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Optimal 18F-FDG PET/CT
radiomics model development
for predicting EGFR mutation
status and prognosis in lung
adenocarcinoma: a
multicentric study

Yan Zuo1†, Qiufang Liu1†, Nan Li1, Panli Li1, Jianping Zhang1,2

and Shaoli Song1*

1Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China,
2Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
Purpose: To develop and interpret optimal predictive models to identify

epidermal growth factor receptor (EGFR) mutation status and subtypes in

patients with lung adenocarcinoma based on multicentric 18F-FDG PET/CT

data, and further construct a prognostic model to predict their clinical outcome.

Methods: The 18F-FDG PET/CT imaging and clinical characters of 767 patients

with lung adenocarcinoma from 4 cohorts were collected. Seventy-six radiomics

candidates using cross-combination method to identity EGFR mutation status

and subtypes were built. Further, Shapley additive explanations and local

interpretable model-agnostic explanations were used for optimal models’

interpretation. Moreover, in order to predict the overall survival, a multivariate

Cox proportional hazard model based on handcrafted radiomics features and

clinical characteristics was constructed. The predictive performance and clinical

net benefit of the models were evaluated via area under receiver operating

characteristic (AUC), C-index and decision curve analysis.

Results: Among the 76 radiomics candidates, light gradient boosting machine

classifier (LGBM) combined with recursive feature elimination wrapped LGBM

feature selection method achieved best performance in predicting EGFR

mutation status (AUC reached 0.80, 0.61, 0.71 in the internal test cohort and

two external test cohorts, respectively). And extreme gradient boosting classifier

combined with support vector machine feature selection method achieved best

performance in predicting EGFR subtypes (AUC reached 0.76, 0.63, 0.61 in the

internal test cohort and two external test cohorts, respectively). The C-index of

the Cox proportional hazard model achieved 0.863.

Conclusions: The integration of cross-combination method and the external

validation from multi-center data achieved a good prediction and generalization

performance in predicting EGFR mutation status and its subtypes. The
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combination of handcrafted radiomics features and clinical factors achieved

good performance in predicting prognosis. With the urgent needs of multicentric
18F-FDG PET/CT trails, robust and explainable radiomics models have great

potential in decision making and prognosis prediction of lung adenocarcinoma.
KEYWORDS

lung adenocarcinoma, PET/CT, epidermal growth factor receptor, radiomics,
machine learning
Introduction

Lung adenocarcinoma is the main histological subtype of non-

small cell lung cancer (1). EGFR is one of the most common tumor

driver gene of lung adenocarcinoma. EGFR tyrosine kinase

inhibitors (TKIs) are the main target drugs for the treatment of

patients with EGFR mutations, which could improve their live

condition and prolong their median survival (2, 3). Exon 19 deletion

(E19) and exon 21 L858R missense (E21) are the two most common

EGFR-TKIs-sensitive EGFR mutation subtypes. There is a

difference in treatment strategy, response and prognosis between

patients with EGFR E19 and E21 (4, 5). Therefore, identifying

EGFR mutation status and subtypes are important for the treatment

of patients with lung adenocarcinoma. Tissue sequence testing with

biopsied or surgical tissues is the gold standard for EGFR gene

mutation examination. However, many patients cannot undergo

these invasive examinations due to some subjective psychological or

objective physiological reasons. Furthermore, the biopsied or

surgical section tissue cannot fully reflect the spatial heterogeneity

and temporal heterogeneity of the tumor. Liquid biopsy is non-

invasive and convenient but its stability and false-negative rate are

not satisfying (6). Therefore, there is an urgent need for a non-

invasive and accurate method to determine EGFR mutation status

and subtypes, so as to facilitate accurate screening of patients

suitable for EGFR TKIs targeted therapy and make better

treatment decisions in clinical practice.
18Fluorine-fluorodeoxyglucose positron emission tomography-

computed tomography (18F-FDG PET/CT) can simultaneously

acquire anatomical structure and metabolic information of the

tumor. There is a correlation between metabolic phenotype and

gene mutations (7). It is well established that there is increased

uptake of 18F-FDG in EGFR-mutated lung tumors (8–11).

Therefore, 18F-FDG PET/CT-based method is promising to

predict EGFR mutation status. Also, our previous study (12) has

shown that machine learning model based on PET/CT handcrafted

radiomics features (HRFs) achieved a good prediction performance

in the identification of EGFR mutation status and subtypes in lung

adenocarcinoma. Recently, the value of PET/CT-based HRFs in

predicting EGFR mutation status, EGFR subtypes and prognosis

had been well demonstrated (12–18), which involved different

feature selection methods and machine learning algorithms.

These different radiomics pipelines may lead to various predictive
02
performance (19). Feature selection methods also have a great

influence on clinical predictive models (20). However, it’s difficult

to compare their performance and there is hardly no model that

works well for multi-center data. To address this limitation, cross-

combination of feature selection methods and classifiers based on
18F-FDG PET/CT HRFs have recently appeared and have proven

effective in improving classification and diagnostic performance

(21, 22). However, as far as we know, whether this method can be

applied to predict EGFR mutation status and prognosis based on

multi-center 18F-FDG PET/CT in lung adenocarcinoma is not

fully investigated.

Furthermore, the widespread clinical application of prediction

models based on machine learning is hindered because of

unsatisfactory clinical trustworthiness, regardless of their huge

potential for precision medicine. Interpretability is essential and

extremely important to effectively understand, manage, and trust

powerful artificial intelligence applications. Hence, explainable

artificial intelligence (XAI) emerged and performed well in the

models’ interpretation and transparency of the “black-box”

problem (23). As two novel approaches of XAI, Shapley additive

explanations (SHAP) and local interpretable model-agnostic

explanations (LIME) have been successfully applied to medical

field (24–27). However, hardly no EGFR-related predictive

models involved model visualization and interpretation.

Furthermore, the existing research results based on single center

or small samples may have limited generalization performance, due

to the differences in demographic distribution, medical imaging

equipment and related imaging protocols in separate studies.

Herein, we aimed to develop and interpret robust optimal

predictive models to identify EGFR mutation status and subtypes

based on multi-center 18F-FDG PET/CT data, and further construct

a prognostic model to predict clinical outcome in patients with

lung adenocarcinoma.
Materials and methods

Data collection

We retrospectively reviewed 92 cases of Shanghai Chest

Hospital (SCH) and 88 cases from Renji Hospital Shanghai Jiao

Tong University School of Medicine (RJ) between August 2016 and
frontiersin.org
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July 2017, and 452 cases from Fudan University Shanghai Cancer

Center (FUSCC) between January 2016 and December 2019, who

were pathologically diagnosed with lung adenocarcinoma and their

EGFR mutation status and subtypes were determined. Moreover,

135 cases were enrolled from the public data set (https://

wik i . cancer imagingarchive .net /d i sp lay/Publ ic /NSCLC

+Radiogenomics). The patients’ inclusion and exclusion criteria

were summarized in Figure 1 and Supplementary Material

(Appendix E1). The demographic and clinical variables of the

enrolled patients were detailed in Tables 1, 2. The institutional

review board of FUSCC approved this retrospective study and the

acquirement of informed consent was waived.
EGFR mutation status detection

In this study, EGFR mutation status of 3 hospitals obtained by

next-generation sequencing test (Illumina high-throughput

sequencing, 68-gene panel detection general kit of Burning Rock
Frontiers in Oncology 03
Medical laboratory, Guangzhou) or an amplification refractory

mutation system real-time technology with ARMS (AmoyDx

EGFR Mutations Detection Kit). And the EGFR mutation status

were retrospectively collected from the medical record system of

the hospitals.
Image acquisition and preprocessing

Herein, scanners of three hospitals all belong to Siemens

Medical Systems, Erlangen, Germany, that are Biograph mCT,

Biogragh 16HR and Biogragh mCT-s. The details of the scanner

information and imaging protocols were listed in Supplementary

material (Table S1 and Appendix E2). The PET image datasets were

reconstructed using CT data for attenuation correction. Then, PET

and CT images were preprocessed according to guidelines (28),

including resampling all images to a voxel size of 1×1×1mm3 using

B-spline interpolation, and both PET and CT images were subjected

to intensity discretization.
A

B C

FIGURE 1

Study design and data information. (A) study design of predicting EGFR mutation status; (B) study design of predicting EGFR mutation subtypes;
(C) study design of survival analysis.
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TABLE 1 Demographics and clinical variables of enrolled patients in task I (N = 767).

Characters

Train group Internal Test External Test 1 External Test 2

EGFR (-) EGFR
(+) p EGFR (-) EGFR

(+) p EGFR (-) EGFR
(+) p EGFR (-) EGFR

(+) p

Number 172 238 77 100 42 46 26 66

Gender <0.001 <0.001 <0.001 0.022

Female
59

(34.3%)
137

(57.6%)
21

(27.3%)
64

(64.0%)
8 (19.0%)

32
(69.6%)

9 (34.6%)
42

(63.6%)

Male
113

(65.7%)
101

(42.4%)
56

(72.7%)
36

(36.0%)
34

(81.0%)
14

(30.4%)
17

(65.4%)
24

(36.4%)

Age
64.0

[56.0;69.2]
62.0

[53.0;68.0]
0.018

62.6
(11.8)

61.1
(9.80)

0.365
63.9
(9.47)

63.4
(10.7)

0.819
59.7
(12.2)

57.3
(9.62)

0.367

Location 0.790 0.512 0.275 0.500

L-Lower
21

(12.2%)
33

(13.9%)
13

(16.9%)
10

(10.0%)
10

(23.8%)
9 (19.6%) 5 (19.2%) 5 (7.58%)

L-Upper
50

(29.1%)
65

(27.3%)
19

(24.7%)
29

(29.0%)
5 (11.9%)

10
(21.7%)

7 (26.9%)
24

(36.4%)

R-Lower
28

(16.3%)
42

(17.6%)
12

(15.6%)
18

(18.0%)
12

(28.6%)
7 (15.2%) 6 (23.1%)

12
(18.2%)

R-Middle
16

(9.30%)
15

(6.30%)
6 (7.79%) 4 (4.00%) 4 (9.52%) 2 (4.35%) 3 (11.5%) 8 (12.1%)

R-Upper
57

(33.1%)
83

(34.9%)
27

(35.1%)
39

(39.0%)
11

(26.2%)
18

(39.1%)
5 (19.2%)

17
(25.8%)

TNM 0.011 0.003 0.921 0.760

I
67

(39.0%)
120

(50.4%)
25

(32.5%)
56

(56.0%)
7 (16.7%)

10
(21.7%)

9 (34.6%)
29

(43.9%)

II
23

(13.4%)
28

(11.8%)
7 (9.09%)

15
(15.0%)

10
(23.8%)

9 (19.6%) 2 (7.69%) 7 (10.6%)

III
35

(20.3%)
56

(23.5%)
22

(28.6%)
14

(14.0%)
17

(40.5%)
18

(39.1%)
6 (23.1%)

14
(21.2%)

IV
30

(17.4%)
25

(10.5%)
19

(24.7%)
11

(11.0%)
8 (19.0%) 9 (19.6%) 9 (34.6%)

16
(24.2%)

Others
17

(9.88%)
9 (3.78%) 4 (5.19%) 4 (4.00%) 0 0 0 0

Grades 0.001 0.001 0.101 0.128

G1
14

(8.14%)
7 (2.94%) 8 (10.4%) 3 (3.00%) 1 (2.38%) 3 (6.52%) 3 (11.5%)

11
(16.7%)

G2
54

(31.4%)
84

(35.3%)
15

(19.5%)
39

(39.0%)
18

(42.9%)
28

(60.9%)
9 (34.6%)

35
(53.0%)

G3
52

(30.2%)
103

(43.3%)
25

(32.5%)
41

(41.0%)
23

(54.8%)
15

(32.6%)
14

(53.8%)
20

(30.3%)

Others
52

(30.2%)
44

(18.5%)
29

(37.7%)
17

(17.0%)
0 0 0 0

LD
2.40

[1.40;3.30]
2.50

[1.70;3.50]
0.130

2.50
[1.50;3.80]

2.40
[1.50;3.00]

0.402
3.30

[2.50;4.72]
2.90

[2.00;4.15]
0.174

3.30
[2.50;4.50]

2.59
[1.70;3.92]

0.051

SUVmax
7.95

[4.50;11.2]
5.90

[3.50;10.1]
0.090

8.60
[5.00;11.5]

6.10
[2.92;9.10]

0.004
12.1

[8.15;14.8]
10.2

[5.82;14.6]
0.169

11.4
[8.53;14.8]

7.50
[4.40;12.0]

0.003
F
rontiers in Onco
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Annotations: L, left; R, right; LD, longest diameters; G, grade; EGFR, epidermal growth factor receptor; +, mutation mutant-type; -, mutation wild-type.
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Tumor segmentation and HRFs extraction

ITK-SNAP version 3.8.0-beta (https://www.itksnap.org/), an

open-source image analytic platform, was used to segment the

primary tumor regions. Volumes of interest (VOIs) of primary

tumors for CT were drawn on the lung window (window width:

1600HU; window level: -600HU). The robustness and repeatability

of HRFs were evaluated. Both PET and CT HRFs of the VOIs were

automatically calculated using Python 3.7 and the Pyradiomics

package. The formulas and matrices for texture feature

calculation followed the image biomarker standardization

initiative (29). Further, 2,380 HRFs were extracted from the PET

and CT images, respectively. The detailed tumor segmentation and
Frontiers in Oncology 05
HRFs extraction were available in Supplementary Material

(Appendix E3, Table S2 and Table S3).
Feature selection

HRFs selection and predictive models’ development were

separately performed on train groups of task I (EGFR mutated

type vs. EGFR wild type) and task II (EGFR E19 vs. EGFR E21). In

our work, to reduce the feature variability caused by different PET/

CT scanners and associated protocols, all HRFs were normalized

using z scores and harmonized using ComBat (30, 31). The Combat

function of non-parametric version from R package (R statistical
TABLE 2 Demographics and clinical variables of enrolled patients in task II (N = 348).

Characters
Train group Internal Test External Test 1 External Test 2

E19 E21 p E19 E21 p E19 E21 p E19 E21 p

Number 70 97 37 35 27 19 30 33

Gender 0.564 0.786 0.854 0.578

Female 46 (65.7%) 63 (64.9%) 20 (54.1%) 21 (60.0%) 18 (66.7%) 14 (73.7%)
17

(56.7%)
22 (66.7%)

Male 24 (34.3%) 34 (35.1%) 17 (45.9%) 14 (40.0%) 9 (33.3%) 5 (26.3%)
13

(43.3%)
11 (33.3%)

Age 58.0 (9.19) 60.1 (9.84) 0.159 60.0 (10.4) 62.2 (8.33) 0.312 61.0 (12.0) 66.9 (7.39) 0.042
55.4
(8.11)

59.2 (10.9) 0.112

Location 0.007 0.960 0.051 0.751

L-Lower 11 (15.7%) 9 (9.28%) 6 (16.2%) 7 (20.0%) 7 (25.9%) 2 (10.5%) 2 (6.67%) 3 (9.09%)

L-Upper 11 (15.7%) 29 (29.9%) 11 (29.7%) 10 (28.6%) 2 (7.41%) 8 (42.1%) 9 (30.0%) 14 (42.4%)

R-Lower 21 (30.0%) 11 (11.3%) 8 (21.6%) 5 (14.3%) 5 (18.5%) 2 (10.5%) 6 (20.0%) 4 (12.1%)

R-Middle 2 (2.86%) 7 (7.22%) 3 (8.11%) 3 (8.57%) 2 (7.41%) 0 (0.00%) 5 (16.7%) 3 (9.09%)

R-Upper 5 (35.7%) 41 (42.3%) 9 (24.3%) 10 (28.6%) 11 (40.7%) 7 (36.8%) 8 (26.7%) 9 (27.3%)

TNM 0.030 0.106 0.332 0.847

I 29 (41.4%) 51 (52.6%) 19 (51.4%) 21 (60.0%) 8 (29.6%) 2 (10.5%)
12

(40.0%)
16 (48.5%)

II 12 (17.1%) 10 (10.3%) 3 (8.11%) 8 (22.9%) 6 (22.2%) 3 (15.8%) 3 (10.0%) 4 (12.1%)

III 16 (22.9%) 30 (30.9%) 9 (24.3%) 3 (8.57%) 9 (33.3%) 9 (47.4%) 7 (23.3%) 7 (21.2%)

IV 13 (18.6%) 6 (6.19%) 6 (16.2%) 3 (8.57%) 4 (14.8%) 5 (26.3%) 8 (26.7%) 6 (18.2%)

Grades 0.613 0.295 0.790 0.782

G1 0 (0.00%) 1 (1.03%) 0 (0.00%) 1 (2.86%) 2 (7.41%) 1 (5.26%) 4 (13.3%) 6 (18.2%)

G2 24 (34.3%) 38 (39.2%) 13 (35.1%) 16 (45.7%) 15 (55.6%) 13 (68.4%)
16

(53.3%)
19 (57.6%)

G3 34 (48.6%) 47 (48.5%) 13 (35.1%) 13 (37.1%) 10 (37.0%) 5 (26.3%)
10

(33.3%)
8 (24.2%)

Others 12 (17.1%) 11 (11.3%) 11 (29.7%) 5 (14.3%) 0 0 0 0

LD
2.50

[1.70;3.50]
2.50

[2.00;3.50]
0.744

2.20
[1.50;3.00]

2.50
[1.80;3.35]

0.390
2.80

[1.95;4.10]
3.10

[2.05;4.25]
0.671

2.60
(1.34)

2.94
(1.43)

0.351

SUVmax
5.60

[4.18;8.80]
6.40

[3.30;10.3]
0.991

4.60
[2.85;8.50]

5.50
[3.28;9.25]

0.642
9.92
(5.13)

11.4
(6.80)

0.432
6.70

[3.80;9.00]
7.69

[4.60;12.0]
0.516
frontier
Annotations: L, left; R, right; LD, longest diameters; G, grade; E19, Exon 19 deletion of epidermal growth factor receptor; E21, exon 21 L858R missense of epidermal growth factor receptor.
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software version 4.1.2) were used. Both 2 tasks would do a feature

cleaning preprocess to remove constant or quasi-constant features,

and duplicated features. Firstly, the missing value was filled with

conditional mean completer. Then, removed features with a single

unique value and low variance, and further removed collinear

features as identified by a correlation coefficient greater than 0.75.

Finally, mutual information was used to further removed

redundant features.

As for task I and task II, 19 feature selection methods, which

belong to wrapper and embedded categories, were used for feature

selection. Sequential forward selection (SFS), sequential backward

selection (SBS) and recursive feature elimination (RFE) wrapped 4

classifiers, respectively, that were light gradient boosting machine

(LGBM), extreme gradient boosting (XGB), random forest (RF) and

logistic regression (LR), and then 12 wrapper feature selection

candidates were obtained. Seven embedded feature selection

methods were enrolled, including LGBM, XGB, RF, LR, K-nearest

Neighbor (KNN), support vector machine (SVM) and least absolute

shrinkage and selection operator (LASSO). In our study, embedded

feature selection methods ranked features by calculating the AUC

based on the individual feature.

As for task III, LASSO Cox regression model was used to select

the most useful prognostic HRFs in the entire dataset. Univariate

and multivariate analyses with CPH regression determined the

clinical risk factors of overall survival (OS).
Development and evaluation of
predictive models

LGBM, XGB, RF and LR were used to develop predictive

models. We used a grid search technique with 10-fold cross-

validation to determine the optimal parameter values of various

kernel function. In task І, the model was trained on a train group
Frontiers in Oncology 06
(n=410) and tested in an internal test group (n=177). And in task II,

E19 and E21 mutation subtypes from EGFR mutated group were

considered as negative and positive labels, respectively. The E19/

E21 mutation subtypes prediction model was trained on a train

group (n=167) and tested in an internal test group (n=72). In both

task І and II, data from SCH and RJ were separately used for

external test. The study design and workflow were detailed in

Figures 1, 2, respectively.

Confusion matrix, classification report, feature importance and

ROC curve, which programmed and calculated with the Python

Scikit-learn and Yellowbrick package (Python version 3.7,

Yellowbrick version 1.5, https://www.scikit-yb.org/, Scikit-learn

version 1.0.2, http://scikit-learn.org/), as well as the area under

the curve (AUC), precision, recall, F1-score, and accuracy (ACC),

were used to evaluate the performance of the model. Decision curve

analysis (DCA) was used to evaluate the clinical applicability of the

predictive models. Optimal models for task І and task II were

determined from 76 predictive models, according to the

comprehensive AUC performance of one internal test and two

external test groups, respectively.

As for task III, a radiomics score (PET/CT-RadScore) was

calculated for each patient through a linear combination of the

selected features weighted according to their respective coefficient.

The clinical risk factors combined with PET/CT-RadScore were then

used to build nomogrammodel. The Harrell’s concordance index (C-

index) was calculated to evaluate the performance of nomogram

model. Calibration curve was used to evaluate the goodness-of-fit of

the nomogrammodel. The prognosis of EGFR-TKIs targeted therapy

and chemotherapy in lung adenocarcinoma patients with different

EGFR mutation status and subtypes was compared.

Radiomics quality score (RQS) and the transparent reporting of

a multivariable prediction model for individual prognosis or

diagnosis (TRIPOD) systems were used to evaluate the quality of

this radiomics research.
FIGURE 2

Workflow.
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Interpretation of optimal predictive models

In order to improve the interpretability of the models, feature

importance, and SHAP and LIME were used for optimal models’

global and local interpretation in task І and II. The detailed

description of them could be found at Supplementary Material

(Appendix E4).
Statistical analysis

Statistical analyses were performed using the GraphPad Prism

version 6. The Shapiro-Wilks test was used to determine whether

clinical data fit a normal distribution. The difference and statistical

analysis in the related clinical information in the training and test

cohorts were assessed using descrTable function of compareGroups

R package. Discrete variables were expressed as medians and ranges.

The Kaplan-Meier method was used and compared by a two-sided

log-rank tests. p < 0.05 was considered statistically significant.
Results

Demographic and clinical information

We enrolled 767 patients from 4 cohorts who were

pathologically diagnosed with lung adenocarcinoma and EGFR

mutation status. In train group of task I, there is a significant

difference in gender, age, TNM staging, and grades between EGFR

mutant and EGFR wild groups (p < 0.001, 0.018, 0.011, 0.001,

respectively), and in train group of task II, there is a significant

difference in primary tumor location (p = 0.007) and TNM staging

(p = 0.030). Gender, TNM staging, grades, primary tumor’s longest

diameter (LD) and SUVmax were treated as clinical risk factors in

task III. The clinical information of the enrolled patients was

detailed in Table 1 and Table 2.
Feature reduction and selection

The intra –and interclass correlation coefficients values of the

HRFs extracted from the different radiologists and the different

scanners were all greater than 0.75, reflecting good consistency.

After feature preprocessing pipeline, 213 features (111 CT HRFs

and 102 PET HRFs) remained in task I. As for task II, 288 features

(142 CT HRFs and 146 PET HRFs) remained. In both task I and II,

CT features fromwavelet, local binary pattern (LBP) 3D and Laplacian

of Gaussian (LoG) filters accounted for the largest proportion, and

PET features from wavelet, LBP 3D and exponential filters accounted

for the largest proportion. The correlation of enrolled PET/CT HRFs

of optimal model in task I and task II were shown in Figures S2, S4,

respectively. Total number and categories of HRFs of 19 feature

selection methods in task I and task II were shown in Figure 3. The

detailed AUC thresholds of feature selectionmethods in task I and task

II were shown in Table S4.
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Model development and evaluation

In this study, 76 predictive models were obtained using cross-

combination of 19 feature selection methods and 4 classifiers (XGB,

LGBM, RF and LR) for prediction. All the models performed binary

predictions. The performance of all the predictive models in task I

and task II was shown in Figure 4. As for task I, the results indicated

that 29 HRFs selected from RFE - LGBM feature selection method

and then LGBM classifier used for prediction achieved the best

performance (AUC = 0.80, ACC = 0.72, precision = 0.72, recall =

0.71, F1-score = 0.71 in the internal test cohort; AUC = 0.61, ACC =

0.55, precision = 0.59, recall = 0.61, F1-score = 0.55 in the external

test cohort 1; AUC = 0.71, ACC = 0.70, precision = 0.70, recall =

0.70, F1-score = 0.70 in the external test cohort 2) among the 76

feature selection-classification radiomics candidates (Figures 4A–C,

Figures 5B–D, Figure S1A).The statistical results and correlation

heat map of the 29 HRFs for task I could be found at Table S5 and

Figure S2.

As for task II, the results indicated that 13 HRFs selected from

SVM feature selection method and then XGB classifier used for

prediction achieved the best performance (AUC = 0.76, ACC =

0.65, precision = 0.66, recall = 0.65, F1-score = 0.65 in the internal

test cohort; AUC = 0.63, ACC = 0.63, precision = 0.64, recall = 0.63,

F1-score = 0.63 in the external test cohort 1; AUC = 0.61, ACC =

0.61, precision = 0.61, recall = 0.61, F1-score = 0.61 in the external

test cohort 2) among the 76 feature selection-classification

radiomics candidates (Figures 4D–F, Figures 6B–D, Figure S3A).

Precision, recall, F1-score were in the macro average version. The

statistical results and correlation heatmap of the 13 HRFs for task II

could be found at Table S6 and Figure S4. Clinical net benefit and

confusion matrix of three test groups of optimal predictive model in

task I and task II were calculated (Figures 5E–G, Figures S1B-D,

Figures 6E–G, Figures S3B-D). DCA curves also showed that two

optimal predictive models have a certain clinical benefit. AUC

heatmaps of all models based on cross-combination method in

task I and task II were shown in Figures 5A and 6A.

Overall, both in task I and II, RFE and embedded feature

selection methods always achieved good predictive performance,

which outperformed SBS and SFS feature selection methods. Our

study strictly adhered to the radiomics process, and the actual RQS

could reach 23 (Table S8). It is worth mentioning that the TRIPOD

checklist (32) was shown in Table S9.
Interpretation of optimal predictive models

In this study, feature importance and SHAP were used for

optimal models’ global interpretation, and optimal models’ local

interpretation was analyzed using LIME. The importance of features

decreased from top to bottom (Figures 7A, B). Feature importance

value was amplified 100 times before visualization. As for task I, the

mean of SHAP value bars of 29 HRFs showed the average impact in

predicting EGFR mutation status and indicated the feature ranking

interpretation of the LGBM model (Figure 7E). As for task II, the

spot plots of SHAP value provided the influence of 13 HRFs on

XGB model outputs (Figure 7F).
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Interpretation of sample prediction results need random

drawing of samples to make model predictions and obtained

visualizations of how model predictions are performed through

the LIME algorithm. In this study, both in task I and task II, the

rank of HRFs was generally similar among feature importance,

SHAP and LIME (Figures 7C, D). This is sufficient to verify the

practicability of the LGBM model and XGB model and could help

to increase their clinical trustworthiness in predicting EGFR

mutation status and subtypes, and further to assist in providing

clinical decision support.
Survival analysis

Out of a total of 452 cases at FUSCC, 35 patients were lost to

follow-up, 89 patients died during follow-up, and 328 patients were

alive at the end of follow-up. The 1-, 3- and 5-year OS rates were

83.93%, 33.57% and 3.83%, respectively. The median survival time for

the 417 patients was 29.03 months [interquartile range (IQR), 21.34-

40.48 months]. Twenty-two PET/CT-based HRFs were selected as

prognosis factors using LASSO regression analysis (Figure 8A, Figure

S5). Further, Kaplan-Meier survival analysis and Log-rank test

verified that the 22 HRFs were useful prognostic predictors (Log-

rank p < 0.0001, Figure 8B). The independent clinical factors (gender,

TNM staging, grades, LD) and PET (SUVmax) predictor that were

significant in the multivariate Cox regression analysis were used to

build the combined models for predicting OS (Figure 8C). PET/CT-

RadScore was calculated for each patient through a linear

combination of the 22 HRFs weighted according to their respective

coefficient. PET/CT-RadScore combined with 5 clinical risk factors

demonstrated a good predictive survival performance, with a C-index

of 0.863. The information of the 22 HRFs for task III could be found

at Table S7 and Figure S6. The calibration curve for predicting the

probability of OS at 1, 3, or 5 years for each model after 1000

bootstrap replicates was shown in Figure 8D, which showed
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sat i s factory agreement between the est imat ions and

actual observations.

There were 281 patients with EGFR mutant-type and 137

patients with EGFR wild-type. There was a significant difference

in survival time between those patients with EGFR mutant-type and

EGFR wild-type in total (p < 0.0001). Among those patients with

EGFR mutant-type, 85 patients underwent targeted therapy and

137 underwent chemotherapy. The prognosis for targeted therapy

was better than that for chemotherapy. There was a significant

difference in survival time between targeted therapy and

chemotherapy for patients with EGFR mutant-type (p = 0.0095).

One hundred and three patients with E19 and 124 with E21

mutations in total. There was no significant difference in survival

time between those with E19 and E21 mutations (p = 0.3785).

Survival curves for above were presented in Figures 8E–G.
Discussion

In this study, firstly, we successfully constructed separately two

cross-combination predictive models for EGFR mutation status and

subtypes. Then, optimal models were determined from 76

predictive models according to the comprehensive AUC

performance of an internal test group and 2 external test groups.

The predictive model using RFE - LGBM and LGBM achieved the

best performance in task I, and the predictive model using SVM and

XGB achieved the best performance in task II. Furthermore, we

performed model visualization and interpretation. Besides, we also

built a multivariate CPH model based on clinical risk factors and

robust 18F-FDG PET/CT HRFs for OS prediction in lung

adenocarcinoma. Together, our results may provide important

information in predicting EGFR mutation status, EGFR subtypes

and OS, to help lung adenocarcinoma treatment and prognosis.

Identifying EGFR mutation status and main subtypes of

patients with lung adenocarcinoma are beneficial in making
FIGURE 3

Results of all feature selection methods. (A) feature selection result of predicting EGFR mutation status; (B) feature selection result of predicting
EGFR mutation subtypes. LBP, local binary pattern. LoG, Laplacian of Gaussian.
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EGFR-TKIs-related treatment strategies in clinic. Sho et al. (33)

used the same public data set as ours to build models predicting

histological subtype and EGFR mutation status of non-small cell

lung cancer on 18F-FDG PET/CT, and XGB classifier achieved

better performance (AUC = 0.659) than gradient tree boosting,

Bayesian optimization and RF classifiers. Yang et al. (17)

introduced two RF-based predictive models and a multivariate
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CPH model for predicting EGFR mutation status, EGFR subtypes

and OS in total 174 patients with lung adenocarcinoma. And their

results showed that the AUC of train and validation group were

0.77 and 0.71 for EGFR mutant/wild-type prediction, and reached

0.82 and 0.73 in EGFR E19/E21 prediction. However, they did not

involve cross-combination method and further multi-center data

validation. Our study built two separately cross-combination
A B

D

E F

C

FIGURE 4

Predictive performance of all radiomics models. (A-C) AUC, ACC, precision, recall and F1-score in the internal test cohort and 2 external test cohorts
in predicting EGFR mutation status; (D-F) AUC, ACC, precision, recall and F1-score in the internal test cohort and 2 external test cohorts in
predicting EGFR mutation subtypes. ★, the optimal model. Macro-avg, Macro average.
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models to identify EGFR mutation status and subtypes. In the

internal test group and two external test groups, the optimal model

in EGFR mutant/wild-type prediction could reach an AUC of 0.80,

0.61 and 0.71, and reach an AUC of 0.76, 0.63 and 0.61 in EGFR

E19/E21 prediction. The performance of optimal EGFR E19/E21

prediction model was not that satisfactory. We thought that data

selection bias and limited sample size with relative high
Frontiers in Oncology 10
complexity and heterogeneity may lead to this result.

Interestingly, we found that the models that performed best in

the internal test group did not necessarily perform best in the two

external test groups. Most of the existing studies were based on

small samples or single-center data, which may lead to a locally

optimal result. External validation via multi-center data could

ensure the generalization performance of the model. Therefore, it
FIGURE 5

The performance of models in predicting EGFR mutation status. (A) AUC performance of all models based on cross-combination method. (B-D)
AUC performance of internal test group, external test group 1 and external test group 2 of optimal predictive model. (E-G) Clinical net benefit of
internal test group, external test group 1 and external test group 2 of optimal predictive model.
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a l so r eflec t ed tha t our op t ima l mode l s had s t ab l e

predictive performance.

Increasing evidence has verified that HRFs played a significant

important role in predicting prognosis (34), EGFR mutation status

and subtypes of NSCLC (13, 15, 17). Compared with Yang’s study

(17), we extracted more complete HRFs and obtained better EGFR-
Frontiers in Oncology 11
related results. In terms of all the feature attributes, both our and

Yang’s study found that wavelet features of CT imaging showed

better predictive power. Also, some radiomics models were built

using CT HRFs to identify E19 and E21 in lung adenocarcinoma

(17, 35, 36), but their performance was difficult to compare due to

the different medical modes and model evaluation indexes. Liu et al.
A

B D

E F G

C

FIGURE 6

The performance of models in predicting EGFR mutation subtypes. (A) AUC performance of all models based on cross-combination method. (B-D)
AUC performance of internal test group, external test group 1 and external test group 2 of optimal predictive model. (E-G) Clinical net benefit of
internal test group, external test group 1 and external test group 2 of optimal predictive model. .
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(12) reported that 10 HRFs, which included seven wavelet features

of CT imaging, two texture features of PET imaging, and one

texture feature of CT imaging, were significantly associated with

EGFR subtypes (E19 vs. E21). However, we partially selected the

same feature categories but completely different features for
Frontiers in Oncology 12
prediction model building. In our research, we found that CT

texture features based on wavelet filter had the biggest proportion

in task I-II. As shown in previous studies, LBP features were

popular descriptors in many images analysis tasks and showed

pretty good contribution to model performance (37, 38). Wavelet
A B

D

E F

C

FIGURE 7

Interpretation of optimal models in predicting EGFR mutation status and subtypes. (A) Feature importance of 29 HRFs; (C) the rank of HRFs and their
interactions calculated by LIME (patient index 520, who was pathologically diagnosed with an EGFR mutant-type); (E) Mean SHAP value of 29 HRFs,
in predicting EGFR mutation status. (B) Feature importance of 13 HRFs; (D) the rank of handcrafted radiomics features and their interactions
calculated by LIME (patient index 9, who was pathologically diagnosed with an E21 subtype); (F) SHAP value of 13 HRFs, in predicting EGFR mutation
subtypes.
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features were also reported as a predictive marker in predicting

treatment response and tumor phenotype of NSCLC (39, 40), which

were in accordance with our work. LGBM and XGB classifiers

always had better performance than LR models and RF models,

which were accordance with previous studies (41).

The ability to interpret and validate automatic decisions-

making of clinical predictive models is significant important in

practical applications. Our results found that XAI can determine the

most important features, further reveal the interactions of features

that have an impact on model output, and then enhance clinical

trustworthiness in predictive models. Yang et al. (42) established an

explainable model to predict EGFR mutation status in lung

adenocarcinoma based on seven machine learning algorithms and

SHAP, but they only used semantic features, and did not involve

LIME. Currently, many researches also have verified that SHAP and
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LIME were useful and effective approaches (25–27). Consistent with

us, the results indicated that these two XAI approaches could

pinpoint the most significant and important features of the

model, and make the predictive model an effective and

explainable tool for supporting clinical diagnosis and treatment.

Combined HRFs and clinical risk factors also have a satisfying

predictive performance in prognosis. We also constructed a CPH

model using 22 HRFs and 5 clinical risk factors to predict OS. Our

model reached higher C-index than Yang’s (17) study (0.863 vs.

0.757). In our study, there is a significant difference in survival time

between EGFR mutant and EGFR wild groups. This indicated that

different EGFR mutation status and different treatment method

may affect patients’ survival time. The survival analysis showed that

the prognosis of targeted therapy was better than chemotherapy in

patients with EGFR mutant type, which was consistent with
FIGURE 8

Results of survival analysis. (A) LASSO feature selection. (B) Kaplan-Meier survival analysis. (C) nomogram model. (D) calibration curve at the 1-year,
3-year, and 5-year time points. (E) survival curve of lung adenocarcinoma patients with EGFR mutant-type and EGFR wild-type. (F) survival curve of
target therapy and chemotherapy in lung adenocarcinoma patients with EGFR mutant-type. (G) survival curve of lung adenocarcinoma patients with
EGFR E19 and EGFR E21 subtypes.
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previous studies (43, 44). However, there is no significant difference

in survival time between patients with E19 and E21, furthermore,

the survival rate of patients with E19 was better than that with E21,

which was similar to previous study (45).

Several factors may explain the differences among the studies

mentioned above. One reason may be the differences in imaging

processing, VOIs segmentation in different studies. Most

importantly, multi-center data has richer information and

different PET/CT scanners and associated protocols, which

increases the complexity and heterogeneity of data. On the one

hand, it decreased the over fitting risk of model, on the other hand,

it had an effect on the overall performance of model. This may be

the major reason why the AUC performance of our optimal models

was lower than that of some published studies (12–14).

Recent studies have shown that non-invasive approaches based

on PET/CT, for example, analysis of 18F-FDG uptake (SUVmax,

metabolic volume, tumor lesion glucose) and 18F-FDG PET/CT-

derived radiomics (46, 47) could help quantify EGFR mutation status

and predict prognosis in lung cancer patients for precision therapy.

However, in some previous studies, the results of 18F-FDG uptake

were conflicting (9, 10). The value of 18F-FDG uptake in EGFR

mutation status prediction need to be evaluated in further high-

quality studies. Radiomics extracted from diagnostic PET/CT images

is a promising translational research field. Our study verified the

feasibility and potential superiority of multi-center 18F-FDG PET/

CT-derived radiomics to identify EGFR mutation status and predict

prognosis in lung adenocarcinoma, whichmay help to develop a non-

invasive tool as a complementary to PET/CT for clinic.

Our study has several limitations. First, although we collected

data from 4 cohorts, it was a retrospective study and selection bias

may have occurred. Unfortunately, we developed OS CPH model

based on single-center data. In future work, it is necessary to enroll a

larger multi-center/scanner data set with standard and complete

follow-up information and perform a prospective analysis to

evaluate our results, and further ensure better robustness and

clinical applicability of the model. Second, the tumor regions were

manually segmented slice by slice from radiologists, which could be

time-consuming and susceptible to radiologist variability. There is

an urgent need for an accurate semi-automatic segmentation

method with unsupervised or weak supervision.
Conclusions

In conclusion, we developed and interpreted two optimal

predictive models to identify EGFR mutation status and subtypes

in patients with lung adenocarcinoma based on cross-combination

method and XAI technology, and further constructed a prognostic

model to predict their clinical outcome.
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Glossary

18F-FDG
PET/CT

18 Fluorine-fluorodeoxyglucose positron emission tomography-
computed tomography

EGFR epidermal growth factor receptor

HRFs handcrafted radiomics features

TKIs tyrosine kinase inhibitors

E19 EGFR Exon 19 deletion

E21 EGFR exon 21 L858R missense

OS overall survival

D dimensions

XAI explainable artificial intelligence

SHAP Shapley additive explanations

LIME local interpretable model-agnostic explanations

CPH cox proportional hazard

VOIs volumes of interest

LBP local binary patterns

LoG Laplacian of Gaussian

T tumor

N node

M metastasis

PCC Pearson correlation coefficient

RFE recursive feature elimination

SFS sequential forward selection

SBS sequential backward selection

LGBM light gradient boosting machine

XGB extreme gradient boosting

KNN K-nearest Neighbor

LASSO Least absolute shrinkage and selection operator

SVM support vector machine

RF random forest

LR logistic regression

TRIPOD transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis

RQS radiomics quality score

ROC area under the receiver operating characteristic

AUC area under the curve

DCA decision curve analysis

LD target lesion’s longest diameter

GLCM gray-level co-occurrence matrix

GLRLM gray-level run-length matrix

NGTDM neighborhood gray tone difference matrix

(Continued)
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GLSZM gray-level size zone matrix

GLDM gray-level dependence matrix.
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