). In addition, iron oxide nanoparticles

can be used as a drug delivery vehicle with stronger autophagy-

inducing effects in combination with paclitaxel, which increased the

relative expression levels of Beclin1 and LC3II to LC3I, decreased

the relative expression level of p62, increased intracellular iron ion

concentration, activated ROS and lipid peroxidation, and

downregulated the expression level of GPX4 protein. Exerted

inhibitory effects on tumor cells by enhancing autophagy-

dependent iron death pathway and lipid peroxidation (105).
3.4 Rare earth nanomaterials

Rare earth elements are natural components of the earth’s crust

with unique chemical and physical properties, and in the

biomedical field, their oxide nanoparticles have different

biological functions in vitro, including protein adsorption, cellular

uptake, antiviral activity, cell differentiation, oxidative stress, and

neuroprotection, and are even considered as novel autophagy

inducers. For rare earth elements, autophagy induction is a

typical biological effect. It has been shown that novel lanthanides

have high anticancer activity and induction of apoptosis and

autophagy (82). Furthermore, variants of RE-1 peptide exhibit

differentially reduced binding capacity and autophagy induction,

which is thought to provide a pluripotent tool to modulate material-

cell interactions to obtain desirable levels of autophagy.

Glioblastoma is a heterogeneous disease with multiple genotypes

(106) and is one of the most malignant of astrocytic tumors with a

poor prognosis. Due to their unique electronic configuration, rare

earth elements play a role in enhanced radiation therapy. It was

shown that significant radiosensitization was observed in U-87 MG

when incubated with Gd2O3,CeO2-Gd and Nd2O3:Si. Based on the

radiosensitizing effect of Gd2O3 nanomaterials in U87 MG, their

cell survival was significantly reduced by irradiation at 6 MV X-rays.

These rare earth oxides do not produce any intrinsic cytotoxicity in

the absence of irradiation and show high biocompatibility (107).
3.5 Zinc nanomaterials

Zinc oxide nanoparticles are one of the main nanomaterials

used in the treatment of cancer. Studies have shown that impaired
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mitochondrial morphology and function in exposed cells triggers

excessive ROS production, reduced Mito membrane potential,

imbalance in Ca2+ homeostasis and release of cell death signaling

molecules, ultimately leading to redox stress, apoptosis and

inflammatory responses (108, 109). Therefore, ZnO nanoparticles

are considered as a major breakthrough in tumor therapy. In

hepatocellular carcinoma studies (110), it was found that zinc

oxide nanoparticles promote autophagy and upregulate the

expression of P53 and Caspase3. zinc oxide nanoparticles enter

the cell by altering the mitochondrial membrane potential (111),

increase the permeability of the outer membrane, and activate the

expression of P53 and Caspase3. p53, an important oncogene,

specifically inhibits Bcl-2 through transcriptional and

translational expression (112).Caspase 3 activates apoptosis,

promotes the release of cytochrome C, activates apoptosis

protease activating factor 1, catabolizes DNA polymerase, and

damages cellular DNA, thus reducing the proliferation and

increasing apoptosis of cancer cells (113, 114). It has been

demonstrated that ZnO nanoparticles with an average size of 20

nm are able to produce significant cytotoxicity in human ovarian

cancer cells through the induction of intracellular ROS, through

which they can directly affect the mechanical pathways of cell

viability through apoptosis and autophagy, leading to

mitochondrial disruption, as well as alterations in mitochondrial

phosphate transporter (MPT) and function (115). In addition, ZnO

nanoparticles-induced autophagy is closely related to

chemoresistance in gastric cancer cells, and inhibition of

autophagy can alleviate chemoresistance (116–118).
3.6 Graphene nanomaterials

Graphene oxide (GO) nanoparticles, as carbon-based

nanocarriers, have the advantages of large surface area, good

mechanical strength, and strong surface modification ability. It

has a honeycomb structure with a high affinity for binding and its

electrons are involved in the aro conjugation domain (119). These

carbon-based nanocarriers have a high selectivity for tumor cells

and can be used to deliver chemotherapeutic drugs in tumor

therapy (120). In addition, graphene-based nanoparticles can

inhibit cancer progression by providing photothermal therapy

(121). Graphene oxide treatment leads to cytotoxicity, reactive

oxygen species (ROS) production, apoptosis, autophagy and

activation of AMPK/mTOR/ULK1 signaling pathway. Graphene

oxide exerts anticancer effects on autophagy and apoptosis

associated with colorectal cancer via ROS-dependent AMPK/

mTOR/ULK-1 pathway. Related studies have shown that reduced

graphene oxide stimulates autophagy and cell cycle arrest thereby

inducing apoptotic death of cancer cells (122). By stimulating

autophagy, GO nanocarriers can promote the sensitivity of cancer

cells to chemotherapy. However, by impairing autophagic flux, GO

nanoparticles can reduce cell survival and enhance inflammation.

Similarly, graphene oxide nanomaterials can increase ROS

production and induce DNA damage, thereby sensitizing cancer

cells to apoptosis. Molecular pathways, such as ATG, MAPK, JNK
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and Akt, can be modulated by graphene oxide nanomaterials

leading to effects on autophagy and apoptosis (53).
4 Conclusion

An increasing number of studies have shown that

nanomaterial-induced autophagy plays an important role in the

pathogenesis of tumor diseases and that different materials induce

different phenomena of autophagy. The potential mechanisms of

autophagy regulation by nanoparticles even with the same

nanomaterial but with different sizes, shapes and surface

modifications differ, which provides multiple models for studying

autophagy. The autophagy regulation by nanomaterials is

influenced by many factors such as material composition, particle

size, shape, surface modification, dose, treatment time, synthesis

method and cell line. Therefore, the regulatory outcome of

nanoparticle-mediated autophagy varies in different situations.

The extent and mechanisms of autophagy induction by various

nanomaterials lack relatively uniform criteria. Whether as drug

carriers or drugs, nanomaterials have shown good clinical

diagnostic and therapeutic effects. Notably, a large number of

nanomedicines have been proposed as research tools for the

diagnosis or treatment of cancer. There is growing evidence that

various types of nanomaterials can modulate the autophagic process

of cells and thus induce apoptosis. The regulation of cellular

autophagy by nanomaterials has received significant attention in

cancer therapy. Selective induction of autophagy-mediated

chemosensitization by various nanomaterials in cancer cells can

be very beneficial for cancer therapy. With the in-depth study of

various mechanisms of nanomaterials, it is believed that

nanomaterials will provide more possibilities for clinical diagnosis

and treatment.
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