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Liquid biopsy is emerging as an intriguing tool in clinical disease detection and

monitoring. Compared to a standard tissue biopsy, performing a liquid biopsy

incurs minimal invasiveness, captures comprehensive disease representation,

and can be more sensitive at an early stage. Recent genome-wide liquid biopsy

studies in prostate cancer analyzing plasma samples have provided insights into

the genome and epigenome dynamics during disease progression. In-depth

genomic sequencing can offer a comprehensive understanding of cancer

evolution, enabling more accurate clinical decision-making. Furthermore,

exploring beyond the DNA sequence itself provides opportunities to

investigate the regulatory mechanisms underlying various disease phenotypes.

Here, we summarize these advances and offer prospects for their

future application.
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Main

Treatment options for metastatic lesions of prostate cancer (PCa) are limited, and

resistance to androgen signalling inhibitors (ASI) is ultimately inevitable (1–3). Detecting

aggressive disease while it is still manageable and understanding the underlying biology are

clinical imperatives. The standard invasive tissue biopsy procedure for PCa diagnosis poses

a risk to the patient (4), is limited in the early stages of disease (5), and is impractical for

longitudinal disease monitoring. Liquid biopsies utilizing body fluids such as blood, urine

and saliva and analyzing biomaterials in circulation show promise for revolutionizing

tumour profiling and monitoring practices. It contributes to understanding the signals

determining threshold tumour development (6), highlights metastatic markers, and

provides complementary information for treatment response (7, 8). In addition to the
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biomarker potential, it begins to serve as a method for evaluating

mechanisms behind therapy resistance (9).

Characterization of metastatic PCa remains scarce, and

previous studies are limited in scale and depth (9–11). Four

recent studies (7, 12–14) analyzed the genome-wide genetic and

epigenetic landscape using blood samples and brought deep

biological insights associated with disease progression. In this

mini-review, we summarize the key findings from these genome-

wide studies and their implications for the potential applications of

liquid biopsy. A concise overview of liquid biopsy research in

prostate cancer was included to offer a more comprehensive

context for our discussion.
Liquid biopsy analytes commonly used
in the clinical practice

Circulating tumour cells (CTC), extracellular vesicles, and

membrane free biomolecules, including various types of nucleic

acids and proteins, constitute the most commonly used analytes for

liquid biopsy. In prostate cancer, a single protein biomarker, the

prostate cancer specific antigen (PSA) remains active in clinical

practice, despite its tendency to overdiagnose (Figure 1) or

overemphasize the severity of low grade and slow growing

tumours (15). PSA is a highly sensitive marker, but it is limited

for specific detection in patients. There is in fact limited evidence for

the practicality of PSA in a primary care setting (16). Thus, many

efforts were instead devoted to improving diagnostic accuracy, with

the most studied being the urine-based test of long non-coding

RNA (lncRNA) prostate cancer antigen 3 (PCA3). The test was

approved by the US Food and Drug Administration, and unlike

PSA, it shows moderate sensitivity and adequate specificity in

differential diagnosis of PCa and non-PCa (17). However, it

remains controversial in terms of the degree of additional clinical

benefit it can provide (18–21). For RNAs to be robustly analyzed in

liquid biopsies, they need to survive the RNase-rich extracellular

environment. Certain RNA species, such as the microRNAs

(miRNA), exhibit greater stability, can be abundant with
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high specificity in patient plasma and are increasingly explored

(22, 23). The formation of RNA-protein, RNA-DNA and

RNA-lipid complexes are potential mechanisms mediating this

increased stability of endogenous RNA transcripts. Alternatively,

encapsulation in extracellular vesicles (EV) can help stabilize the

transcripts, as in the case of PCA3. In 2016, an exosomal RNA assay

became commercially available to help detect aggressive disease

while reducing unnecessary biopsies (24, 25). Meanwhile, research

on other types of cargo in EVs, such as DNA, is on the rise (26).

CTC is another important liquid biopsy biomarker in clinical

settings and the CellSearch system for CTC enumeration was FDA

approved in 2010 (27). While multiple studies including clinical

trials have validated the usefulness of CTC for prognostication and

disease monitoring, the majority of current studies have focused on

its applications in late-stage disease (28–30). An apparent limitation

of their use in clinical and laboratory settings is their low detection

rate at early stages of the disease (31). With the CellSearch system,

the percentage of localized prostate cancer patients with detectable

CTC in a 7.5ml blood sample ranges from 5% to 27%, and the

median count can be as low as 1 (32–35). As potential clinically

relevant predictors of future metastasis, many studies have taken

efforts to improve overall detection. Using microfluidic devices,

Stott et al. and (36) were able to achieve detection in approximately

half of their localized patient cohorts, with medians of 95 and 4.5

cells per mL of peripheral blood, respectively (37). Additionally,

combination of the CellSearch system with apheresis technology

dramatically increases the volume of blood analyzed (mean 59.9 ml)

and improves the recovery of CTCs (mean 12,546) in metastatic

PCa, showing great promise in analyzing localized diseases.
Liquid biopsy in disease detection
and monitoring in recent
prostate cancer research

With minimal invasiveness, liquid biopsies are most well

studied as biomarkers. Being able to capture a more holistic view

of the disease is another attractive advantage of liquid biopsy. It is
FIGURE 1

Application of various liquid biopsy technologies in prostate cancer.
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particularly important for managing metastases, as they cannot be

represented by individual lesions and are difficult to biopsy. In

contrast to CTC, ctDNA can be obtained more readily from patient

plasma without the need for rare cell type enrichment procedures

and can be more sensitive. It allows the detection of prognostic and

predictive genomic alterations in driver genes, including AR, TP53,

and those in the DNA repair pathways (9, 38–40). Specifically,

blood-based identification of DNA damage repair (DDR) defects

can help uncover potential candidates for DDR-directed therapies

and immunotherapy, which might be overlooked when relying on

primary tissue samples (41, 42). Herberts et al. (12) further showed

that single-matched tissue biopsy failed to identify the dominant

clone detected in plasma, potentially misinforming clinical

decision-making.

With limited detectable mutations and low concentration at

early stage, research focus was redirected towards advanced

metastatic castration-resistant prostate cancer (mCRPC) to aid in

prognostication and provide guidance for targeted therapies (30,

43–47). A study by Stover and colleagues (48) applied a novel NGS

panel for evaluating patient-derived models, allowing for somatic

variant detection over time across several prostate cancer-associated

genes. This was found to be useful not only for primary tumours,

but also for CTCs and cfDNA (48). In clinical practice, classification

of patients as plasma tumour DNA positive or negative was done

using an orthogonal approach designed to utilize known

information on heterozygous SNPs (47). Prior to treatment with

abiraterone acetate, higher levels of gene alterations were found in

mCRPC patients with a higher initial disease burden. Plasma

changes over time established that a sample post-abiraterone

acetate + glucocorticoid treatment could identify resistant clones

more effectively than a pre-treatment liquid biopsy sample (47). On

the other hand, epigenetic alterations, specifically DNA

methylation, are thought to occur early in the progression of the

disease and have a greater number of recurrent sites with detectable

frequencies (49). These features make them attractive candidates for

early cancer detection and have been extensively investigated

(50, 51).

While liquid biopsy studies have traditionally made use of

molecules like nucleic acids and proteins (52), emerging types of

analytes, including lipids, glycans, and microbiomes, are being

explored as potential biomarkers for prostate cancer (52–55).

Studies on the blood microbiome have revealed distinctive

signatures between major cancer types, indicating potential as a

complementary diagnostic tool to ctDNA/ctRNA assays (56). The

approach to screening is also evolving from single analytes to multi-

gene panels, and now whole genome investigations are becoming

more common. Genome-wide studies have advanced not only in

size but also in depth, accuracy, and methodology. They now delve

deeper into the underlying biology of diseases rather than solely

focusing on biomarker discovery (7, 12–14).

For example, by capturing alterations not commonly present at

the DNA level and beyond the tumours themselves, DNA

methylation can offer additional layers of information (13, 14).

This is particularly useful for early cancer diagnosis, for which the

sensitivity is limited by the low amount of ctDNA and the even
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lower number of variable biomarkers available. Chen and colleagues

(13) showed that fragmentation profiles inferred from the

methylation sequencing data differ significantly between healthy

control and localized samples, while Sjostrom et al. captured

5hmC alterations not detected in the DNA. The ability of

DNA methylation to capture lineage-specific features can be

further explored to facilitate the development of multi-cancer

early detection tests (57). A study by Bjerre et al. found

hypermethylation rates in ctDNA to be as high as 61.5% in de

novo metastatic PCa patients. A shorter progression duration

towards resistant PCa was also correlated with detection of

ctDNA methylation (58). Practically, the detection process also

appears to be minimally invasive, and has been found to be

associated with higher rates of medical compliance and cost

efficiencies (59). In terms of its supplemental monitoring

capabilities, it can make up for what PSA assessments currently

lack. ctDNA monitoring is currently in transition towards potential

clinical implementation. ctDNA percent levels do not necessarily

reflect the same tumour characteristics as current evaluation

methods, which as previously mentioned, can provide more

information alongside current popular markers (60). For AR-

directed therapy regimens, the changes in monitored ctDNA

levels may act as indicators for early cancer progression, thus

warranting therapy alterations (61, 62). Overall, ctDNA

methylation analysis is showing to be capable of being a valuable

tool for both detection and cancer management.
Liquid biopsy as a tool for
molecular discovery

Additional models and approaches have also been utilized to

overcome challenges such as low ctDNA content and cancer

diversity. The use of patient-derived xenograft (PDX) mouse

plasma helped define nucleosome pattern analysis frameworks

that can distinguish mCRPC phenotypes with up to 97%

accuracy (7, 63). Two high-performance models were developed

to approximate the proportion of neuroendocrine prostate cancer

(NEPC) and androgen receptor-positive prostate cancer (ARPC), as

well as predict their presence. An analysis framework implementing

a GC correction procedure for cfDNA fragmentation patterns was

also developed to achieve sensitive cancer subtype prediction (63).

Sarkar and colleagues employed PDXmodels with corresponding

tissue samples to establish computational frameworks that can infer

transcriptional activity by analyzing the nucleosome positioning

pattern of ctDNA (7). They were able to link variations in

nucleosome organization to changes in histone modifications,

chromatin accessibility, and transcription factor activity that are

specific to diverse tumour phenotypes (7). Using plasma ctDNA,

the transcriptional activities of key phenotype regulators, including

hepatocyte nuclear factor 4 gamma (HNF4G), AR, and achaete-scute

homolog 1 (ASCL1), were detected, and the results showed high

consistency compared to those obtained from tissue multi-omic

profiling. Furthermore, direct estimation of phenotype proportion

revealed that diverse molecular subtypes often coexist.
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As well, the utilization of liquid biopsy has moved beyond its

biomarker discovery ability. With deep whole-genome sequencing

on the plasma samples from mCRPC patients, Herberts et al. (12)

showed that different dominant clones exist for individual

metastatic lesions. These differences could only be captured by

liquid biopsies rather than tissue biopsies. They identified clinically

relevant alterations that are difficult for bulk tissue sequencing to

resolve, such as subclonal whole genome duplications, prevalent

and diversified AR alterations, and convergence on AR

augmentation after potent ASI treatment.

Chen et al. (13) and Sjöström et al. (14) used liquid biopsy to

evaluate the DNA methylation landscapes. Through the use of

immunoprecipitation in tandem with sequencing, Chen et al. were

able to distinguish diverse forms of methylation and provide

genome-wide cell-free profiles for 5mC, the most common form

of DNA methylation (13). The cell-free methylomes revealed

alterations apart from the tumour itself, coupled with global

hypermethylation and hypomethylation at pericentromeric

regions for mCRPCs compared to localized diseases. Using these

data, the authors further inferred copy number alteration and

fragmentation profiles, which showed notable distinctions among

various disease stages.

For 5mC to reverse, it must first be oxidized to 5hmC, a mark for

activated andpoised transcription.Countingonly a fractionof the total

DNA methylation and unable to be distinguished from 5mC by the

widely used bisulfite conversion-based methods, 5hmC was poorly

understood in PCa until recently (14, 64). Sjostrom et al. used biotin

labelling to specifically enrich 5hmC and provide a global landscape

with paired liquid and tissue biopsies (14). The 5hmC dynamics

throughout PCa progression identify cancer hallmarks and provide

an additional layer of prediction by capturing non-canonical

alterations. PCa-specific 5hmC patterns can track lineage plasticity

and can be used to predict tumour burden in circulation (14).
Summary

The biomarker potential of liquid biopsies has been extensively

explored. Although ctDNA has demonstrated success in disease

monitoring and DNA methylation has shown promise in early

cancer detection, there is currently no single method that is

comprehensive enough to achieve sufficient clinical accuracy and

stability in both scenarios. Application of ctDNA analysis is greatly

restricted due to the limited number of tumor-specific mutations,

especially for early cancer detection where the amount of shedded

ctDNA is low. While measuring epigenetic alterations can provide

more detectable features, it is impeded by technology and analytical

limitations. Traditional chemical methods are more accurate, yet

they are not as cost-effective and can result in loss of the already
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methods are susceptible to influence of sequence specificity and

antibody effectiveness, leading to potential inaccuracies. Similarly,

while RNA transcripts are more readily detectable, they are highly

variable and present challenges in reproducibility. Certain types of

RNA, such as miRNA and circRNA, have proven to be relatively

stable and are gaining increasing attention in research.

Recent studies reiterated the necessity of using liquid biopsy to

avoid potentially ill-informed clinical decisions and opened up new

avenues towards developing more accurate multi-modality assays.

Information beyond the ctDNA sequence itself, such as epigenetic

alterations and fragmentation profiles, are reflective of gene

regulatory patterns and can provide more detectable features, thus

enhancing the potential for early cancer detection. Therefore,

conducting multi-omics sequencing can improve sensitivities,

while implementing a stringent analysis pipeline that uses multi-

factor verification can reduce false positives and promote overall

accuracy. Moreover, as evidence suggests the presence of unique

features in liquid biopsy samples emerging, genome-wide strategies

are now more commonly employed to facilitate unbiased biomarker

discovery. Such comprehensive and in-depth analysis of liquid

biopsies has also led to significant biological insights, establishing

it as a powerful tool for molecular discovery. The continued

research with liquid biopsy will no doubt yield stunning insights

into disease biology and facilitate the development of more

effective therapeutics.
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