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Hepatocellular carcinoma (HCC) is an extremely heterogeneous malignant

tumor with a high morbidity and mortality. Circular RNAs (circRNAs) are

noncoding RNAs with high stability, organ/tissue/cell-specific expression and

are conserved across species. Accumulating evidence suggested that circRNAs

play crucial roles as microRNA sponges, protein sponges, scaffolds, recruiters

and could even polypeptide encoders. Many studies have since revealed that

circRNAs were aberrantly expressed in HCC and acted as crucial modulators of

HCC carcinogenesis and progression. Furthermore, circRNAs have also been

identified as potential diagnostic and prognostic biomarkers for HCC. In this

review, we thoroughly outline and evaluate the function of circRNAs in HCC

development, with an emphasis on the specific molecular pathways by which

they participated in the formation and progression of HCC, and we address their

potential for serving as clinical biomarkers in HCC.
KEYWORDS
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1 Background

Hepatocellular carcinoma (HCC) is one of the most prevalent primary liver cancers

with a poor prognosis and is the fourth leading cause of cancer-related death worldwide (1).

Currently, the principal treatments for HCC are surgical resection along with radiotherapy

and chemotherapy. However, postoperative recurrence, metastasis and acquired

chemoresistance strongly reduce the therapeutic efficacy of the aforementioned

treatments (2). Because the carcinogenesis and progression of HCC are exceedingly

complex processes, the mechanisms underlying the development of HCC remain poorly

understood. Although mounting evidence compelling demonstrated that numerous

noncoding RNAs (ncRNAs) play prominent roles in a wide range of clinical and
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physiological processes, including the progression of HCC, the

function of circRNAs remains to be clarified.

CircRNAs, a group of ncRNAs, are distinguished by covalent

closed-loop structures without terminal 5’ and 3’ poly(A) tails,

which are generated by a special noncanonical splicing mechanism

known as back-splicing (3). CircRNAs are more stable than linear

RNA because of their unusual architecture, which protects them

from exonuclease degradation. In addition, circRNAs are

characterized with organ/tissue/cell-specific expression and are

conserved across species. There is growing evidence showed that

aberrantly expressed circRNAs exert crucial effect on HCC cell

proliferation, apoptosis, metastasis and chemoresistance. Moreover,

circRNAs can be identified as non-invasive biomarkers because they

can be transmitted into the blood by exosomes. Due to the lack of

obvious symptoms at the early stage and lack of dependable and

valid biomarkers, HCC patients are frequently diagnosed at the

advanced stage and the overall survival rate is less than ideal. As a

result, an increasing number of studies have focused on the

potential function of circRNAs in HCC as noteworthy disease

biomarkers. In this study, we extensively describe the circRNAs

involved in the progression of HCC and recent clinical research

findings associated to these circRNAs. Hopefully, this

comprehensive review of HCC-associated circRNAs could help to

improve understanding of complex mechanisms and provide

valuable clues for future HCC therapy and diagnosis strategies.
2 The biogenesis of circRNAs

CircRNAs, discovered in the 1990s, are a novel class of

endogenously produced ncRNAs that were previously assumed to

be the result of aberrant splicing. Unlike lncRNAs, which have 5′-
end m7G caps and 3′-end poly(A) tails (4), circRNAs are covalent

closed-loop structures without terminal 5’ and 3’ poly(A) tails that

are produced from introns or exons via back-splicing (5). These

characteristics are linked to numerous properties, including high

abundance, stability, special conservation, and organic/tissue/cell-

specific expression patterns, indicating that circRNAs extensively

participate in a wide variety of physiological and pathophysiological

processes (6).

CircRNA closed loop structures are formed via three main

circularization mechanisms: 1) intron pairing, inverted

complementary intronic sequences (such as Alu elements)

flanking the exon junction could form a loop which bringing the

3’ extremity of a downstream exon (donor) proximity to the 5’

extremity of an upstream exon (acceptor), and thus facilitate the

circRNAs looping structure (7). 2) RNA-binding proteins (RBPs)-

mediated procedures, for example, the RBP Quaking (QKI) and

FUS can recognize and interact with specific flanking intronic

motifs, which driving back-splicing by direct interaction or

dimerization (8). and 3) lariat intron-driven ways, during

conventional splicing event, the skipped exonic and intronic

sequences are integrated into a circular lariat by ‘head-to-tail’

junction, which can be processed again to form circRNAs (9).

CircRNAs are classified into three types based on their origins and
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internal elements: exonic circRNAs (EcircRNAs), exon-intron

circRNAs (EIciRNAs), and intronic circRNAs (ciRNAs).

EcircRNAs are chiefly situated in the cytoplasm, whereas ciRNAs

and EIciRNAs have higher content in the nucleus (10).
3 Biological functions of circRNAs

Accumulating studies indicated that circRNAsmayplaya vital role

in various biological processes, including miRNA sponging, protein

translation, RBP interactions, as well as other unknown processes.
3.1 CircRNAs act as sponges of miRNAs

CircRNAs harbor well-conserved nucleotides and canonical

miRNA response elements (MREs), implying that some circRNAs

can function as miRNA sequesters or sponges (11). CiRS-7 also

referred to as cerebellar degeneration-related protein 1 transcript

(CDR1as) and was the first EcircRNA acted as miRNA sponges.

CiRS-7 contains over 70 miR-7 binding sites and can dramatically

impair miR-7 activity (9). According to recent evidence, many

functioning circRNAs have the latent capacity to operate as miRNA

sponges and are related to HCC progression (Supplementary

Table 1). These findings directly demonstrated that miRNA

sponging is a common function for circRNAs. However, most

circRNAs contain few binding sites for miRNAs, therefore it is

unclear how circRNAs exert substantial effects.
3.2 CircRNAs bind with RBPs

Aside from binding miRNAs, circRNAs have been shown in a

few studies to combine with several RBPs to form RNA-protein

complexes that affect gene expression and ultimately influence the

progression of various disorders. For instance, circZKSCAN1 was

recently shown to be a suppressive cancer stem cells (CSCs)

modulator via interacting with fragile X mental retardation

protein (FMRP) rather than serving as a miRNA sponge (12).

However, not all circRNAs bind to proteins and inhibit protein

function. CircRHOT1, For example, has been discovered to accelerate

HCC growth and metastasis by recruiting Tat-interacting protein 60

(TIP60) toupregulatenuclear receptor subfamily2, groupF,member6

(NR2F6) expression (13). Interestingly, circRNA-SORE, a novel

circRNA, played a momentous role in the maintenance and spread

of sorafenib resistance in HCC by interacting with Y-box binding

protein 1 (YBX1) to change its subcellular localization and sequentially

preventing PRP19-mediated YBX1 ubiquitination and degradation

(14). In the cases above, circRNAs acted as protein decoys, scaffolds,

and recruiters in the progression of HCC. Nevertheless, bioinformatic

analyses suggested that circRNAs had a lower abundance of RBP

binding sites than linear RNAs, and aside from their mutual binding

sites and/or sequences, the exact regulatory mechanisms connecting

circRNA with RBPs and altering protein-protein interactions remain

unclear and require further investigations.
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3.3 CircRNAs encode proteins

Although circRNAs are classified as a type of ncRNA, there is

growing evidence that some circRNAs are translatable. A recent

study discovered that circb-catenin was translatable and highly

expressed in HCC, and translation of circb-catenin generated a

novel isoform named b-catenin-370aa that promoted HCC

progression by protecting b-catenin from GSK3b-induced
degradation and thus indirectly facilitating activation of the Wnt/

b-catenin pathway (15). Another study revealed that circMRPS35

exerted its oncogenic function in HCC not only by sponging miR-

148a to modulate the STX3-PTEN pathway, but also by being

translated into circMRPS35-168aa, which resulted in cisplatin

resistance, indicating that circMRPS35 might be a vital

component in the progression and chemoresistance of HCC with

different expression patterns under different conditions (16). The

protein-coding function of circRNAs is a novel aspect in the

development of diseases, and the function of protein-coding

circRNAs may be more crucial than previously believed.

Nevertheless, the regulatory frameworks of circRNA translation

processes have received little attention, and whether circRNA

derived proteins have discernible effects on the development of

HCC remains controversial.
4 CircRNAs and HCC

With the continuous improvement of detection technologies, a

large number of circRNAs have been validated as considerable

molecular regulators in the development of HCC. Supplementary

Table 1 and Figure 1 list the expression of aberrant circRNAs in

HCC along with their roles. These circRNAs are essential for several

processes associated with HCC, such as cell proliferation, apoptosis,

CSCs, metastasis, epithelial-mesenchymal transition (EMT),

chemoresistance, angiogenesis, and have effects on the tumor

microenvironment (TME), exosomes and other factors. Thus, we

discussed these dysregulated circRNAs and their molecular and

pathogenic mechanisms in HCC.
4.1 Cell proliferation

Tumor cells maintain proliferative conditions abnormally active

by stimulating cell proliferation signaling pathways. The PI3K/

AKT/mTOR axis is a crucial pathway in the advancement of

HCC, affecting a wide range of malignant progression (17). The

m6A-modified circMDK regulated the miR-346/miR-874-3p-

ATG16L1 axis, activating the PI3K/AKT/mTOR signaling

pathway and eventually accelerating the process of HCC

carcinogenesis (18). Circ-CDYL was reported to influence the

HDGF-NCL-PI3K-AKT and HIF1AN-NOTCH2 pathways as well

as boost SURVIVIN and C-MYC expression, promoting stem-like

characteristics and cell proliferation in HCC (19). Moreover,

circC16orf62 sustained the proliferation of HCC cells through the

circC16orf62/miR-138-5p/PTK2/AKT regulatory network (20).

Because it regulated mTOR signaling by activating the miR-141-
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3p/RHEB axis, circRNA-100338 was strongly linked to the

stimulation of HCC cell proliferation and metastasis (21).

Unexpectedly, circSOD2 played a crucial role in accelerating HCC

development via the circSOD2/SOCS3-JAK2/STAT3/circSOD2

innovative feedback pathway (22). Furthermore, circMTO1

competitively sponged miR-541-5p and decreased ZIC1

expression, inhibiting HCC progression by blocking the signaling

pathway of Wnt/b-catenin (23). The Hippo pathway is a highly

conserved pathway that takes a pivotal part in controlling stem cell

self-renewal, cell proliferation and EMT by stimulating the

downstream transcriptional factors YAP and TAZ. CircCPSF6

functioned as a novel m6A-modified circRNA accelerating

tumorigenicity and cell metastasis of HCC by competitively

binding to PCBP2, thus weakening the PCBP2-induced

destabilization of YAP1 and triggering its expression, further

activating its downstream cascade (24).

Glucose metabolism reprogramming, which is a generally

recognized feature of many malignancies, happens to meet the

greater rate of glycolysis required for macromolecular synthesis and

to support rapid proliferation in hypoxia. CircMAT2B facilitated

the progression of HCC by accelerating glycolysis through

regulation of the miR-338-3p/PKM2 signaling pathway under

hypoxia (12). Moreover, circRPN2 played a vital role in

restraining the glycolytic reprogramming, progression and

metastasis of HCC by directly interacting with ENO1 to facilitate

its degradation and regulating the miR-183–5p/FOXO1 signaling

pathway (25). Through its interaction with YTHDF1, circRHBDD1

accelerated the translation of PIK3R1 by modifying m6A, hence

facilitating the glycolysis of HCC cells (26). Lipid metabolism is also

essential for cancer cells and plays a vital role in adapting tumors to

the local microenvironment. As the primary modulator of lipid

metabolism, Peroxisome proliferator-activated receptor-a
(PPARA) was deemed to be a promising HCC treatment.

Hsa_circ_0098181 engaged in the miR-18a-3p/PPARA signaling

pathway to exert anti-HCC effects (27). By physically attaching to

CAPRIN1 and G3BP1, circVAMP3 exhibited tumor suppressor

qualities in HCC by causing CAPRIN1 to phase separate and

promoting the production of stress granules, which prevented the

translation of c-Myc (28).

One factor that leads a normal cell to become malignant is

dysregulation of the cell cycle machinery. The important cell cycle-

related proteins known as Cyclin-dependent kinases 4 and 6

(CDK4/6) are essential for controlling the G1/S transition and the

advancement of the G1 phase (29). As a miR-200a-3p sponge, circ-

ZEB1.33 was a tumor promotor that stimulated CDK6 expression

and HCC cell proliferation (30). Moreover, by controlling the cell

cycle through the miR-1263/CDK6 signaling pathway, circERBIN

accelerated the growth of HCC and subsequently accelerated the

G1/S transition (31). In addition, by modifying the miR-486/CDK4

axis, hsa_circ_0016788 improved the cell cycle aberrations and

migratory capabilities of HCC cells (32). CircSP3 promoted HCC

growth by sponging miR-198 and upregulating CDK4 (33).

Furthermore, it was showed that circCCNB1 silencing suppressed

GPM6A expression to participate in the cell cycle regulation of

HCC cells by upregulating DYNC1I1 expression and triggering the

AKT/ERK signaling pathway (34). P21 takes a crucial part in
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growth arrest by inhibiting the activity of cyclin D-CDK2/4

complexes. For instance, circMTO1 functioned as a critical tumor

suppressor by facilitating cell cycle arrest via the miR-9/p21

pathway (35).

In addition to stimulating cell proliferation, tumor cells

frequently escape the growth-inhibitory effects of tumor

suppressor pathways. PTEN functions as an important tumor

suppressor by restraining cell growth and proliferation.

CircHIAT1 restrained HCC cell proliferation by acting on the

miR-3171/PTEN axis (36). MAPK14 could limit cell growth and

cancer by engaging on cell cycle checkpoints. CircSETD3 had been

identified as a tumor suppressor that suppressed the tumorigenesis

of HCC by modulating the miR-421/MAPK14 pathway (37). In

addition, cellular senescence is a stress-mediated, persistent cell

cycle arrest of cells that were previously able to replicate (38). The

p53/p21 pathway is an important pathway in senescence.

CircLARP4 decreased cell proliferation and induces cell cycle

arrest and senescence by suppressing miR-761, thereby increasing

the RUNX3 expression and regulating activation of the downstream
Frontiers in Oncology 04
p53/p21 signaling pathway (39). In addition to miRNAmodulation,

an increasing number of studies have declared that some circRNAs

promoted the proliferation of HCC cells and HCC tumorigenesis

through efficient translation. For instance, circb-catenin was

translatable and highly expressed in HCC, and circb-catenin
translation generated a novel isoform named b-catenin-370aa,
which subsequently promoted HCC progression by protecting b-
catenin from GSK3b-induced degradation and thus facilitated the

activation of the Wnt/b-catenin pathway (15).

Overall, the above examples clearly demonstrated that

circRNAs had crucial regulatory functions in HCC tumorigenesis

and progression, contributing to a deeper comprehension of HCC

pathogenesis (Figure 2).
4.2 Apoptosis

Apoptosis, autophagy, and necrosis are three primary

mechanisms contributing to programmed cell death that tumor
FIGURE 1

The diagram demonstrates the mechanism by which circRNAs in the regulate cell proliferation, apoptosis, cancer stem cells, metastasis, drug
resistance, angiogenesis, tumor microenvironment and exosomes in HCC.
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cells are efficient at avoiding (40). Tumor cells can evade apoptosis,

enabling cell immortality. STATs are latent transcription factors

that participate in cell growth, development, apoptosis, and a series

of other cellular events. Increasing evidence has demonstrated that

STAT3 plays a critical role in apoptosis (41). As shown in previous

studies, human HCC cells constantly stimulated the JAK1/STAT3

pathway to accelerate HCC progression. Circ9119 was a neoteric

oncogene that increased cell propagation and inhibited apoptosis

through the miR-26a/JAK1/STAT3 signaling pathway (42).

Furthermore, m6A-modified circMAP3K4 can be translated into

circMAP3K4-455, which decreased cisplatin-induced apoptosis and

stimulated HCC progression by directly binding to apoptosis

inducing factor mitochondria associated 1 (AIF), thus blocking its

nuclear translocation (43). Clearly, circRNAs can regulate the

apoptosis of HCC cells.
4.3 Cancer stem cells

CSCs have been regarded as the origin of carcinogenesis,

chemoresistance, tumor metastasis and recurrence. The Hedgehog

signaling pathway plays a critical role in various biological processes

including embryonic development, tissue homeostasis and

regeneration. Irregular Hedgehog signaling may induce numerous

human malignancies and the generation of CSCs. CircIPO11

interacted with TOP1 to trigger GLI1 transcription, thus initiating
Frontiers in Oncology 05
the self-renewal of liver CSCs and stimulating the development of

HCC through mediating Hedgehog signals (44). In addition,

CircZNF609 also promoted the proliferation, metastasis, and

stemness of HCC cells by mediating the Hedgehog pathway by

binding to miR-15a-5p/15b-5p and increasing the GLI2 expression

(45). CircZKSCAN1 inhibited stemness by physically interacting

with FMRP to prevent FMRP-CCAR1-induced signaling (12).

Interestingly, m6A modification of circHPS5 facilitated its

cytoplasmic output via an YTHDC1-dependent pattern and

accelerated EMT and CSC phenotypes, facilitating tumorigenesis

of HCC via the miR-370/HMGA2 axis (46).
4.4 Metastasis

Metastasis is characterized by a multistep process that allows

tumor cells from the primary tumor to spread into circulation

through lymphatic and blood vessels and colonize distant organs,

ultimately leading to secondary tumors. MMP9 plays a crucial role

in tumor progression and metastasis by degrading extracellular

matrix (ECM). Recent studies have demonstrated that circUBAP2

accelerated the progression and metastasis of HCC by functioning

as a sponge of miR-194-3p to upregulate MMP9 expression (47).

MMP1 had also been demonstrated to play critical roles in

migration and invasion in various types of cancers. CircDLC1

inhibited the proliferation and metastasis of HCC through the
FIGURE 2

CircRNAs regulate cell proliferation, tumor growth suppression, glycolysis, and cellular senescence in HCC cells by stimulating/inhibiting cell
proliferation signaling pathways.
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HuR-MMP1 axis (48). FBLIM1 is a crucial promotor of migration

in a wide variety of cell types and is related to more aggressive HCC

phenotypes. circFBLIM1 had been reported to promote HCC cell

proliferation and invasion by acting as a ceRNA to upregulate

FBLIM1 expression (49). SOX9 is a distinguished oncogenic

transcription mediator in various human cancers that can activate

diverse signaling pathways. Circ-FOXP1 facilitated HCC growth

and metastasis via the SOX9/circ-FOXP1/miR-875-3p/miR-421

signaling pathway (50). Emerging evidence had shown that

MAPK1 can function as an important tumor promoter in the

progression of HCC. Consistent with these findings, circASAP1

accelerated HCC cell proliferation and invasion via miR-326/miR-

532-5p MAPK1 signals (51). Focal adhesion kinase (FAK) is a

nonreceptor tyrosine kinase which dysregulation had been noted in

various types of tumors in relation to tumor metastasis.

circRASGRF2 had been confirmed to be sharply increased in

HCC and to accelerate HCC progression by sponging miR-1224

to upregulate FAK expression (52). The STAT3 signals is oncogenic

and constantly hyperactivated in a variety of human cancers,

including HCC. Circ-LRIG3 was notably overexpressed in HCC

and functioned as a protein scaffold to promote EZH2-mediated

STAT3 methylation and phosphorylation by physically interacting

with EZH2 and STAT3. Furthermore, activated STAT3

immediately bound to the circ-LRIG3 promoter region to

enhance the transcriptional activity of circ-LRIG3, thereby

forming a positive feedback pathway to accelerate the metastasis

of HCC (53). Moreover, circRHOT1 accelerated HCC growth and

metastasis by recruit ing TIP60 to upregulate NR2F6

expression (13).

EMT is an important developmental program for tumor

metastasis. Twist1 is a critical EMT-related transcription factor

that regulates the expression of EMT-related genes through

promoter activation or suppression, inhibiting the transcription of

epithelial phenotype-associated genes. For example, Twist1

enhanced vimentin expression and HCC tumorigenesis and

metastasis via Twist/circ-10720/vimentin signaling pathway (54).

PCBP1 participated in the EMT program through various cancer

processes , part icularly TGF-b signaling. Importantly,

has_circ_0003998 was highly overexpressed in HCC and it

participated in EMT via both miR-143-3p/FOSL2 signaling and

the PCBP1/CD44v6 axis (55). Moreover, EIF4A3-induced

circTOLLIP facilitated the progression of HCC by regulating the

m iR - 5 1 6 a - 5 p / PBX3 /EMT s i g n a l i n g p a t hwa y ( 5 6 ) .

Hsa_circ_0003288 functioned as an oncogene to facilitate EMT

and invasion of HCC by sponging miR-145 and increasing the

expression of PD-L1 via the PI3K/AKT signaling pathway (57). The

Wnt/b-catenin pathway is a crucial signaling cascade strongly

related to tumor progression and its activation facilitates tumor

invasion through the upregulation of factors modulating EMT.

Circ_0067934, as an oncogene, facilitated HCC development by

upregulating the miR-1324/FZD5/Wnt/b-catenin axis (58).

DAB2IP functions as a tumor suppressor for a variety of

tumors. circRNA-5692 had been found to inhibit HCC

development and EMT progression by accelerating demethylation

of the DAB2IP gene and enhancing its expression and circRNA-

5692 also acted as a tumor suppressor via the miR-328-5p/DAB2IP
Frontiers in Oncology 06
pathway (59). EZH2, a histone methyltransferase, is the

enzymatically active core subunit of the polycomb repressive

complex 2 (PRC2) and is a notable oncoprotein that plays an

essential role in malignant cancer behaviors, especially metastasis

(60). Circ-ADD3 facilitated the binding of CDK1 and EZH2 by

directly interacting with them, leading to subsequent ubiquitination

and degradation and ultimately restraining HCC metastasis (61).

circTRIM33-12 had been found to be significantly reduced in HCC

and functioned as an important tumor suppressor to restrain the

proliferation, metastasis and immune evasion of HCC cells by

sponging miR-191 and inducing TET1 expression (62). SMAD2,

plays a critical role in accelerating EMT progression. However,

circSMAD2, originating from SMAD2, was markedly decreased in

HCC tissues and restrains the metastasis and EMT of HCC cells by

directly interacting with miR-629 (63). Moreover, SMARCA5 acted

as a tumor promoter and regulated the Wnt/b-catenin signaling

pathway to stimulate the proliferation of HCC cells. However,

cSMARCA5, generated by SMARCA5, a tumor suppressor, was

notably reduced in HCC and may restrain the growth and

metastasis of HCC through the DHX9-cSMARCA5-miR-17-3p/

miR-181b-5p-TIMP pathway (64).

Taken together, circRNAs are critical molecular regulators of

the EMT process and motility in HCC.
4.5 Drug resistance

Chemoresistance is inevitable in HCC treatment. Sorafenib, a

multi-target tyrosine kinase inhibitor (TKI), is a first-line treatment

for advanced HCC. However, drug resistance consistently appears

after long-term application. Numerous factors related to sorafenib

resistance in HCC have been demonstrated, such as the Wnt/b-
catenin pathway, EMT, the TME and epigenetic regulation (65).

Increasing evidence have elucidated that circRNAs were

participated in the sensitivity of HCC to chemotherapy. circRNA-

SORE was overexpressed in sorafenib-resistant HCC cells and

reduced the sensitivity of HCC cells to sorafenib by interacting

with miR-103a-2-5p and miR-660-3p; in addition, circRNA-SORE

competitively upregulated the Wnt/b-catenin pathway, thereby

impairing chemotherapy effectiveness (66). YBX1 is tightly related

to tumor progression, chemoresistance, and cancer prognosis.

Interestingly, another study demonstrated that circRNA-SORE,

which can be delivered extracellularly via exosomes, playing a

vital role in prohibiting PRP19-induced YBX1 degradation and

was thereby involved in the maintenance and spread of sorafenib

resistance in HCC (14). CircFOXM1 was a crucial promotor of

sorafenib resistance in HCC that can interact with miR-1324 to

stimulate MECP2 expression and therefore strengthened sorafenib

resistance in HCC (67). Lenvatinib, another multitarget TKI, had

illustrated promising antitumor activity in HCC patients. However,

the molecular mechanisms of primary and acquired resistance to

lenvatinib remain to be revealed, creating a critical challenge for

HCC targeted therapy. CircMED27 promoted lenvatinib resistance

of HCC through sponging miR-655-3p and increasing the

expression of USP28 (68). CircKCNN2, transcriptionally inhibited

by NFYA, suppressed HCC recurrence and associated with
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lenvatinib resistance by reducing the FGFR4 expression through the

miR-520c-3p/MBD2 axis (69).

In addition to sorafenib and lenvatinib, cisplatin is one of the

most universally applied chemotherapy drugs to cure advanced

HCC. However, acquired multidrug resistance (MDR) in response

to cisplatin treatment remains the biggest obstacle to an ideal

therapeutic effect in HCC patients (70). Indeed, circARNT2 was

highly expressed in cisplatin-resistant HCC tissues and functions as

a tumor promotor by inhibiting miR-155-5p, leading to PDK1

overactivation and eventually resistance to cisplatin in HCC cells

(71). Another study revealed that circMRPS35 exerted its oncogenic

function in HCC not only by sponging miR-148a to modulate the

STX3-PTEN pathway, but also by being translated into

circMRPS35-168aa, resulting in cisplatin resistance, which

indicated that circMRPS35 could be a crucial factor in the

progression and chemoresistance of HCC with different

expression patterns under different conditions (16).

In summary, emerging reports have illustrated that circRNAs

play a crucial role in the drug resistance of HCC. However, research

on the role of circRNAs in chemoresistance is still at the early stage,

and we must further elucidate the chemoresistance mechanism of

countless circRNAs in HCC. Moreover, future translational studies

and/or clinical trials are necessary to develop circRNA-targeted

treatments, which may ultimately improve the prognosis of HCC

patients by enabling patients to gradually overcome drug resistance.
4.6 Angiogenesis

Tumor angiogenesis, which is important for cancerous growth,

continuously supplies malignant tissues with necessary oxygen and

nutrients and removes metabolic wastes, playing an essential role in

tumor progression and development. Without angiogenesis, tumors

cannot grow beyond a size of 1-2 mm (72). FGF signaling pathways

are some of the most potent stimulants of angiogenesis and can

facilitate the proliferation, migration and differentiation of

endothelial cells in culture. During hepatocarcinogenesis, FGFR1

disrupts DNA synthesis and cell proliferation at an early stage and

further boosts neoangiogenesis at later stages, and these processes

are mediated by vascular endothelial growth factor. According to

Zhan et al. the hsa_circ_103809/miR-377-3p/FGFR1 axis may play

an essential role in the development of HCC (73).
4.7 Tumor microenvironment

The TME is dependent on the crosstalk between various cell

types, especially Cancer-associated fibroblasts (CAFs), ECM cells

and infiltrating immune cells and plays a crucial role in the

progression, metastasis and therapeutic treatment of cancer (74).

A growing amount of evidence has revealed the intricate

relationship between circRNAs and critical components in

the TME.

Tumor cells develop and metastasize through a variety of

mechanisms to evade recognition and attack by the immune

system, a phenomenon known as tumor immune escape.
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Immunosuppression is one of the most vital mechanisms of

tumor immune escape. Snail is a transcriptional mediator of

DPP4 that promotes local immunosuppression by decreasing

lymphocyte infiltrating via decreasing the expression of the

chemokine CXCL10. A recent report claimed that circMET acted

as a novel onco-circRNA that stimulated HCC progression and

immune escape through the snail/DPP4/CXCL10 signaling

pathway (75).

Natural killer (NK) cells are regarded as the major cell involved

in host immune surveillance and play a substantial role in

antitumor immunotherapy. Growing evidence illustrated that

circRNAs secreted by tumor cells played an essential role in

tumor immune surveillance by strengthening NK-cell activity and

enhancing NK-cell-mediated immune surveillance. For instance,

circARSP91 was found to enhance the ability of NK cells to

recognize and attack target tumor cells by interacting with ULBP1

to increase the expression of ULBP1 (76). However,

hsa_circ_0007456 may extremely impair HCC cells susceptibility

to NK cells via the miR-6852-3p/ICAM-1 signaling pathway (77).

Tumor-associated macrophages (TAMs), especially TAMs with the

M2 phenotype are the most crucial immune cells in the TME that

stimulate tumor progression and metastasis. CircASAP1 facilitated

macrophage proliferation and chemotactic migration by sponging

miR-326 and miR-532-5p and thus inducing overexpression of

CSF-1, which was a crucial regulator of macrophage differentiation

and function, resulting in macrophage recruitment to the tumor bed

(51). CCL2, as a chemokine, bind to C-C motif chemokine receptor

2 (CCR2) and recruited monocytes and macrophages, and CCL2

was regulated by the activation of PPARa. Hsa_circ_0110102

regulated the miR-580-5p/PPARa/CCL2 signaling pathway in

HCC. Interestingly, CCL2 released into the TME mediated the

expression and delivery of COX-2 and PGE2 in macrophages to

stimulate the proliferation of HCC cells (78). Moreover,

hsa_circ_0003410 facilitated HCC progression by increasing the

ratio of M2/M1 macrophages through stimulating the expression of

CCL5 (79).

In addition, CAFs play an important role in tumor progression

by modulating the inflammatory microenvironment. CXCL11

functioned as a critical regulator in regulating the interaction

between CAFs and CAF-adjacent cancer cells and served as an

extracellular remodeler to facilitate HCC cell migration and

metastasis by upregulating the circUBAP2/miR-4756/IFIT1/3

pathway (80).

Growing evidence suggested that circRNAs could participate in

HCC progression by affecting the immune system of HCC patients

(Figure 3). However, research on circRNAs in the TME is still in its

infancy, and the specific roles of circRNAs in the TME remain to be

further explored.
4.8 Exosomes

Exosomes are small extracellular vesicular bodies with a

diameter of 30-100 nm that are released from a variety of cells

and contain mRNAs, miRNAs, circRNAs and proteins that may

affect various biological functions of recipient cells (81). Emerging
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evidence have revealed that exosomes exert a crucial function in

tumor development processes, including angiogenesis, metastasis,

drug resistance and TME processes. Recently, exosome-derived

circRNAs have been proven to be a potential factor related to

tumorigenesis and progression. Evidence provided that exosomal

circPTGR1 from highly metastatic cells could have a notable impact

on cell metastatic potential by restraining the miR449a-MET

interaction in recipient cells, resulting in lethal damage in TME

homeostasis and accelerating HCC progression (82). In another

study, circ_MMP2 was found to be transported by 97-Hderived

exosomes stimulated HCC metastasis by sponging miR-136-5p to

enhance the expression of its target gene, MMP2 (50). Tumor cell-

derived exosomal circ-0072088 promoted the migration and

invasion of HCC cells by sponging miR-375 and upregulating

MMP-16 (83). Notably, circRNA-SORE was delivered by

exosomes, which promoted transmission of sorafenib resistance

among HCC cells (14).Moreover, exosomal circ-0004277 directly

derived from HCC cells can be delivered to normal surrounding

cells and may modulate their biological functions by suppressing

the expression of ZO-1 and stimulating the development of EMT

(84). In another study, circRNA Cdr1as functioned as a ceRNA to

accelerate the development of HCC by inhibiting miR-1270 to

increase AFP expression. In addition, the exosomal circRNA

Cdr1as secreted by HCC cells, can be delivered to surrounding

normal cells to ultimately promote the malignant processes of

peripheral normal cells (85).Moreover, exosome circ-DB

generated from adipocytes was increased in HCC patients with

higher body fat values. Moreover, researchers have illustrated that

exo-circ-DB increased HCC progression and reduced DNA damage

by reducing the level of miR-34a and activating the

deubiquitination-related USP7/cyclin A2 signaling pathway (86).
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Interestingly, exosomes may generate an immunosuppressive

environment favoring tumor cell survival by serving as messengers

between tumor cells and peripheral recipient cells. HCC-secreted

exosomal circUHRF1 increased the expression of the miR-449c-5p

target gene TIM-3 in NK cells by absorbing miR-449c-5p, and thus

stimulated immune escape and reduced sensitivity to anti-PD1

immunotherapy in HCC (87). HCC-derived exosomal

circTMEM181 sponged miR-488-3p and elevated the expression

of the CD39 in macrophages and the expression of the CD73 in

HCC cells, which collaboratively stimulated the eATP-adenosine

pathway and generated more adenosine, damaging CD8+ T cell

function to indulge immunosuppression and acquire anti-PD1

resistance in HCC (88). Moreover, exosomal circGSE1 exerted

tumor immunosuppressive functions by inducing the expansion

of Tregs via activation of the miR-324-5p/TGFBR1/Smad3/FOXP3

signaling pathway (89). Interestingly, hsa_circ_00074854 may

regulate the growth and metastasis of HCC cells by enhancing

HuR protein stability and activating the ZEB1 axis. In addition,

HCC cell-derived hsa_circ_00074854 may be transmitted to

macrophages by exosomes and stimulated macrophage

polarization toward the M2 type, which facilitated the metastasis

and EMT of HCC cel ls (90) . In addit ion, exosomal

hsa_circ_0004658 secreted by RBPJ (recombination signal

binding protein-Jk) -overexpressing macrophages inhibited HCC

progression through the miR-499b-5p/JAM3 pathway (91).

This evidence confirmed that exosomal circRNAs secreted by

HCC cells, normal cells and immune cells exert critical functions in

HCC progression, metastasis and drug resistance, suggesting that it

is important to study the molecular mechanisms enabling exosomal

circRNAs from different secreted sources to play an important role

in HCC progression (Figure 4).
FIGURE 3

The figure illustrates the interaction between circRNAs and important components in the HCC tumor microenvironment.
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5 Clinical significance of circRNAs
in HCC

Due to the lack of obvious symptoms at the early stage and lack

of dependable and valid biomarkers, HCC patients are frequently

diagnosed at the advanced stage and the overall survival (OS) rate is

less than ideal. Furthermore, current diagnostic biomarkers,

including a-fetoprotein (AFP), a-fetoprotein-L3 (AFP-L3), and

des-carboxy-prothrombin (DCP), show poor sensitivity in

diagnosing HCC. CircRNAs are closely related to various

biological processes in HCC, and circRNAs are different from

their homologous linear RNAs, as they have a distinctive closed-

loop construction structure that aids detection in tissues, saliva,

plasma, serum, urine, exosomes and other biological samples.

Furthermore, circRNAs have been proposed as novel early- stage

diagnostic and prognostic biomarkers for HCC because of their

abundance, stability, conservation nature and specificity in tissues

and cells.
5.1 CircRNAs as diagnostic biomarkers
for HCC

Emerging evidence utilizing clinical HCC samples have

illustrated the aberrant expression, increased disease specificity

and clinical significance of specific circRNAs, suggesting that they

are attractive biomarker candidates for HCC diagnosis (Table 1).

For example, circZNF566, which functioned as a tumor promoter,

was increased significantly in HCC tissues. The AUC of circZNF566
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was 0.834, with a sensitivity and specificity of 82.2% and 72.4%,

respectively, showing that circZNF566 was a potential biomarker

for the clinical diagnosis and evaluation of HCC (92). The AUC of

circRNA_104075 for HCC diagnosis was 0.973, and the sensitivity

and specificity were 96.0 and 98.3%, respectively, indicating

remarkable diagnostic value (93). The AUC of hsa_circ_0091570

in diagnosing HCC was 0.736, suggesting that it could be used as a

diagnostic biomarkers (94). CircCRIM1 was significantly elevated

in HCC tissues and was related to large tumor size and advanced

TNM stage and Edmondson grade. Thus, circCRIM1 was a

potential prognostic biomarker for HCC (95). In addition to

HCC tissue, serum exosomes can also be assessed to reveal

expression changes of circRNAs as diagnostic biomarkers for

HCC. Compared with nonmetastatic HCC samples, samples from

HCC patients with pulmonary metastasis showed notable increases

in exosome-derived circRNA-100338 in serum (96). Moreover,

plasma hsa_circ_0005397 combined with serum AFP and AFP-L3

had more promising diagnostic performance (97).
5.2 CircRNAs as prognostic biomarkers
for HCC

CircRNAs can function as biomarkers to predict patient

survival parameters as well, including overall survival (OS),

disease-free survival (DFS), and progression-free survival (PFS).

To evaluate the prognostic function of circRNAs in HCC, we

gathered data from reporter and analyzed the connections

between circRNA expression and OS, DFS, and PFS (Table 2).
FIGURE 4

The figure shows the important role of exosomal circRNAs from different sources in the occurrence and development of HCC.
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Twenty increased circRNAs and eleven decreased circRNAs were

illustrated to predict poor OS. Upregulated circMAP3K4,

circRHBDD1 and circTOLLIP expressions were related to poor

prognosis implying that these circRNAs were prospective

prognostic markers for HCC (26, 43, 56). Furthermore,

downregulated expression of circUBE2J2 and circKCNN2 can

serve as independent predictors of poor OS in HCC (69, 98).

In summary, the abnormal expression of circRNAs can be

monitored not only in tumor tissues but also in body fluids, such

as blood, saliva and urine, as well as in exosomes in these fluids,

suggesting that they are valuable noninvasive biomarker candidates.

However, there are still many challenges ahead in exploring

circRNAs as biomarkers for the clinical diagnosis and

prognostication of HCC, especially those derived from blood and

urine. In another way, a single circRNA class is unlikely to be able to

predict HCC progression or therapy effects, as the expression may

vary per patient and the heterogeneity of tumors in

different patients.
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6 The clinically translational value of
circRNAs in HCC treatment

In the emerging world of RNA drugs, circRNA, as a novel

multifunctional therapeutic target that can transmit genetic

information, is expected to be a potential alternative to mRNA

due to its excellent stability. As mentioned above, circRNAs are

more stable than mRNA and specific express in tissue or cell type

which may exert potential therapeutic targets in HCC. Results of

previous study illustrated that some potential treatments such as

RNAi vectors, conditional circRNAs knockout or knockdown

through the cre-lox system, CRISPR/Cas9 and CRISPR/Cas13

system (99). A troublesome in utilizing circRNAs as therapeutic

targets is the conveyance of the circRNA-targeted-siRNA or

circRNA overexpressed vector in vivo. In one way, exosomes are

being explored as delivery platforms for circRNA-targeted agents.

As previously mentioned, some exosome-circRNAs can facilitate

the transformation of the tumor microenvironment and promote or
TABLE 1 The potential circRNAs as diagnostic biomarkers in HCC.

CircRNA Dysregulation Samples AUC
Sensitivity

(%)
Specificity

(%)
Clinicopathological association PMID

circ_104075 up
Tissue

and serum
0.973 96 98.3 – 30361504

circ‐CDYL
(+HDGF
+HIF1AN)

up Tissue 0.73 75.36 66.67 – 31148183

circRASGRF2 up Tissue 0.882 81.4 95
tumor size, tumor differentiation, tumor stage,

microvascular invasion
33312757

circ-LRIG3 up Tissue 0.8681 78.43 95.19 – 33222697

hsa_circ_0005397 up serum 0.737 82 58.8 tumor size, TNM stage 33679420

circ-0072088 up
Tissue

and serum
0.899 – –

Tumor size, the number of nodules,
Edmondson grade, TNM stage,

34568335

34148288

CircCRIM1 up Tissue – – – Tumor size; TNM stage; Edmondson grade 34869393

circ-ZEB1.33 up
Tissue

and serum
– – – TNM stage 30123094

CircRNA Cdr1as up Tissue – – – tumor diameter, AFP, tumor satellite

circ-FOXP1 up
Tissue

and serum
0.9318

tumor size, TNM stage,
microvascular invasion

31698267

circZNF566 up Tissue – – – tumor size, tumor differentiation, M stage, 32532962

circGFRA1 up Tissue – – –

tumor size, intrahepatic metastasis,
extrahepatic metastasis, BCLC stage and

TNM stage
33431945

circWHSC1 up
Tissue

and serum
– – – – 33410156

circRHBDD1 up Tissue – – –
Tumor number, microvascular invasion,
tumor size, a-fetoprotein, TNM stage

35317519

circ_0003945 up Tissue – – – tumor size, CNLC stage 35170199

has-circ-0000221 up serum – – – – 35057034

circ-ADD3 down Tissue 0.8878 – –
Vascular invasion, Intrahepatic metastasis,

Distant metastasis
31497351
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suppress the invasion and drug resistance of HCC. However, low

loading efficiencies and low exosome yields are capital challenge to

overcome when using exosomal circRNAs for the treatment of

HCC. Interestingly, in another way, the use of nanoparticles (NPs)

as a delivery platform has dramatically enhanced the feasibility of
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circRNA-targeted treatment in vivo. The PAE-based si-circMDK

nanoparticles effectively inhibited HCC proliferation and metastasis

in vivo (18). PLGA-PEG (si-circROBO1) NPs exhibited excellent

anti-HCC activity in vitro and in vivo (100). Lipid nanoparticles

(LNPs) are clinically advanced carriers for delivering RNA to target
TABLE 2 The potential circRNAs as prognostic biomarkers in HCC.

CircRNA Dysregulation Prognosis
Univariate Analysis Multivariate Analysis

PMID
HR 95% CI p HR 95% CI p

circMAP3K4 Up
OS 1.662 1.083-2.549 0.02 – – – 35366894

DFS 1.733 1.130-2.656 0.012 – – –

circRHBDD1 Up
OS 1.549 1.046-2.293 0.029 – – – 35317519

DFS 2.388 1.417-4.024 0.001 – – –

circUBAP2 Up OS; RFS – – – – – – 34239873

CircCRIM1 Up OS – – – – – – 34869393

CircRNA-104718 Up OS – – – – – – 31278132

circRHOT1 Up OS; RFS – – – – – – 31324186

Exo-circPTGR1 Up DFS – – – – – – 30630697

circ-FOXP1 Up OS – – – – – – 31698267

circADAMTS13 Up RFS – – – – – – 30537115

circASAP1 Up OS – – – – – – 31838741

circZNF566 Up OS, DFS – – – – – – 32532962

circRASGRF2 Up OS – – – – – – 33312757

circC16orf62 Up OS – – – – – – 34108451

circ-LRIG3 Up OS, DFS – – – – – – 33222697

circ_MMP2 Up OS – – – – – – 31944556

circGFRA1 Up OS – – – – – – 33431945

circWHSC1 Up OS – – – – – – 33410156

hsa_circ_0005397 Up OS – – – – – – 33679420

circ0013958 Up OS – – – – – – 33937016

circTOLLIP Up OS, DFS – – – – – – 35509064

hsa_circ_0005986 Down
OS 0.504 0.307–0.828 0.007 0.572 0.339–0.966 0.037 34294754

PFS 0.492 0.317–0.763 0.002 0.573 0.362–0.906 0.017

circUBE2J2 Down OS 0.3337 – 0.0117 0.4106 – 0.0451 34686662

circKCNN2 Down
OS, – – 0.013 – – – 35051313

RFS – – 0.011 – – –

circLARP4 Down OS – – – 3.997 1.747‐9.142 0.001 30520539

PFS – – – 2.347 1.119‐4.923 0.024

circDLC1 Down OS, RFS – – – – – – 33391541

circMTO1 Down OS – – – – – – 28520103

circ-102, 166 Down OS; RFS – – – – – – 33034848

circSETD3 Down OS; RFS – – – – – – 30795787

circ-ADD3 Down OS, RFS – – – – – – 31497351
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organs. Since most LNPs have a propensity to accumulate in

hepatocytes and limit their use to targets outside of the liver (101).

This limitation may be of great aid in the delivery of circRNAs to the

liver for the treatment of HCC. However, the treatment methods for

circRNA are still in the preliminary stage, further clinical trials

investigating the feasibility of them are required.
7 Conclusion and future perspectives

Initially, circRNAs were regarded as the results of random

transcriptional RNA splicing errors in transcription. With the rapid

advancement of high throughput sequencing technologies and

bioinformatics tools, growing evidence has illustrated that numerous

aberrantly expressed circRNAs have a strong correlation with the

progression of HCC. Some differentially expressed circRNAs are

correlated with the clinicopathological features in HCC patients.

Moreover, aberrant circRNA expression exists, and increases in the

expression of some circRNAs are related to the tumorigenesis,

proliferation, metastasis, apoptosis and drug resistance of HCC.

Accumulating studies have demonstrated the biological function of

circRNAs, includingmiRNAsponges, RBP sponges, regulators of gene

transcription and potential regulators of translation. However, the

comprehensive biological functions and specific roles of circRNAs in

HCC occurrence and development remain uncertain.

Novel insights into circRNAs have emerged rapidly. However,

circRNAs in HCC are still relatively underexplored compared with

miRNAs and lncRNAs in HCC and most studies have been cross-

sectional association studies. Furthermore, the mechanisms of

circRNA formation, cellular localization and degradation are still not

clear. In addition, only little critical circRNAs in HCC have been

distinguished and characterized. Innovative roles of circRNAs in

addition to their role as miRNA sponges need to be revealed.

Notably, recent studies have point to the importance of using tumor

tissues, perhaps the exploration of circRNAs in tumor tissues is amore

intuitive reflection of HCC progression than tumor cell lines. In the

future, studies detecting the level of circRNAs in body fluids and

analyzing the sensitivity and specificity of such circRNAs as

biomarkers are needed. The ultimate purpose of various circRNA

studies is to enable the application of circRNA in early clinical

diagnosis and early treatment, and many experiments are still

needed to accomplish this goal.
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