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Background and aims: Endoscopic ultrasonography (EUS) is commonly utilized

in the diagnosis of pancreatic tumors, although as this modality relies primarily on

the practitioner’s visual judgment, it is prone to result in a missed diagnosis or

misdiagnosis due to inexperience, fatigue, or distraction. Deep learning (DL)

techniques, which can be used to automatically extract detailed imaging features

from images, have been increasingly beneficial in the field of medical image-

based assisted diagnosis. The present systematic review included ameta-analysis

aimed at evaluating the accuracy of DL-assisted EUS for the diagnosis of

pancreatic tumors diagnosis.

Methods: We performed a comprehensive search for all studies relevant to EUS

and DL in the following four databases, from their inception through February

2023: PubMed, Embase, Web of Science, and the Cochrane Library. Target studies

were strictly screened based on specific inclusion and exclusion criteria, after

which we performed a meta-analysis using Stata 16.0 to assess the diagnostic

ability of DL and compare it with that of EUS practitioners. Any sources of

heterogeneity were explored using subgroup and meta-regression analyses.

Results: A total of 10 studies, involving 3,529 patients and 34,773 training images,

were included in the present meta-analysis. The pooled sensitivity was 93% (95%

confidence interval [CI], 87–96%), the pooled specificity was 95% (95% CI, 89–

98%), and the area under the summary receiver operating characteristic curve

(AUC) was 0.98 (95% CI, 0.96–0.99).

Conclusion: DL-assisted EUS has a high accuracy and clinical applicability for

diagnosing pancreatic tumors.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_

record.php?ID=CRD42023391853, identifier CRD42023391853.

KEYWORDS
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1 Introduction

Pancreatic tumors (PTs) are relatively common tumors of the

digestive tract. Benign PTs include serous cystadenomas, mucinous

cystadenomas, and intraductal papillary mucinous neoplasms

(IPMNs), while malignant tumors include pancreatic ductal

adenocarcinomas (PDACs), pancreatic neuroendocrine tumors

(PNETs), and pancreatic adenosquamous carcinomas (PASCs).

Overall, PDAC, which has a high degree of malignancy, is the

most common type of pancreatic cancer (PC), and owing to a lack

of obvious symptoms in the early stages along with rapid

progression, it is often detected at a late stage (1). Studies have

shown that the five-year survival rate for PDAC is only 8–10% (2).

Different degrees of malignancy in PT, however, result in

significantly different prognoses. PNET, for example, has a 5-year

survival rate of > 60% when diagnosed as pathological grade 1 or 2,

which are low-grade malignancies, whereas those diagnosed as

grade 3, or a high-grade malignancy, have a 5-year survival rate

of < 30% (3–5). The accurate and timely identification and staging

of PT can help determine patient prognosis and the appropriate

course of treatment.

Currently, computed tomography (CT), magnetic resonance

imaging (MRI), and endoscopic ultrasound (EUS) are the primary

modalities utilized for the diagnosis of PT. MRI and CT, however,

are less sensitive for monitoring smaller pancreatic lesions, and also

for differentiating between benign and malignant tumors (6, 7). By

combining endoscopy with ultrasound, EUS provides a more

accurate and complete display of the pancreatic structure and

visualization of space-occupying lesions (8), and previous studies

have shown that EUS performs well in the diagnosis of a variety of

pancreatic masses, with higher accuracy than many other clinical

diagnostic techniques (9, 10). Additionally, EUS-guided fine-needle

aspiration/biopsy (EUS-FNA/EUS-FNB) allows for the quick and

easy sampling of pathological tissue, further improving the accuracy

of PT diagnoses (11). The primary method for the imaging-based

diagnosis of PT in clinical practice still relies heavily on the visual

judgment of the individual operating the endoscope, which is overly

dependent on their experience, and can lead to missed diagnoses or

misdiagnosed cases as the result of insufficient experience, fatigue,

or distraction. Computer-aided diagnosis/detection (CAD) analyses

medical image data and other data using computer technology to

assist practitioners in more objectively, quickly, and accurately

completing diagnostic work. Many studies have verified the
Abbreviations: AI, artificial intelligence; AUC, area under the curve; CAD,

computer-aided diagnosis/detection; CEUS, contrast-enhanced endoscopic

ultrasound; CI, confidence interval; CP, chronic pancreatitis; CT, computed

tomography; DL, deep learning; DOR, diagnostic odds ratio; EUS, endoscopic

ultrasound; EUS-FNA, EUS-guided fine-needle aspiration; EUS-FNB, EUS-

guided fine-needle biopsy; FN, false negative; FP, false positive; IPMN,

intraductal papillary mucinous neoplasms; MI, Mechanical index; MRI,

magnetic resonance imaging; NLR, negative likelihood ratio; NP, normal

pancreas; NPC, non-pancreatic cancer; PASC, pancreatic adenosquamous

carcinoma; PC, pancreatic cancer; PDAC, pancreatic ductal adenocarcinoma;

PLR, positive likelihood ratio; PNET, pancreatic neuroendocrine tumors; PT,

pancreatic tumor; SROC, summary receiver operating characteristic.
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feasibility of utilizing CAD in the process of image-based

diagnosis (12–14).

In recent years, artificial intelligence (AI) technology has been

increasingly utilized in various fields of medicine, such as image

analysis, diagnostic recommendations, and clinical risk prediction,

which has reduced medical errors, to a certain extent, and improved

diagnostic efficiency (15). Sunwoo et al. (16), for example, used AI

technology to analyze the diagnosis of brain metastases from MRI

scans, and the sensitivity increased from 77.6% to 81.9%, while the

reading time decreased from 114.4 seconds to 72.1 seconds. There

are two primary methods for utilizing AI in the analysis of medical

images for assisted diagnosis: diagnosis based on traditional

machine learning methods and diagnosis based on deep learning

(DL) methods.

As a branch of AI, traditional machine learning-based methods

primarily involve the manual extraction of features and the selection

of suitable classifiers for statistical analysis. DL, in turn, is a subset of

machine learning. At the 2012 ImageNet Large Scale Visual

Recognition Challenge (17), Krizhevsky et al. (18) proposed

AlexNet , a deep convolut ional neural network, that

overwhelmingly won the competition and triggered a wave of DL

in various fields. Compared to traditional machine learning, DL

automates feature extraction in a data-driven manner, and is

capable of learning deeper and more abstract features from the

target data (19, 20). DL significantly improves accuracy in areas

such as image classification, object detection, and semantic

segmentation, and its performance exceeds that of traditional

machine learning techniques (19, 21).

A previous meta-analysis showed that practitioners using EUS

for the diagnosis of PT had a sensitivity of 85% (95% confidence

interval [CI], 69–94%), specificity of 58% (95% CI, 40–74%), and

accuracy of 75% (95% CI, 67–82%) (6). Dumitrescu et al. (22)

conducted a meta-analysis of AI-assisted EUS for PC diagnosis,

which included 10 studies; three used traditional machine learning

techniques, and seven used DL techniques. The pooled sensitivity

for the AI diagnoses was 92% (95% CI, 89–95%), and the pooled

specificity was 90% (95% CI, 83–94%). We are hopeful that the

results of these studies can be compared with the results of our

meta-analysis as a way to evaluate the advantages of DL-assisted

EUS for the diagnosis of PC.

In the present study, the accuracy of DL-assisted EUS in the

diagnosis of PT was quantified through a meta-analysis, which

aimed to provide comprehensive and objective evidence for its

utilization in clinical practice. The primary outcome of the present

study was the overall performance of DL in diagnosing PT, while

the secondary outcome was the ability to compare DL and

practitioners performing traditional EUS.
2 Methods

The present study followed the Preferred Reporting Items for

Systematic Review and Meta-Analysis of Diagnostic Test Accuracy

Studies (PRISMA-DTA) guidelines (23), the checklist for which is

presented in Supplementary Table S1. Prior to its onset, the present

study was registered with the International Prospective Register of
frontiersin.org
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Systematic Reviews (PROSPERO) (24) on January 25, 2023 (ID:

CRD42023391853), and because all of the data analyzed were

collected from the included literature, ethical approval was

not required.
2.1 Search strategy

We performed searches for the present meta-analysis in four

commonly used databases: PubMed, Embase, Web of Science, and

the Cochrane Library database. The final search was conducted on

February 21, 2023, and included all articles from the four databases,

beginning at the time of their creation and ending at the time of the

final search. The keywords which were searched relating to DL

included “deep learning”, “artificial intelligence”, “machine

learning”, “computer-aided”, “natural networks”, “image

classification”, “object detection”, and “semantic segmentation”;

those relating to EUS included “ultrasonography”, “ultrasound”,

and “EUS”; and those relating to PT included “pancreas” and

“pancreatic”. The detailed search strategy is presented in

Supplementary Table S2.
2.2 Study selection

The inclusion criteria for the present study were as follows (1):

studies using DL to detect PT; (2) detection based on EUS images or

videos; (3) use of pathological findings or expert labeling as diagnostic

criteria; (4) detailed description of the source and composition of the

training and test sets; and (5) true positive (TP), false positive (FP), true

negative (TN), and false negative (FN) values were obtained directly or

indirectly. For studies with missing data, the corresponding author was

contacted via email in order to fill in the blanks.

The exclusion criteria were as follows: (1) articles without raw

data, such as reviews, comments, or letters; (2) not full-text articles;

(3) TP, FP, TN, and FN data not included, or no response received

from the corresponding author via email when attempting to gather

the missing data.

The initial articles returned from the searches were screened for

inclusion by KW and NW, based on the aforementioned criteria,

and any disagreements were resolved through discussions with BL.
2.3 Data extraction

KW and TT independently extracted data from the included

studies, and resolved any disagreements through discussion. The

following information was collected from each included study: first

author, year of publication, country or region, diagnostic criteria,

number of patients, data source, number of training sets, DL

algorithms, sensitivity, and specificity. For studies with multiple

test results, we extracted the resulting data in the following order:

prospective test set, external test set, and test set with the largest

sample size. We also extracted diagnostic data regarding the EUS

practitioners for comparison with the DL models.
Frontiers in Oncology 03
2.4 Quality assessment

We utilized the Quality Assessment of Diagnostic Accuracy

Studies version 2 (QUADAS-2) to assess the quality of the included

studies, although to more accurately assess the DL models, we

supplemented the patient selection section with the following

questions: (1) “Was the composition of the training and test sets

described?”; and (2) “Were imaging modalities and image/video

quality described in detail?”. We also added the following questions

to the index test section: (1) “Was the algorithm development and

training processes described?”; and (2) “Does the model be

evaluated using an independent test set?”.
2.5 Statistical analysis

We conducted our meta-analysis using a bivariate random-

effects model to evaluate the performance of DL in the diagnosis of

PT.We plotted a summary receiver operating characteristic (SROC)

curve, and calculated the pooled sensitivity, specificity, positive

likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic

odds ratio (DOR), area under the SROC curve (AUC), and 95% CIs.

High sensitivity and PLR indicated that the DL model was suitable

for confirming the diagnosis of PT; high specificity and low NLR

indicated that the DL model was good at excluding patients who did

not have the disease; and DOR and AUC are overall measures of

diagnostic accuracy, with a high DOR and AUC indicating that the

DL model was good at confirming and excluding PT.

Statistical heterogeneity was determined by the I2 statistic as

follows: < 30% indicated low heterogeneity; 30–60% indicated

moderate heterogeneity; and > 60% indicated high heterogeneity.

Publication bias was analyzed using Deeks’ funnel plot asymmetry

test, for which P < 0.05 indicated publication bias. We utilized

subgroup analysis and meta-regression to identify sources of

heterogeneity, and also to explore the diagnostic performance of

the different subgroups, and we used Fagan plots to assess the

clinical applicability of DL for the diagnosis of PT.

The quality of the included studies was assessed using Review

Manager 5.4 (Cochrane Collaboration, Oxford, UK), while other

statistics and charts were obtained using Stata/SE 16.0 (Stata,

College Station, TX, USA).
3 Results

3.1 Included studies and quality assessment

Our initial search yielded 2,233 relevant articles, of which 322

duplicates were automatically removed by the software and 1,872

that were not relevant were manually excluded after reading the

titles and abstracts. After reading the full-text, a total of ten articles

were included in the present meta-analysis (25–34). The data

extraction process is shown in Figure 1, and the details of the

included studies are listed in Table 1.
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https://doi.org/10.3389/fonc.2023.1191008
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lv et al. 10.3389/fonc.2023.1191008
The QUADAS-2 tool was used to assess the quality of the included

studies, one of which (26) used data-enhanced images for testing, and

was deemed to have a high risk of bias in the index test section, while

two (26, 27) failed to describe their patient selection processes and were

considered, therefore, to have an unknown risk of bias in the patient

selection section. The overall assessment results are shown in Figure 2.

The 10 included studies encompassed 3,529 patients, with nine

of the studies being retrospective while one was prospective (34). All

of the studies used pathological findings as the diagnostic criteria,

and seven studies were single-center (25, 26, 28–30, 32, 33) while

three were multicenter (27, 31, 34); eight were from East Asia (25,

27–31, 33, 34) and two were from Europe (26, 32); six used plain

EUS images (25, 27, 29, 30, 32, 34) while three used contrast-

enhanced EUS (CEUS) images (28, 31, 33) and one used grey-scale,

low-mechanical index (MI) contrast enhancement, high-MI color

Doppler, and real-time elastography multiple imaging techniques

(26); six studies used image classification algorithms (25, 26, 28, 30–

32), one (30) used object detection algorithms, and three (27, 33, 34)

used semantic segmentation algorithms; and six studies (25–27, 31–

33) tested the model on an image basis, while four (28–30, 34) tested

the model on a patient or video basis. The study aims, participant
Frontiers in Oncology 04
characteristics, types of lesions, and funding sources of the included

studies are listed in Supplementary Table S3.
3.2 Study characteristics and
data extraction

Tonozuka et al. (25) constructed a DL model using

convolutional neural networks to identify patients with a normal

pancreas (NP) versus those with chronic pancreatitis (CP) and

PDAC. A total of 139 patients were included in their study – 76 with

PDAC, 34 with CP, and 29 with NP, for whom the sensitivity and

specificity were 92.4% and 84.1%, respectively.

Udriștoiu et al. (26) developed a convolutional neural network-

based CAD system with long short-term memory neural networks

to identify cases of chronic pseudotumoral pancreatitis (CPP),

PNET, and PDAC. A total of 65 patients were included in their

study – 30 with PDAC, 20 with CPP, and 15 with PNETs. The

overall accuracy of their model was 98.26%. In the meta-analysis, we

combined the sensitivity and specificity of these models for the

diagnosis of PNET and PDAC.
FIGURE 1

Preferred Reporting Items for Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies (PRISMA) flow diagram for study selection.
frontiersin.org
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TABLE 1 Details of the included studies.

erence Patients
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Image

DL 0.924 0.841

y 65 2688
Internal
Image
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Image

DL 0.723 0.989
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DL 0.75 0.83
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y 558 351
External
Image
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Oh et al. (27) used DL techniques to automatically segment PT

on EUS, and their study included 111 patients from 2 hospitals.

Their model was tested using internal and external test sets, and the

test results were extracted from the external test set for inclusion in

the present meta-analysis.

Huang et al. (28) combined DL with traditional machine

learning techniques to predict the preoperative invasiveness of

PNETs. A total of 104 patients were included in their study, and

the AUC of the DL model was 0.81 (95% CI, 0.62–1.00). We only

extracted the test results from the DL model for the present

meta-analysis.

Kuwahara et al. (29) created a DL model to distinguish between

pancreatic and non-pancreatic cancer (NPC) cases, and their study

included 933 patients with 9 pancreatic masses, including PDACs,

PNETs, and CP. The test results were extracted from the video test

set, and the accuracy and AUC of the DL model were 91% (95% CI,

85–95%) and 0.90 (95% CI, 0.84–0.97), respectively.

Tian et al. (30) performed a real-time diagnosis of PC or NPC

based on an object detection algorithm compared with the results of

EUS practitioners. Their study included 157 patients, 102 with PC

and 55 with NPC. The sensitivity and specificity of their model were

95% and 75%, respectively, while those for the EUS practitioners

were 80% and 87.5%, respectively.

Tong et al. (31) created a DL model for differentiating between

PDAC and CP. In their study, 558 patients were recruited from 3

hospitals, including 414 patients with PADCs and 144 with CP.

Data from one hospital were used for model training and internal

testing, while those from the other two were used as the two external

test cohorts. We combined the test results of the two external test

cohorts for the present meta-analysis.

Vilas-Boas et al. (32) constructed a DL model for the

identification of mucinous and non-mucinous pancreatic cystic

lesions (PCLs), in which they included a total of 28 patients – 17

with mucinous PCLs and 11 with non-mucinous PCLs. The overall

accuracy of their model was 98.5%.

Seo et al. (33) proposed a DL method for PC segmentation. A total

of 150 patients with PC were included in this study. The sensitivity and

specificity of this model were 89.0% and 98.1%, respectively.

Tang et al. (34) developed a DL-based CAD system to

distinguish PC from benign pancreatic masses, for which they

retrospectively collected the EUS images of 1,245 patients from

multiple centers for training and testing, and also recruited 39

patients for prospective testing. The CAD system achieved an
Frontiers in Oncology 06
accuracy, sensitivity, and specificity of 93.8%, 90.9%, and

100%, respectively.

We performed a meta-analysis of the aforementioned studies,

the results of which were the primary outcomes of the present study.

Of the 10 studies included in the present meta-analysis, three (30,

31, 34) compared the diagnostic abilities of the DL model with those

of the EUS practitioners. We extracted the data from these three

groups and performed a comparative analysis, which was the

secondary outcome of the present study.
3.3 Performance of DL

The pooled sensitivity of DL for diagnosing PT was 93% (95%

CI, 87–96%; I2 = 96.08%), and the pooled specificity was 95% (95%

CI, 89–98%; I2 = 98.09%) (Figure 3). The PLR was 18.2 (95% CI,

7.91–41.86), the NLR was 0.08 (95% CI, 0.04–0.15), and the DOR

was 238.04 (95% CI, 76.3–742.61) (Supplementary Figures S1, S2).

A PLR > 10 indicates that DL can accurately diagnose PT, while an

NLR < 0.1 indicates that DL can effectively exclude PT and a DOR

significantly > 1 indicates that DL has good discriminatory ability

for PT. We plotted SROC curves to provide a more comprehensive

assessment of the performance of the DL model (Figure 4), which

showed an AUC of 0.98 (95% CI, 0.96–0.99). The AUC value was

very close to 1, indicating that DL accurately diagnosed PT.

We evaluated the clinical application of DL in the diagnosis of PT

using Fagan plots (Figure 5). When the pre-test probability was set at

50%, the probability of positive patients being diagnosed with PT was

95%, while the probability of negative patients being diagnosed with

PT was 7%. These results indicate that DL has a high accuracy, and is

an important clinical tool for the diagnosis of PT.
3.4 Subgroup analysis and meta-regression

Although the pooled sensitivity, specificity, and DOR showed

excellent diagnostic performance for DL, the I2 showed high

heterogeneity; therefore, we performed a subgroup analysis with

meta-regression to analyze the potential sources of heterogeneity.

The grouping conditions were as follows: (1) imaging type – normal

EUS images vs. other images, such as CEUS; (2) number of training

set images – regardless of whether or not the training set had >

1,000 images, using 1,000 divided the 10 studies equally into two
FIGURE 2

Summary of risk of bias and applicability of concerns graph.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1191008
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lv et al. 10.3389/fonc.2023.1191008
parts; (3) test set data type – whether the test data were images,

videos, or patients; (4) DL algorithm types – classification vs. other

algorithms; and (5) lesion type – solid vs. cystic lesions, the detailed

classification is shown in Supplementary Table S3. The results of the

subgroup analyses showed no statistically significant differences

between the subgroups (Table 2), indicating that the heterogeneity

in the meta-analysis was not due to these factors.
Frontiers in Oncology 07
3.5 Sensitivity analysis and publication bias

We further analyzed the sources of heterogeneity in the included

studies by performing a sensitivity analysis. After removing each study

individually, we examined whether sensitivity, specificity, and the

corresponding I2 values changed significantly after each change.

After removing the study by Oh et al. (27), the sensitivity changed
FIGURE 3

Forest plot of sensitivity and specificity of deep learning (DL) in identifying pancreatic tumors.
FIGURE 4

Summary receiver operating characteristic (SROC) curves for the diagnosis of pancreatic tumors using DL. Each circle indicates an individual study,
red diamond represents summary sensitivity and specificity.
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TABLE 2 Subgroup analyses and meta-regression results.

Parameter Category Studies(n) Sensitivity(95%CI) P Specificity(95%CI) P

imaging type
normal EUS 6 0.92(0.86-0.98)

0.18
0.95(0.89-1.00)

0.75
others 4 0.94(0.87-1.00) 0.95(0.89-1.00)

training images number
>1000 5 0.96(0.93-0.99)

0.77
0.95(0.90-1.00)

0.90
<1000 5 0.88(0.80-0.96) 0.94(0.88-1.00)

test data type
image 6 0.93(0.88-0.98)

0.54
0.97(0.95-0.99)

0.26
video/patient 4 0.92(0.83-1.00) 0.86(0.71-1.00)

DL algorithm
classification algorithm 6 0.95(0.92-0.98)

0.94
0.93(0.86-0.99)

0.12
others 4 0.83(0.71-0.95) 0.98(0.94-1.00)

lesion type
solid lesions 7 0.93(0.87-0.98)

0.40
0.94(0.88-0.99)

0.25
contains cystic lesions 3 0.93(0.85-1.00) 0.97(0.93-1.00)
F
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Fagan nomogram of the accuracy of DL in the diagnosis of pancreatic tumors.
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from 93% (95% CI, 87–96%; I2 = 96.08%) to 94% (95% CI, 89–97%;

I2 = 87.1%), with the most significant change in I2, although the results

still suggested high heterogeneity. Given these results, no source of

heterogeneity was identified in the sensitivity analysis, and the overall

results of the meta-analysis were considered relatively stable.

Publication bias was evaluated using Deeks’ funnel plot

(Figure 6), which showed P = 0.39 (P >0.05), indicating that there

was no publication bias. Although Deeks’ test was performed, a high

publication bias could not definitively be excluded, due to the small

number of included studies.
3.6 DL vs. EUS practitioners

Of the 10 studies 3 (30, 31, 34) compared DL models with the

performance of EUS practitioners (Table 1). We performed a subgroup

analysis of these three data sets, with a resulting combined sensitivity of

92% (95% CI, 88–97%) vs. 86% (95% CI, 80–92%; P = 0.1), and

specificity of 86% (95% CI, 76–96%) vs. 84% (95% CI, 73–95%; P =

0.37), respectively. Although the DL model performed better than the

practitioners, the difference was not statistically significant. As the data

from only three groups were included in the comparison, the reliability

of the results requires further validation.
4 Discussion

DL techniques are being usedmore andmore in clinical practice to

significantly improve diagnostic accuracy, stability, and efficiency. In

the present study, we performed a meta-analysis to comprehensively

evaluate the accuracy of DL-assisted EUS for the diagnosis of PT. A

total of 10 studies, encompassing 3,529 patients and 34,773 training

images, were included in the present study. The combined sensitivity

was 93% (95% CI, 87–96%), specificity was 95% (95% CI, 89–98%),
Frontiers in Oncology 09
and AUCwas 0.98 (95% CI, 0.96–0.99), indicating that the DL-assisted

diagnosis of PT is highly accurate. Additionally, we found that the DL

model had a better diagnostic ability than that of EUS practitioners,

although the difference was not statistically significant.

In the present study, we observed high heterogeneity among the

10 included studies; however, even though subgroup and sensitivity

analyses were performed, no sources of heterogeneity were

identified. In addition, smaller sample sizes, various DL

algorithms, parameter settings, image quality, and EUS devices

are possible sources of heterogeneity but need further investigation.

In addition to the high heterogeneity among the included studies,

the present meta-analysis had the following limitations (1): most of

the included studies were retrospective, while only one was

prospective – the clinical applicability of DL, therefore, needs to be

validated through more prospective studies; (2) most of the included

studies were single-center studies, with only three involving multiple

centers – due to differences in equipment and practitioner operating

habits, using data from a variety of centers may result in differences in

imaging, meaning the generalisability of the single-center trained

model requires further validation; (3) most of the included studies

involved populations from East Asian, with only two involving

European populations, meaning the results of these studies were

representative of only a certain population; and (4) some of the

included studies involved only a small number of patients, such as

one study (30) which included only 28 patients for training and

testing, meaning the small sample size may have led to sample bias.

Although we have initially validated the effectiveness of DL

models in the diagnosis of PT, these models are still in the clinical

exploration stage, and some aspects still need to be improved. One

such aspect is the availability of public datasets. Most medical

institutions are reluctant to share EUS imaging data for legal

purposes, the protection of patient privacy, or for information

security, making it difficult for researchers to conduct studies using

data from multiple centers. Therefore, there is an urgent need to
FIGURE 6

Deeks’ funnel plot asymmetry test for publication.
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establish a standard public EUS image database for future research.

Another such aspect is open source code. Althoughmost studies used

public algorithms, using different parameter settings can affect the

results. The availability of open source code, however, could help

replicate research and promote the development of this field.

In recent years, emerging EUS-based techniques have shown

good performance in the diagnosis of pancreatic lesions (35–37),

with one study showing that the accuracy for diagnosing solid

pancreatic lesions using wet suction EUS-FNB is 90.4% (35), and a

meta-analysis showing that the sensitivity and specificity for

detecting malignant pancreatic cystic lesions using EUS-guided

through-the-needle biopsy (EUS-TTNB) were 97% and 95%,

respectively (36). These techniques, however, require physicians

with enhanced expertise and skills to be utilized effectively. As such,

one of the included studies constructed a DL-based real-time

assisted diagnostic system to guide EUS-FNA and improve the

accuracy and efficiency of diagnosing pancreatic masses (34).

Combining these new technologies with DL techniques is an

important direction for future technological development, and

further research is required to improve the efficiency and

accuracy of the clinical diagnosis of PT.

The present systematic review provides a comprehensive

introduction and quantitative analysis of current research on DL-

assisted EUS for the diagnosis of PT. The results of our meta-

analysis showed that DL has an excellent diagnostic capability, and

can be used as an effective diagnostic aid in clinical practice.
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