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Background: Kinesin is a molecular motor for transporting “goods” within cells

and plays a key role in many types of tumors. The multi-angle study of kinesin at

the pan-cancer level is conducive to understanding its role in tumorigenesis and

development and clinical treatment potential.

Methods: We evaluated the expression of KIF genes, performed differential

analysis by using the R package limma, and explored the pan-cancer prognosis

of KIF genes by univariate Cox regression analysis. To evaluate the pan-cancer

role of KIF genes as a whole, we defined the KIFscore with the help of gene set

variation analysis (GSVA) and explored the KIFscores across normal tissues, tumor

cell lines, and 33 tumor types in TCGA. Next, we used spearman correlation

analysis to extensively study the correlation between the KIFscore and tumor

prognosis and be-tween the KIFscore and clinical indicators. We also identified

the relationship between the KIFscore and genomic variation and immune

molecular signatures by multiplatform analysis. Finally, we identified the key

genes in clear cell renal cell carcinoma (ccRCC) through machine learning

algorithms and verified the candidate genes by CCK8, wound healing assay,

Transwell assay, and flow cytometry.

Results: In most cancers, KIFscores are high and they act as a risk factor for cancer.

The KIFscore was significantly associated with copy number variation (CNV), tumor

mutation burden (TMB), immune subtypes, DNA repair deficiency, and tumor

stemness indexes. Moreover, in almost all cancer species, the KIFscore was

positively correlated with T cell CD4+ TH2, the common lymphoid pro-genitor,

and the T cell follicular helper. In addition, it was negatively correlated with CXCL16,

CCL14, TNFSF13, and TNFRSF14 and positively correlated with ULBP1, MICB, and

CD276. Machine learning helped us to identify four hub-genes in ccRCC. The
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suitable gene, KIF14, is highly expressed in ccRCC and promotes tumor cell

proliferation, migration, and invasion.

Conclusion: Our study shows that the KIF genes play an important pan-cancer

role and may become a potential new target for a variety of tumor treatments in

the future. Furthermore, KIF14, a key molecule in the KIF genes, can provide a

new idea for the ccRCC treatment.
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1 Introduction

The incidence of and mortality rate from cancer continue to

increase, with cancer becoming the second leading cause of death in

the world, seriously threatening human health and imposing huge

health and economic burden on society (1). Cancer is a disease with

multi-omic dysregulation, and the most basic characteristics of cancer

cells include continuous proliferation and mitosis by promoting the

production and release of growth signals that affect cancer growth and

progression (2). Therefore, targeting this biological process is expected

to prevent the occurrence and progression of cancer.

The kinesin superfamily proteins (KIFs) are important molecular

motors for the intracellular transport of “goods.” The main function of

KIFs is chromosome aggregation, spindle formation, and intracellular

material transport during cell mitosis (3, 4). KIFs are mainly divided

into 14 kinesin subfamilies (Kinesin1~Kinesin14), with a total of 45

kinesin family members (5). Kinesin abnormalities can change the

distribution of genetic material in cells through chromosomal

overagglutination, spindle formation abnormalities, cell division

defects, late bridge formation or aneuploidy, and mitosis blockade;

result in an out-of-control cell cycle; and play an important role in the

development of malignant tumors and drug resistance. For example,

KIF3A and KIF13A are essential for cancer cell migration (6), a

Kinesin13 family member MCAK leads to tumor invasion and

paclitaxel resistance (7, 8), and KIF20A and KIF15 contribute to the

castration and Enzalutamide resistance of prostate cancer (9, 10). It can

be seen from the above that KIFs are key molecules in a variety of

human cancers. Therefore, a systematic study of KIFs in cancer can

help better understand their role and clinical therapeutic potential in

cancer. However, there are a large number of kinesins, most of the

previous studies are based on the single-tumor-type exploration by a

single kinesin molecule, and there is no research that comprehensively

evaluates the role of KIFs in tumors. In addition, different kinesins

perform different functions in tumorigenesis and development and the

identification of key carcinogenic or cancer-suppressing kinesins can

facilitate follow-up research to further explore the pathogenesis of

tumors and provide a new target for tumor treatment.

Given the above, we analyzed the expression and prognosis of

KIFs to evaluate their role at the pan-cancer level and constructed

KIFscores by GSVA to quantify KIFs and evaluate the overall pan-
02
cancer role of KIFs. Next, we further explored the KIFscore levels of

normal tissues, tumor cell lines, and patients at the pan-cancer level

through various bioinformatics methods and studied in depth the

correlation between the KIFscore and tumor prognosis, clinical

indicators, genomic variations, and immune molecular

characteristics so as to identify the role of KIFs in tumorigenesis

and development. Finally, we screened the key KIFs in ccRCC

through machine learning and verified their role in ccRCC using a

variety of experimental methods.
2 Materials and methods

2.1 Data and resources

Gene expression data for 33 cancer types containing 11,066

samples and clinical information about patients were downloaded

from the TCGA database (https://gdc.cancer.gov/about-data/

publications/pancanatlas). The R package TCGAbiolinks (version

2.24.3) was used to download Somatic mutation data (11), including

copy number variations (CNVs) and single-nucleotide variants

(SNVs). We obtained gene expression profiles from the

Genotype-Tissue Expression Project (GTEx) database (https://

www.gtexportal.org/home/datasets) and cancer cell line gene

expression profiles from the Cancer Cell Line Encyclopedia

(CCLE) database (https://sites.broadinstitute.org/ccle/). We

downloaded the stemness score (RNAss and DNAss) and

information about homologous recombination deficiency (HRD),

homologous recombination deficiency–loss of heterozygosity

(HRD–LOH), and immune subtypes of TCGA samples from the

UCSC Xena database (https://xenabrowser.net/datapages/). In all,

data on 45 KIF genes were collected from the published literature, of

which only 38 KIF genes were present in the expression matrix we

adopted (Supplementary Table 1).
2.2 KIFscore calculation

We performed univariate Cox regression analysis on 38 KIF

genes present in all tumors on which overall survival data (OS) was
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available (LAML lacks OS data) and found the low-risk gene (p <

0.05; HR < 1) and the high-risk gene (p < 0.05; HR > 1) in each

tumor. When the number of high-risk genes in all tumors is greater

than the number of low-risk genes, it is defined as a positive gene.

Otherwise, it is a negative gene. Next, we used the GSVA algorithm

of the R package GSVA to calculate the activities of two sets for each

sample (12, 13). The activity score of the positive gene minus the

activity score of the negative gene is the KIFscore. Tumor samples

were divided into high- and low-KIFscore groups by the

median KIFscore.
2.3 Landscape of the KIFscore at the
pan-cancer level

Using the above KIFscore calculation method, we calculated the

KIFscores for normal tissue from the Genotype-Tissue Expression

Project, cancer cell lines from the Cancer Cell Line Encyclopedia,

and tumor samples from the Cancer Genome Atlas database.

Finally, we obtained the average KIFscores of each normal tissue,

cancer cell line, and tumor type to assess the KIFscore levels.

Meanwhile, KIFscores of paired tumor samples from TCGA were

compared to explore the differences in KIFscores between

cancerous and adjacent tissue.
2.4 Prognostic analysis of the KIFscore

We performed Cox regression analysis of the KIFscore on

various survival indicators, including overall survival (OS),

disease-specific survival (DSS), disease-free interval (DFI), and

progression-free interval (PFI). The cancer types with favorable

survival (p < 0.05; HR < 1) were considered cancer types with

protective KIFscore-related survival, while cancer types with poor

survival (p < 0.05; HR > 1) were considered cancer types with risk

KIFscore-related survival. Kaplan–Meier analysis was used to

further explore survival among patients with high and low

KIFscores (14). We conducted more in-depth validation of

individual tumor types, such as clear cell renal cell carcinoma,

and used Fisher test to explore and compare various clinical

indicators of clear cell renal cell carcinoma in the high- and low-

KIFscore groups.
2.5 Genomic variation analysis

To identify arm-level and focal-level event changes, we

downloaded the masked copy number segments of 23 tumor

types with a sample size greater than 100 and analyzed them by

GISTIC 2.0 (15). It was considered an important widespread event

when more than 70% of the arms had undergone mutation with q

values < 0.25. Subsequently, we defined CNV scores based on

previous research (16). For focal-level events, the scores were

divided by the ratios of log2 copy number as follows: 2 if the log2

ratio ≥ 1, 1 if the log2 ratio < 1 and ≥0.25, 0 if the log2 ratio < 0.25

and ≥−0.25, −1 if the log2 ratio < −0.25 and ≥−1, and −2 if the log2
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ratio < −1. To obtain the focal score of a tumor, all focal-level scores

were added. A similar procedure was used to define the arm- and

chromosome-level scores. When both arms had the same log2 ratio,

it was considered a chromosome-level event. The focal-level, arm-

level, and chromosome-level CNV scores added up to the overall

CNV score of the tumor. Subsequently, covariates such as age,

gender, and race were adjusted and a linear model was applied to

determine the association between the KIFscore and the CNV score.

When log2-transformed copy number ratios are >0.25 and <−0.25,

arm-levels are defined as arm-level gains and losses, respectively.

Using a linear model similar to the one above, we calculated the

correlation between the KIFscore and arm-level gains and losses.

We also explored the correlation between the KIFscore and the

TMB using the above approach. The R package maftools was used

to plot a mutant waterfall chart of ccRCC patients with high and low

KIFscores (17).
2.6 Immune characteristics of the KIFscore
at the pan-cancer level

We downloaded the immune scores of all patients from the

TIMER 2.0 database (http://timer.cistrome.org/). The R package

ESTIMATE was used to as se s s the tumor immune

microenvironment, such as the stromal score, the immune score,

the ESTIMATE score, and tumor purity. Information about

immunomodulators, the major histocompatibility complexes

(MHCs), chemokines, and chemokine receptors were collected

from published literature (Supplementary Table 2). The

correlation between the above data and the KIFscore was

calculated using spearman correlation analysis. Next, we obtained

the immune activity scores of all patients with different tumors from

the Tracking Tumor Immunophenotype database (http://

biocc.hrbmu.edu.cn/TIP/). The Wilcoxon test was used to

compare the differences in the anti-cancer immune statuses of

patients with high and low KIFscores.
2.7 Identification of key KIF genes
in ccRCC

We performed differential analysis (|log2FC| > 1; padj < 0.05)

on ccRCC samples grouped by high and low KIFscores. We used the

Least Absolute Shrinkage and Selection Operator (LASSO) logistic

regression, analyzed by the R package glmnet (18), Random Forest

(RF) (analyzed by R package randomForest), Support Vector

Machine–Recursive Feature Elimination (SVM–RFE) (19, 20), to

screen candidate genes. The overlapping genes of the three

algorithms are considered key genes for ccRCC.
2.8 Cell culture and siRNA delivery

We purchased the renal clear cell carcinoma cell line 786-O and

769-P, as well as the renal tubular epithelial cell line HK2, from the

Chinese Academy of Science (Shanghai, China), and cultured the
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cells in a 37°C incubator with 1640 medium supplemented with

10% fetal bovine serum and 1% penicillin/streptomycin solution

(21). We used siKIF14s to knock down KIF14, which we had

purchased from GenePharma (Shanghai, China). The siRNA

sequences were as follows: siKIF14#1, sense 5’-CAGCGGUGA

UAUUCUUGAUTT-3’sense and antisense 5’-AUCAAGAAU

AUCACCGCUGTT-3 ’ ; s iKIF14#2, sense 5 ’-GCCCGU

UUAAUAGUCAACATT-3’ and antisense 5’-UGUUGACUA

UUAAACGGGCTT-3’ ; negative control (NC), sense 5 ’-

UUCUCCGAACGUGUCACGUTT-3 ’ and antisense 5 ’-

ACGUGACACGUUCGGAGAATT-3’. We collected cells for RT-

qPCR, proliferation, and migration experiments 24 h after siRNA

and lipo2000 transfection.
2.9 RNA isolation and quantitative
real−time PCR

To extract the total RNA, we used RNA fast200 (Fastagen,

Shanghai, China). The qRT−PCR primers were as follows: GAPDH,

forward 5’-GTCAGCCGCATCTTCTTT-3’ and reverse 5’-CGC

CCAATACGACCAAAT-3’; KIF14, forward 5’-GCACTTTCG

GAACAAGCAAACCA-3’ and reverse 5’-ATGTTGCTGGCA

GCGGGACTAA-3’. To quantify the gene expression level, we

used the 2−DDCt methods.
2.10 CCK-8 assay

We seeded the cells in 96-well plates at a density of 2 × 103 cells per

well and detected cell viability after 24 h for 4 consecutive days (D0, D1,

D2, and D3). We discarded the culture medium, mixed CCK-8

(Biosharp, Anhui, China) reagent with the culture medium in the

ratio of 1:10, and added 110 ml of mixed solution to each well. After the

mixture was incubated at 37°C for 1.5 h, the OD value at 450

wavelength was detected on the microplate. Next, we set the

wavelength of the microplate reader to 450 nm and detected the

OD value.
2.11 Wound healing assay

We seeded cells in 6-well plates at a density of 2.5 × 105 cells per

well and transfected the cells with siKIF14#1, siKIF14#2, or siNC. After

the cells covered the 6-well plate, we used a 200 mL pipette tip to scrape
the cells, washed the cells with PBS, and replaced the serum-free

medium. Finally, we took images at 0 h and 24 h under a microscope.
2.12 Transwell assay

We inoculated 1×10 4 cells in the upper chamber with 200 ml of
1640 medium and added 600 mL of 1640 medium containing 20%

FBS to the lower chamber. After 24 h, we stained the cells with

crystal violet, wiped off the cells in the upper chamber, and took

photos with a microscope. We used ImageJ to count the number of
Frontiers in Oncology 04
cells passing through the upper chamber in four random fields

under the microscope.
2.13 Flow cytometry assay

After transfection of 786-O and 769-P cells in a 6-well plate, we

collected the cells in a culture medium, centrifuged the cells, and

washed the cells with PBS. We added Annexin V-FITC conjugate

solution to resuspend the cells, added Annexin V-FITC and propidium

iodide staining solution, mixed the mixture well, and incubated the

mixture at room temperature, protected from light, for 15 min. We

tested with flow cytometry and analyzed the results with FlowJo.
2.14 Statistical analysis

To compare the two groups, we used unpaired t-test andWilcoxon

rank-sum test. To analyze the differences among multiple groups, we

used the Kruskal–Wallis test. To analyze the correlation between

variables, we used linear model and the spearman correlation test.

Continuous normally distributed variables were shown as mean ±

standard deviation and compared using one-way ANOVA. R software

(version 4.0.3), GraphPad Prism (version 9.4.1), and Adobe Illustrator

(version 25.0) were used for statistical analysis and drawing. We

considered p < 0.05 as statistically significant.
3 Results

3.1 KIF gene expression and
prognosis analysis

The flowchart in Supplementary Figure 1 presents the workflow

of this study. First, we evaluated the expression of KIF genes in 33

tumor types (Figure 1A), of which the 5 genes with the highest

expression were KIF5B, KIF1C, KIF1B, KIF3B, and KIF22, while the

5 genes with the lowest expression were KIF5A, KIF4B, KIF6,

KIF1A, and KIF17. Next, we carried out differential analysis of

KIF genes in 20 tumor types containing both tumor and normal

samples (Figure 1B). The results showed that KIF11, KIF14, KIF15,

KIF18A, KIF18B, KIF20A, KIF23, KIF2C, KIF4A, and KIFC1 were

highly expressed in most tumors, while KIF17, KIF26A, KIF5A, and

KIF6 were expressed at low levels in most tumors. After pooling

clinical information, we performed the univariate Cox regression

analysis of 38 KIF genes on eligible tumors (Figure 1C). As per the

results, KIF11, KIF14, KIF15, KIF18A, KIF18B, KIF20A, KIF20B,

KIF23, KIF26B, KIF2C, KIF4A, KIF4B, and KIFC1 were high-risk

genes in the vast majority of tumors (p < 0.05; HR > 1) and KIF3B

and KIF9 were mostly low-risk genes (p < 0.05; HR < 1).
3.2 The pan-cancer KIFscore landscape

As per the above results, most KIF genes were differentially

expressed in cancers and significantly affect tumor development
frontiersin.org
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and prognosis. However, there was no calculated measure to

evaluate the overall level of KIF genes, so we quantified KIF genes

by combining the prognostic effects of KIF genes on tumors to

construct KIFscores (Figure 2A). A higher KIFscore means a greater

gap between positive and negative KIF genes. Next, we analyzed the

KIFscores in normal tissue (Figure 2B), the Cancer Cell Line

Encyclopedia (CCLE) cell line (Figure 2C), and 33 cancers from

TCGA (Figure 2D). In normal tissue, the tissues with the highest

KIFscores were those from the testes, vagina, and the skin, while the

tissues with the lowest KIFscores were those from the muscles,

kidneys, and fallopian tubes. The three highest-KIFscore cell lines

were NB, SCLC, and ALL, while the three lowest-KIFscore cell lines

were COAD, CLL, and STAD. For the 33 tumor types of TCGA, we

firstly classified organ system attribution and then applied the same

method to evaluate KIFscore levels. The KIFscores of UCS and

CESC derived from female reproductive organs, LUSC derived from

lung tissue, ESCA derived from the digestive system were relatively

high. Meanwhile, the KIFscores of THCA derived from the

secretory system and KIRC derived from kidney tissue were

relatively low (Supplementary Table 3). These results show that

the KIFscore has a certain organizational preference. Subsequently,

we analyzed the KIFscores in 20 paired tumors (Figure 2E). The

results revealed that in many tumor types, the KIFscores in

malignant tumors were higher than those in adjacent tissues,

suggesting that tumor growth requires overexpression of KIFs.
Frontiers in Oncology 05
Overall, the results suggest that our method could vigorously

quantify KIF genes levels and systematically describe the KIFscore

landscape across 33 cancer types and 29 tissues.
3.3 Prognostic risk assessment of
the KIFscore

To explore the ability of the KIFscore to determine the tumor

prognostic risk, we performed univariate Cox regression analysis

and found that the KIFscore was the risk factor (p < 0.05; HR > 1) in

UCEC, SARC, PRAD, PAAD, MESO, LUAD, LIHC, LGG, KIRP,

KIRC, HNSC, and ACC. The higher the KIFscore, the worse the

prognosis for patients. As for THYM, the KIFscore was a protective

factor (p < 0.05; HR < 1) and the lower the KIFscore, the better the

prognosis for patients (Figure 3A). Next, we performed Kaplan–

Meier analysis, which revealed that patients in the high-KIFscore

group had a worse prognosis (Figure 3B; Supplemental Figure 2). As

per the results of pan-cancer survival analysis (Figure 3C), the

KIFscore was mostly a risk factor in malignant tumors. As per the

analysis results, the KIFscore was a risk factor for 13 cancers in OS

analysis, 15 cancers in DSS analysis, 7 cancers in DFI analysis, and

18 cancers in PFI analysis. On the basis of the previous differential

expression analysis and prognosis analysis, it was suggested that

patients with high KIFscores had a worse prognosis in ccRCC.
B C

A

FIGURE 1

The expression of KIF genes in normal and tumor tissues. (A) The expression levels of the KIF genes in 33 tumor types. (B) Differential expression
analysis of KIF genes in 20 tumor types. Red sections represent upregulated expression of KIF genes in tumors, and blue sections represent
downregulated expression of KIF genes in tumors. (C) Univariate Cox regression analysis of KIF genes at the pan-cancer level, and the definition of
high-risk and low-risk genes. Red parts represent the high-risk genes, and blue parts represent the low-risk genes.
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Therefore, further clinical analysis of the KIFscore in ccRCC was

carried out. The result showed that the KIFscore level had an effect

on the alive status, the T stage, the N stage, and the M stage of

ccRCC. The patients in the high-KIFscore group had high mortality

rates and high stages of T, M, and N (Figure 3D).
3.4 Correlation analysis between the
KIFscore and tumor genomic mutations

One of the common markers of cancer is increased genomic

instability. However, how genomic changes vary with KIFscores in a
Frontiers in Oncology 06
variety of cancers remains to be clarified. Therefore, our study

explored the association of the KIFscore with CNV and TMB. To

obtain CNV scores, we calculated the total of focal, arm,

and chromosome levels in GISTIC2.0. The KIFscore was

positively correlated with CNV scores of 20 malignant tumors

except THYM. The correlation was particularly significant

(significance > 10) in UCEC, KIRP, STAD, SARC, LIHC, LUAD,

LUSC, PRAD, BLCA, PAAD, KIRC, LGG, and HNSC (Figure 4A).

Next, we evaluated the correlation between arm-level CNV gains

and losses and KIFscores in cancers with enough samples

(Figures 4B, C). As per the results, in KIRP, the KIFscore was

related to additions on chromosomes 1p, 1q, 4p, 9p, and 18p and
B

C D

E

A

FIGURE 2

Comprehensive evaluation of KIF genes in normal tissues, tumor cell lines, and cancer patient samples. (A) The construction process of the KIFscore.
(B, C) Average KIFscore across normal tissues (B) and CCLE cell lines (C). (D) Average KIFscore in individual cancer types. Tissue types, cancer types,
and average KIFscore are shown from the inner circle to the outer circle. (E) KIFscore level of paired tumor samples in TCGA. Purple stands for
primary tumor, and green stands for paracancerous tissue (****P < 0.0001, ****P < 0.001, and **P < 0.01.
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deletions on chromosomes 10q, 13q, 14q, and 17p. In KIRC, the

KIFscore was associated with additions on 9q, 17p, and 20q and

deletions on 1q, 2q, 13q, and 16p (Supplementary Table 4). For

TMB, the KIFscore was positively correlated with most cancers

(Figure 4D). Next, we further explored the role of the KIFscore in

tumor mutations in ccRCC (Figures 4E, F). To identify the

difference in driver mutations between the high- and low-

KIFscore groups, we analyzed the top mutated oncogenic genes of

the high- and low-KIFscore groups. The first 10 mutated genes in

ccRCC patients with high KIFscores were VHL, PBRM1, TTN,

SETD2, BAP1, MUC16, MTOR, HMCN1, XIRP2, and PTEN, and

the first 10 mutated genes in ccRCC patients with low KIFscores

were VHL, PBRM1, TTN, SETD2, MTOR, KDM5C, LRP2,
Frontiers in Oncology 07
MUC16, ANK3, and DNAH9. In the high-KIFscore group, the

mutation rate of VHL was 48%, and the mutations were mainly

missense_mutation (47% of all mutation types). In the low-

KIFscore group, the mutation rate of VHL was 46% and the

proportion of missense_mutation (28%) decreased significantly,

while that of nonsense_mutation increased significantly (from

10% to 23% in the high- and low-KIFscore groups). In the high-

KIFscore group, the proportion of PBRM1 mutations was 39%,

involving mainly Frame Shift Del mutations (46%). In the low-

KIFscore group, the proportion of PBRM1 mutations was 40% and

the Frame Shift Del (33%) decreased, while the nonsense_mutation

increased from 25% to 27% (Supplementary Table 5). We also

analyzed the relationship between the KIFscore and immune
B

C D

A

FIGURE 3

Prognostic analysis of the KIFscore at the pan-cancer level. (A) The forest plot shows the relationship between the KIFscore and the prognosis of
each tumor. Red represents the risk factor in tumors, while blue represents the protective factor. (B) The survival curve plots show the relationship
between the KIFscore and the prognosis of the four tumor types: ACC, KIRC, KIRP, and LG. (C) The bubble chart shows the relationship between the
KIFscore and OS, DSS, DFI, and PFI of all tumors. (D) The percentage histogram reveals the differences in clinical indicators in the high-and low-
KIFscore groups (****P < 0.0001 and ns P > 0.05).
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subtypes, the tumor stemness index, and DNA repair defects

(Figure 4G). The patients with high KIFscores had more immune

subtypes with poor prognosis, such as C1, C4, and C6. As per our

results, the KIFscore was also significantly associated with the

tumor stemness index and DNA repair defects.
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3.5 Immune evaluation of the KIFscore

To explore the role of the KIFscore in tumor immune

infiltration, we analyzed the correlation between the KIFscore and

various immune cells in different tumors. In almost all cancers, the
B

C D

E F

G

A

FIGURE 4

Correlation between the KIFscore and genomic variations was analyzed at the pan-cancer level. (A) Correlation between the KIFscore and the CNV
score in different TCGA cancer types. The correlation and significance [−log10 (Benjamini–Hochberg-adjusted P-values)] in the linear model are
shown on the x-axis and the y-axis, respectively. Tumors with significance greater than 2 are flagged, and tumors greater with significance greater
than 10 are marked yellow. (B, C) Dot plots show the association between the KIFscore and the arm-level CNV gains (B) and the arm-level CNV
losses (C). The figure shows data with significance greater than 3. The circle size represents the size of the significance, and the colors represent the
coefficients of linear regression. (D) Correlation between the KIFscore and the TMB at the pan-cancer level. (E, F) The waterfall chart shows the top
mutation events for ccRCC patients in the high- (E) and low-KIFscore groups (F). The bar plots in the top panel represent the KIFscores of individual
patients. The panel on the right presents a statistical graph of mutation events for each gene. Colors represent variant classifications. (G) Distribution
of tumor immunotypes in the high- and low-KIFscore groups of ccRCC patients, as well as RNAss, DNAss, HRD, and HRD–LOH.
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T cell CD4+ TH2, the common lymphoid progenitor, and the T cell

follicular helper were found to be significantly positively correlated

with KIFscores. In LIHC, THCA, KIRP, and KIRC, the KIFscore

was positively correlated with Treg cells (Figure 5). We also

analyzed the relationship between the KIFscore and immune-

related genes. For chemokines (Figure 6A), our results suggest

that the KIFscore was negatively correlated with CXCL16 and

CCL14 in the vast majority of cancers. For immunomodulators

(Figure 6B), we found that the KIFscore was positively correlated

with ULBP1, MICB, and CD276, while it was negatively correlated
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with TNFSF13 and TNFRSF14 in the vast majority of cancers. In

addition, in most tumors, the KIFscore was negatively correlated

with most MHCs (Figure 6C) but positively correlated with TAP2

and TAP1. Furthermore, the KIFscore was positively correlated

with most MHCs in THCA. The KIFscore was negatively correlated

with the vast majority of chemokine receptors, but in KIRC and

THCA, it was positively correlated with most chemokine receptors

(Figure 6D). Next, we analyzed the correlation between the

KIFscore and the cancer-immunity cycle and between the

KIFscore and immune cell infiltration on the basis of the TIP
FIGURE 5

The correlation between the KIFscore and the infiltration levels of immune cells, such as B cells, cancer-associated fibroblasts, CD4+ T cells, CD8+
T cells, myeloid dendritic cells, Endo, Eos, T cell gamma delta, macrophages, mast cells, monocytes, neutrophils, NKT, and regulatory T cells (Tregs).
Positive correlations are in red, and negative correlation are in blue.
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database. The TIP database divides the cancer-immunity cycle into

7 steps: release of cancer antigens, cancer antigen presentation,

priming and activation, trafficking of T cells to tumors, infiltration

of T cells into tumors, recognition of cancer cells by T cells, and

killing of cancer cells. As per our analysis, the KIFscore influenced

steps 1, 3, 4, and 6 of ccRCC and the release of cancer antigens,

priming and activation, trafficking of T cells to tumors, and

recognition of cancer cells by T cells were more significant in the

high-KIFscore group. In the high-KIFscore group, in step 4, B cell,

basophil, CD8 T cell, dendritic cell, eosinophil, macrophage,

MDSC, neutrophil, NK cell, T cell, Th1 cell, and Th17 cell
Frontiers in Oncology 10
recruitment were more pronounced. However, monocyte

recruitment was inhibited (Figure 6E).
3.6 Characteristic gene screening

On the basis of the above analysis, we observed that, the higher

the KIFscore, the worse the prognosis and that the KIFscore

significantly affected genomic mutations as well as immune

infiltration. We hypothesized that because of these associations,

KIFscores could act as prognostic predictors. Therefore, we further
B

C D

E

A

FIGURE 6

Immune correlation of KIFscores. (A, B) Correlation between the KIFscore and chemokines (A) and between the KIFscore and immunomodulars (B).
Positive correlations are in red, and negative correlations are in purple. (C, D) Correlation between the KIFscore and MHCs (C) and between the
KIFscore and chemokine receptors (D). Positive correlations are in red, and negative correlations are in blue. (E) The box plot shows the correlation
between the KIFscore and the cancer-immunity cycle and between the KIFscore and immune cell infiltration in ccRCC. Green and orange represent
high- and low-KIFscore groups, respectively (****P < 0.0001, ****P < 0.001, **P < 0.01, and *P < 0.05, respectively).
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analyzed and verified this in individual cancer types. We divided

patients with ccRCC into high- and low-KIFscore groups by the

median KIFscore and performed differential analysis (|log2FC| > 1;

padj < 0.05). Next, we obtained 343 differential genes. After the

genes were intersected with 38 KIF genes, we finally got 8 KIF genes

(KIF14, KIF15, KIF18B, KIF20A, KIF23, KIF26A, KIF2C, and

KIF4A). Next, we continued to screen hub-genes using different

bioinformatics methods. Using the LASSO regression algorithm, we

selected 5 genes as potentially pivotal genes (Figures 7A, B). The

random forest (RF) algorithm ranked the 8 candidate genes row

importance scores (Figures 7C, D). The SVM–RFE algorithm

showed that when the number of characteristic genes was 5, the

error was the lowest, at 0.191 (Figure 7E). Finally, we obtained the
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four genes, KIF26A, KIF20A, KIF23, and KIF14, as the key genes of

ccRCC (Figure 7F).
3.7 The function of characteristic genes in
clear cell renal cell carcinoma

Previous investigators have demonstrated that KIF20A (22) and

KIF23 (23) are highly expressed in clear cell renal cell carcinoma

and promote tumor progression, which is consistent with our

analysis. Our analysis showed that there was low expression of

KIF26A in ccRCC, which may lead to difficulties in validating the

function of this gene. Therefore, in our validation experiments, we
B

C D

E F

A

FIGURE 7

Identification of key genes in ccRCC. (A, B). LASSO regression analysis was used to screen characteristic variables. (C) The relationship between the
number of random forest trees and the error rate. Red, purple, and blue represented the high- KIFscore group, the low- KIFscore group, and the
error of all samples, respectively. (D) Sequencing plot of genetic importance scores. (E) The error rate curve of the characteristic variable screening
of the KIF genes using the SVM–RFE algorithm. The red circle is the point where the error rate was the lowest. (F) The Venn diagram shows the
intersecting feature variables filtered by the three algorithms.
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excluded the above three genes. As per our analysis, KIF14 was

highly expressed in ccRCC and in patients with higher KIF14

expression levels, the tumor was in a more advanced stage and

the prognosis was worse (Supplementary Figures 4A, B). PCR

experiments confirmed that higher levels of KIF14 were expressed

in clear cell renal cell carcinoma lines such as 769-P and 786-O than

in renal normal cells such as HK2 (Figures 8A, B). The CCK8 assay

showed a significant decrease in the proliferation efficiency of 769-P

and 786-O after KIF14 was knocked out (Figure 8C). The wound

healing assay and the Transwell assay confirmed that the migration

ability of 769-P and 786-O decreased significantly after KIF14 was

knocked down (Figures 8D, E). Flow cytometry revealed that the

apoptosis of 769-P and 786-O increased after KIF14 was knocked

down (Figure 8F). All of the above show that KIF14 was highly

expressed in ccRCC and played the function of oncogenes, an

important factor in poor prognosis.
4 Discussion

In many cancers, KIF molecules play a key role by changing the

distribution of genetic material in cells, leading to an out-of-control

cell cycle and progressively leading to tumor development. We

developed a novel computational method (KIFscore) to analyze the

role of KIF genes in various cancers. By investigating their

correlation with clinical prognosis, genomic characteristics, and

immunophenotyping, we identified specific associations in each
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cancer type. This knowledge can aid in selecting targeted therapies

for KIFs in specific cancers. Furthermore, we identified four KIF

genes as prognostic biomarkers, with experimental validation

confirming the role of KIF14 in promoting tumor progression in

ccRCC. Our computational metrics provide a framework for

understanding the significance of KIF genes in tumors and can

guide future experiments and biomarker identification.

Our investigation revealed that most KIF genes exhibit elevated

basal expression levels in tumors compared to normal tissues.

Additionally, these genes are associated with poor tumor

prognosis, suggesting their potential role in tumor development.

Notably, genes such as KIF11, KIF14, KIF15, KIF18A, KIF18B,

KIF20A, KIF23, KIF2C, KIF4A, and KIFC1 were consistently highly

expressed in malignant tumors, indicating their involvement in

tumor regulation. Previous studies have reported the

overexpression of KIF11, KIF15, and KIF18B in various

malignancies, including gallbladder cancer, oral cancer,

meningioma, pancreatic cancer, and osteosarcoma (24–28),

supporting our findings.

We developed a novel method to calculate KIFscores, which

allowed us to evaluate the expression levels and prognostic value of

38 KIF genes in tumors (29).. Our findings demonstrated that

KIFscores were higher in tumor cells and tissues compared to

normal tissues, and they served as risk factors for most tumors.

Higher KIFscores correlated with worse prognosis, indicating their

potential as prognostic indicators. Additionally, KIFscores showed

associations with tumor grade and clinical indicators, reflecting
B C

D
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F

A

FIGURE 8

The functional verification of KIF14. (A) qRT−PCR verified the KIF14 expression in 769-P, 786-O, and HK2. (B) qRT−PCR confirmed that siKIF14 could
knock down KIF14 in 769-P and 786-O. (C) A CCK-8 assay showed the effect of KIF14 knockdown on proliferation in 769-P and 786-O. (D, E) A
wound healing assay (D) and a Transwell assay (E) revealed the effect of KIF14 knockdown on migration. (F) Flow cytometry revealed the effect of
KIF14 knockdown on apoptosis in 769-P and 786-O (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, #p < 0.05, ##p < 0.01, ###p < 0.001, and
####p < 0.0001).
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their relevance to the degree of malignancy and clinical stage. These

results align with the analysis of individual KIF genes, validating the

reliability of KIFscores in measuring KIF gene levels in tumors and

their prognostic evaluation value.

Genomic instability and mutation are fundamental components

of cancer formation and pathogenesis (30). However, how genomic

alterations vary with KIFscore in multiple cancers remains to be

illustrated. To further explore the correlation between the KIFscore

and genomic variations, we analyzed the correlation between the

KIFscore and CNVs and found that the KIFscore was positively

correlated with the CNV score of 21 malignant tumors. CNV gains

and losses may activate oncogenes and inactivate tumor suppressor

genes, leading to tumor development. In our research, the KIFscore

was associated with additions on chromosomes 9q, 17p, and 20q

and deletions on chromosomes 1q, 2q, 13q, and 16p. It was

confirmed that the additions on 20q occurred in about 23% of

ccRCC cases and was associated with resistance to four TKIs:

Sunitinib, Cabozantinib, Axitinib, and Sorafenib. Furthermore,

FoxO signaling was mechanistically associated with the addition

on chromosome 20q (31). The deletion on chromosome 13q was an

independent adverse risk factor for OS of ccRCC (32). The KIFscore

demonstrated a positive correlation with tumor mutation burden

(TMB) in most malignant tumors, indicating a significant

relationship between KIFscores and genomic instability at the

pan-cancer level. Substantial changes in KIFscores may play a

crucial role in human cancer development. Specifically, in clear

cell renal cell carcinoma (ccRCC), high and low KIFscores were

associated with distinct gene mutation patterns that contribute to

tumor progression. In the high-KIFscore group, VHL variations

were primarily missense mutations, while in the low-KIFscore

group, there was a notable increase in nonsense mutations. VHL

mutations are known to activate oncogenes and promote ccRCC

development (33). Additionally, patients with high KIFscores

exhibited a higher proportion of poor prognostic immune

subtypes, along with increased tumor stemness and DNA repair

defects. These findings support the notion that ccRCC with high

KIFscores tends to exhibit a higher degree of malignancy (34, 35).

The high-KIFscore group has a higher proportion of immune

subtypes with poor prognosis. Further exploration of the correlation

between the KIFscore and immune cell infiltration will help to explore

its role in the immune microenvironment and explore the underlying

mechanism. The high-KIFscore group has a higher proportion of

immune subtypes with poor prognosis. Further exploration of the

correlation between the KIFscore and immune cell infiltration will help

to explore its role in the immune microenvironment and explore the

underlying mechanism. In almost all cancers, the KIFscore was

significantly positively correlated with T cell CD4+ TH2, the

common lymphoid progenitor, and the T cell follicular helper.

Normally, the Th1/Th2 ratio is in equilibrium. It was shown that

cytokines released by Th2 cells and Th2 are elevated in various human

cancers (36) and patients with a Th2-dominant response have a worse

prognosis than patients with Th1/Th2 balance (37, 38). We also found

that in LIHC, THCA, KIRP, and KIRC, the KIFscore was positively

correlated with Treg cells. High levels of regulatory T cell (Treg) were

found to be associated with reduced clinical benefit of hepatocellular

carcinoma (39) and aggressive papillary thyroid carcinoma (40). In
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localized ccRCC, infiltration with ICOS+ Treg identifies patients with

deleterious prognosis (41). As per this study and previous studies, high

KIFscores could predict the poor prognosis of these malignant tumors.

As per studies, CXCL16 could help to locally sustain the cytotoxic T

lymphocyte (CTL) response for effective tumor control (42) and the

overexpression of CCL14 could inhibit the proliferation of hepatoma

cells and promote apoptosis (43). In most malignant tumors, the

KIFscore was negatively correlated with CXCL16 and CCL14,

suggesting that high KIFscores are not conducive to CTL responses

against tumors. In most malignant tumors, the KIFscore was found to

be positively correlated with ULBP1,MICB, and CD276, among which,

CD276 expression was reported to enable squamous cell carcinoma

stem cells to evade immune surveillance (44). Chen and Mellman

proposed the concept of the cancer-immunity cycle, revealing the

mechanism by which the immune system kills tumor cells (45). As per

our analysis, the KIFscore influenced steps 1, 3, 4, and 6 of ccRCC and

some critical steps in tumor immunity were more significant in the

high-KIFscore group. These indicate that KIFs may play an important

role in the tumor immune cycle.

KIFscores have significant implications for genomic mutations

and immune infiltration, making them valuable prognostic

predictors in tumors. By leveraging the multifaceted roles of

KIFscores, we can identify promising candidate genes. Moreover,

exploring meaningful KIF genes within a specific cancer type helps

unveil potential therapeutic targets and areas for further

investigation. Through machine learning, we identified four

pivotal KIF genes in ccRCC, with KIF14 receiving extensive

experimental validation. Its role in promoting proliferation and

migration in renal clear cancer cells reaffirms the strong association

between KIF family genes and tumor progression. Importantly,

these findings highlight the potential of KIF14 as a novel therapeutic

target for ccRCC.
5 Conclusion

In conclusion, we conducted a comprehensive pan-cancer

analysis of KIF genes and introduced a novel computational

metric called KIFscore. Our findings demonstrated that KIFscore

effectively measures the expression levels of KIF genes and provides

valuable insights into prognosis, genomic variations, and tumor

immunity across multiple cancers. Through machine learning, we

identified four key KIF genes in ccRCC, with KIF14 being highly

expressed. Experimental validation showed that suppressing KIF14

significantly inhibited the proliferation and migration of ccRCC

cells while promoting apoptosis. These results emphasize the broad

significance of KIF genes in various cancers and suggest their

potential as future therapeutic targets. Notably, KIF14 emerges as

a crucial diagnostic and therapeutic marker for ccRCC.
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