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The Hedgehog (Hh) signaling pathway is pervasively involved in human

malignancies, making it an effective target for cancer treatment for decades. In

addition to its direct role in regulating cancer cell attributes, recent work indicates

that it has an immunoregulatory effect on tumor microenvironments. An

integrated understanding of these actions of Hh signaling pathway in tumor cells

and tumor microenvironments will pave the way for novel tumor treatments and

further advances in anti-tumor immunotherapy. In this review, we discuss themost

recent research about Hh signaling pathway transduction, with a particular

emphasis on its role in modulating tumor immune/stroma cell phenotype and

function, such asmacrophage polarity, T cell response, and fibroblast activation, as

well as their mutual interactions between tumor cells and nonneoplastic cells. We

also summarize the recent advances in the development of Hh pathway inhibitors

and nanoparticle formulation for Hh pathway modulation. We suggest that

targeting Hh signaling effects on both tumor cells and tumor immune

microenvironments could be more synergistic for cancer treatment.

KEYWORDS
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1 Introduction

The Hedgehog (Hh), an evolutionarily conserved signaling pathway, regulates tissue

homeostasis, regeneration, and tumorigenesis (1). During development, Hh signaling is

significantly activated, and inadequate Hh signaling leads to a variety of developmental

disorders, such as birth defects, cyclopia, and holoprosencephaly (2). In the adult

mammals, Hh activity declines but becomes reactivated in tumor and tissue repairing

contexts. Accumulating evidence indicates that abnormal activation of Hh signaling has

been implicated in multiple aspects of tumorigenesis, including tumor initiation,

progression, drug resistance, and metastasis (1, 3, 4). In recent years, emerging evidence

has highlighted the immunoregulatory effects of the Hh signaling pathway in many
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malignant tumor microenvironments, which are established by

tumors consisting of diverse nonneoplastic cells, including

cancer-associated fibroblasts and immune cells such as

macrophages and T cells (5). It has been shown that Hh signaling

pathway modulates the activity and function of immune and

stromal cells while increases programmed cell death ligand 1

(PD-L1) expression. Not surprisingly, the development of Hh

inhibitors for targeted cancer therapy has attracted much

attention. An improved understanding of the effects of Hh

signaling on tumor cells, nonneoplastic cells and their complex

crosstalk will pave the way for the development of novel tumor

therapeutic strategies and further advances in antitumor

immunotherapy. Here, we focus on the emerging roles of Hh

signaling in tumor microenvironments, summarize the recent

advances in Hh-targeting inhibitors and nanobiomaterial strategy

for inhibiting Hh pathway as cancer therapy and deliberate the

immunotherapeutic implications against Hh pathway.
2 Overview of Hedgehog
signaling pathway

Hh signaling pathway was discovered 40 years ago in

Drosophila melanogaster through massive gene screening (6). In

mammals, the major components of Hh cascade contain secreted

Hh ligands [Sonic Hedgehog (Shh), Desert Hedgehog (Dhh), and

Indian Hedgehog (Ihh)], two transmembrane proteins [Patched

(PTCH) and Smoothened (SMO)], and GLI transcription factors

(GLI1, GLI2, GLI3) (7). Moreover, the primary cilia (PC), a tubulin-

scaffold protrusion of the cell membrane, provides a specific

interface for Hh signaling transduction by dynamically

coordinating signaling proteins in this organelle (8). In this
Frontiers in Oncology 02
section, we will provide an overview and updates on the

molecular mechanisms of Hh signaling transduction (Figure 1).
2.1 Hh ligands

The canonical Hh signaling is initiated by three homologous Hh

ligands (Shh, Dhh, and Ihh), which have similar functions but are

expressed in tissues with spatially and temporally varying patterns (9,

10). Nascent Hh proteins are palmitoylated on their amino-terminal

domain (N-terminal) and cholesteroylated on the carboxyl-terminus

(C-terminal), making them with high-affinity to cell membrane. With

the help of transmembrane proteins including Dispatched (DISP)

and vertebrate-specific SCUBE2, modified Hh proteins are released

from the surface of secreting cell (11–13). Hh spreads with

lipoprotein particles, extracellular vesicles or filopodial structure,

which function as binding carriers and synergistically mediate Hh

transportation from secreting cells to distant parts in the tissues, thus

forming a functional morphogen gradient (14–18).
2.2 PTCH

PTCH, the primary receptor of Hh, is a pathway-suppressor

protein. Structurally, PTCH is composed of two extracellular

domains that bind Hh ligands, 12-transmembrane (TM) helices,

and cytoplasmic carboxyl-terminal region (19, 20). Hh grasps and

locks the extracellular domains of PTCH with its N-terminal

palmitate and C-terminal cholesterol, thus blocking PTCH

transforming into an inhibitory conformation (19, 21).

Subsequently, the Hh/PTCH complex departs from the primary

cilia and undergoes ensuing transportation into endosomes and
FIGURE 1

Overview of the Hh signaling pathway in mammalian cells. In the absence of Hh ligands, PTCH prevents SMO activity and cilia translocation.
Transcription factors GLI2 and GLI3 are sequestered via binding with SUFU and phosphorylating by PKA, CKI and GSK3b to generate repressor forms
(GLI2, 3R) that enter into the nucleus and inhibit the transcriptional program. Upon Hh ligands such as Shh, binding with PTCH, both of them are
degraded in the cytoplasm. SMO accumulates in the cilia, where SUFU/GLI complex separates. The activator forms of GLI (GLI2, 3A) enter into
nucleus and induce the transcription of target genes.
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degradation, thereby alleviating pathway inhibition (22). In the

absence of Hh, PTCH is anchored on the cilia membrane and blocks

SMO activity. One possible mechanism for this effect seems to be

associated with PTCH-mediated blockade of contact between SMO

and cholesterol, a putative endogenous activator (23).

In addition to PTCH, several other cell surface co-receptors

have also been found to be involved in modulating Hh signal

reception (24). For example, Interference Hedgehog (Ihog),

CDON, BOC, and GAS1 synergistically bind Hh ligands and

promote signaling activity, whereas vertebrate-specific Hh-

interacting protein 1 (HHIP1) functions as a negative receptor.
2.3 SMO

SMO, a member of G protein-coupled receptor (GPCR)

superfamily, consists of an extracellular cysteine-rich domain (CRD),

a 7-transmembrane domain (7-TMD), and an intracellular C-terminal

domain (25–27). In the context of insufficient Hh, PTCH antagonizes

SMO activity (26). Given that PTCH does not physically interact with

SMO, how PTCH regulates SMO activity remains enigmatic (28).

Currently, the more accepted hypotheses hold potential second

endogenous messengers involved in signaling communications

between PTCH and SMO. Independent evidence puts forward

cholesterol and endocannabinoids as possible candidates, which

function as potent pathway activators or inhibitors, respectively (23,

29, 30). Cholesterol may be transported by a channel in PTCH from

inner leaflet to outer leaflet membrane. Upon binding to PTCH, Shh

occupies the channel and impedes this transportation, allowing

sufficient inner leaflet cholesterol directly binding to the CRD of

SMO, which induces SMO cilia accumulation and SMO-mediated

signals (19, 31–33). This process is essential for full activation of Hh,

since cholesterol deficiency, SMO CRD depletion or mutation in key

residues that dampen cholesterol binding, impairs SMO activity (23,

34–36). Moreover, with biochemical fractionation and lipidomics,

Eaton et al. identified lipoprotein-derived endocannabinoids as

potential endogenous SMO inhibitors (29). Cannabis consumption

during pregnancy induces holoprosencephaly and ventral neural tube

patterning defects in Cdon mutation mice and links to human birth

defects, which mimicked Hh inhibition phenotype in vivo (37; 38; 39).

However, whether or not additional endogenous molecules coordinate

PTCH/SMO transduction, how PTCH regulates membrane cholesterol

and how cells sense these lipids are still in question.

Hh signaling promotes PTCH to exit PC, where cholesterol-

bound SMO accumulates. This process is likely to be associated with

the co-localization of downstream components at PC tip, which is

essential for signal transduction.
2.4 SUFU

Suppressor of fused (SUFU) acts at the level between SMO and the

final effector GLI. SMO accumulation in cilia induces an inactive

SUFU-GLI complex to the tip of cilia, where this complex undergoes

dissociation, allowing GLI activation (40, 41) (Figure 1). Recent studies

revealed the complex modulation mechanism of SUFU for Hh activity.
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SUFU can directly interact with GLI proteins and keep them in the

cytoplasmic localization, thereby inhibiting transcriptional activity (42,

43). GLI can also be bound by SUFU in the nucleus, which impedes the

recruitment of transcriptional coactivator and promotes transcriptional

repressor interaction, inhibiting Hh target gene expression (44, 45).

Unexpectedly, the most recent study has revealed its positive effect on

GLI activity in some cases (46). In a substantially higher level of GLI2

context, such as in Smo activation, SUFU inhibits SPOP-mediated

GLI2 proteasomal degradation to stabilize GLI2, meanwhile, SUFU

serves as a transcriptional target of GLI2, thereby developing a positive

feedback loop and increasing Hh activity. In line with this, mice with

conditional Sufu deletion in robust GLI2 expression background

display reduced GLI activity and have significantly prolonged

survival of medulloblastoma-prone mice, indicating the biphasic and

contextual roles of SUFU with regard to tumor formation (46).
2.5 GLI

The transduction of Hh signaling needs to activate its

downstream GLI transcription factors. In mammals, there are three

homologous GLI proteins: GLI1, GLI2, and GLI3. Structurally, GLI2

and GLI3 contain C-terminal activator domain and N-terminal

repressor domain, whereas GLI1 only has a C-terminal domain. In

this regard, GLI1 functions as a transcription activating factor and

itself serves as the target gene of Hh pathway, hence positively

amplifying the activated responses, while GLI2 and GLI3 form full-

length activator, or when cleaved off into truncation, suppressor

form. Hh input signals change the ratio between the activator and

repressor forms, influencing target genes (1). In the absence of

upstream Hh signals, GLI2 and GLI3 are phosphorylated by

protein kinase A (PKA), glycogen synthase kinase 3b (GSK3b) and
casein kinase 1a (CK1a), resulting in ubiquitin-dependent

proteasome degradation, in which C-terminal activator domain is

removed and the remaining protein containing GLI repressor forms

(GLI R) enters into the nucleus, ultimately repressing gene

transcription (47). When activated, phosphorylation and

ubiquitination of GLI are suppressed; full-length GLI is maintained

in nucleus to evoke the transcription of target genes, including genes

associated with proliferation (Cyclin D1, MYC), apoptosis (BCL2,

MCL1), epithelial to mesenchymal transition (SNAIL), angiogenesis

(VEGF A and B), Hh pathway feedback (GLI1, PTCH1, HHIP), and

stemness (NANOG, SOX2). Given that GLI3, compared with GLI2, is

more efficiently processed into repressor form (47), GLI2 seems to be

the primary transcription factor in charge of activating Hh signaling,

while GLI3 exerts the suppressive function.
2.6 Non-canonical activation of Hedgehog
signaling pathway

Hh signaling transduction cascade described above refers to

canonical Hh pathway in a ligand/receptor-dependent manner.

However, there is also a growing body of evidence to support the

non-canonical activation mechanisms in tumors. These include, but

are not limited to, SMO- or Shh-independent GLI activation; GLI-

independent activation yet SMO-dependent or PTCH-dependent
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mechanisms (48). For example, SMO has been demonstrated to couple

with heterotrimeric G proteins regulating cytoskeleton, which is

independent of GLI transcriptional activity. This cytoskeletal change

is essential for Hh-mediated cell migration and tubulogenesis in

endothelial cells (49, 50). Our group recently demonstrated that

prostaglandin E2-induced activation of c-Jun N-terminal kinase

(JNK) increased GLI2 expression in a SMO-independent mechanism

through phosphorylating GLI2 at Thr1546, which is important for

colorectal cancer cell proliferation (51). These reports could partially

explain the resistance mechanism of SMO inhibitors in clinic.

Therefore, it will be worth elucidating the contribution of non-

canonical signaling to tumors and developing novel pharmacological

targeting and combinatorial treatment strategies. In-depth discussions

about the role of non-canonical Hh signaling in tumor development

have been reviewed elsewhere (48, 52–54).

3 Hedgehog signaling in cancer

Many cancers are associated with uncontrolled Hh signaling. In

general, four modulatory models of Hh pathway in tumors have

been described (Figure 2).

Hh ligand-independent tumor was first identified in patients,

who harbor germline loss-of-function mutation in PTCH1 (55), with

nevoid basal cell carcinoma syndrome (also known as Gorlin

syndrome), tending to develop tumors, especially basal cell

carcinoma (BCC), medulloblastoma (MB) and rhabdomyosarcoma

(56). Oncogenesis in this type is caused by mutations in Hh pathway

components, which confer unscheduled Hh activation and cell-
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intrinsic growth characteristics (Figure 2A). Almost all sporadic

BCC and more than 30% cases of MB have been implicated in Hh

mutational activation. The most common mutations in these tumors

include loss-of-function mutations in PTCH and SUFU, gain-of-

function mutation in SMO, or gene amplifications in GLI1 and GLI2,

as shown in mouse or human cancers, resulting in uncontrolled Hh

activity and promoting tumorigenesis (57, 58). Consistently, mice

with Ptch1 mutation are susceptible to develop MB, especially in

those with additional depletion in p53 allele or in homozygous ND2:

SmoA1 (Smo activation mutation) transgenic mice, and develop UV-

induced BCC (59–62), suggesting that Hh signaling pathway is a

major driver in the development of these tumors. Mice with the

epidermis-transgenic expression of Gli1 or mice with Sufu+/-

heterozygote develop a skin tumor phenotype resembling Gorlin

syndrome (63, 64). Moreover, increased levels of GLI protein

expressions are frequently associated with poor prognosis and

therapeutic resistance in MB or BCC (65, 66). Remarkably, SMO

inhibitors have been successful in treating patients with BCC in clinic.

To be mentioned, mutations in Hh components, such as SUFU, have

also been identified in other cancer types, such as prostate cancer

(67), albeit less frequent, but potential mechanistic relevance in

tumorigenesis is unclear.

Hh ligand-dependent mechanisms have also been reported in

a variety of tumors, where Hh ligands produced by tumor cells

actively promote Hh signaling activity in the tumor cells themselves

(autocrine) or tumor microenvironment cells (paracrine)

(Figures 2B, C). The key hints for functional relevance of Hh

ligand-dependent mechanisms in tumorigenesis result from
B

C D

A

FIGURE 2

Models of Hh signaling pathway activation in cancer. (A) Hh ligand-independent activation due to the mutations of Hh components, including
mutations in PTCH, SMO, SUFU, and GLI amplifications. (B) Hh ligand-dependent autocrine activation due to excessive Hh ligands secreted by tumor
cells to induce Hh signaling in tumor cells themselves. (C) Hh ligand-dependent paracrine activation due to excessive Hh ligands secreted by tumor
cells to induce Hh signaling in nonneoplastic cells, such as fibroblasts and macrophages, which in turn secrete soluble mediators, such as IL-6, TNF-
a, and VEGF to promote tumor growth. (D) Hh ligand-dependent reverse paracrine activation due to Hh ligands produced by stroma cells to induce
Hh signaling in tumor cells.
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several independent studies. In contrast with ligand-independent

tumors, although Hh activity is abnormally activated, these tumors

do not harbor Hh component mutations and their pathway activity

largely depends on Hh ligands (68). Besides, many tumors express

abundant levels of Hh ligands, especially Shh and Ihh, such as

pancreatic (69), colon (70), breast (71), bladder (72), gastric (73)

and small cell lung (74) cancers. Early assumptions for the ligand-

dependent autocrine models came from observations that Hh

ligands drove the proliferation of tumors cells and Hh-

neutralizing antibody dramatically blocked its pro-tumor effect in

vitro (68), however the potential mechanism is elusive since these

tumor cells did not display a corresponding decrease in Hh target

gene expressions, demonstrating the existence of alternative

assumptions. Indeed, a recent study demonstrated that Shh

induced proliferation at least in part due to the inhibition of

PTCH-mediated apoptotic activity, leading to compromised

apoptosis of tumor cells (75).

Hh-dependent paracrine mechanism may also be involved in

tumorigenesis. In multiple Hh ligands-expressing human tumor

xenograft models, Hh target gene expressions specifically increased

in tumor-infiltrating nonneoplastic cells rather than tumor cells,

indicating the activated Hh signals in tumor microenvironment

cells, far from tumor cells (76).In line with this, recent single-cell

RNA-sequencing data from pancreatic ductal adenocarcinoma

(PDAC) patient-derived tissues and organoids revealed that Hh

ligands are confined to tumor epithelial cells, whereas Hh target

gene expressions were largely restricted to stromal cells (77–80),

furtherly supporting the notion of ligand-dependent paracrine

mechanisms. In this model, tumor microenvironment cells in

turn secrete soluble mediators, such as IL-6, TNF-a and VEGF to

promote tumor growth (81). Notably, updated research has

demonstrated the elusive role of Hh in paracrine-dependent

tumors. Blocking Hh activity may not always restrain tumor

growth, but may accelerate tumor progression even in some

circumstances. For instance, in xenograft PDAC tumor models,

pharmacological inhibition of Hh potentially reduced tumor growth

along with a reduction of Hh activity in the mouse stroma cells (76,

82). Surprisingly, more recent studies also observed that Shh

deletion in the pancreatic epithelium, Smo deletion from stromal

fibroblasts or chronic Hh inhibition using a SMO inhibitor

accelerated PDAC progression and shortened survival, suggesting

its tumor suppressor roles (78, 79, 83). The tumor-restraining

functions of paracrine Hh (mainly refers to Shh/Ihh) have also

been demonstrated in other tumors, such as colon cancer (84),

bladder cancer (85), prostate cancer (86) and lung adenocarcinoma

(87). These seemingly paradoxical results appear to be associated

with the heterogeneity of fibroblasts, which we will discuss in the

next section. To summarize, the two Hh-ligand dependent

hypotheses are not mutually exclusive and tumors may take

advantage of both signal transduction models to optimize growth.

Interestingly, Hh ligand-dependent reverse paracrine signaling

has also been observed in tumors (Figure 2D). In this case, Hh ligands

derived from microenvironment cells provoke Hh signaling activity

in tumor cells (88, 89). For example, malignant lymphoma and

plasmacytoma cells receive Hh signaling from bone-marrow, nodal

and splenic stromal cells, thereby enhancing malignant process (88).
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4 Hedgehog signaling
pathway modulates tumor
immune microenvironment

The tumor microenvironment (TME) serves as a crucial

contributor to tumorigenesis, malignant development, metastasis,

and drug resistance (90, 91). The TME is composed of

heterogeneous cancer cells, immune cells, cancer-associated

fibroblasts (CAFs), and cancer stem cells along with extracellular

components, such as cytokines, chemokines, and extracellular

matrix (ECM). All of these contents interact with each other to

develop an immune escape milieu. Especially, the component cells

in the TME exert distinct functions to modulate tumor immunity.

Over the past few years, immunotherapy has become a hot pot in

basic, translational, and clinical research. Despite of its great power

in cancer treatment, the emerging resistance to immunotherapy cast

a shadow over this field. Thus, it is important to comprehensively

understand immunosuppressive mechanisms within TME to

develop rational combination therapy aiming to improve or

overcome the resistance to immunotherapy. Moreover, ongoing

studies provide novel insights into the potential of Hh pathway in

regulating immune responses in several malignant neoplasms. As

the immunomodulatory roles of Hh pathway are scarcely discussed,

in this part, we mainly summarize the latest findings about Hh

pathway in the regulation of the tumor-associated macrophages, T

cells, CAFs, and immune checkpoint PD-L1 (Figure 3 and Table 1).

4.1 Hedgehog signaling pathway drives
the polarization and proliferation of
tumor-associated macrophages

Tumor-associated macrophages (TAMs) are a population of

heterogeneous myeloid-derived immune cells in the TME, which

display pro- or anti-tumor functions that influence tumorigenesis

(109). TAMs are generally polarized into two subtypes, including

type I macrophages (M1), which are proinflammatory and

contribute to inhibiting tumor development, and type II

macrophages (M2), which are immunosuppressive contributing to

protecting tumors from immune surveillance and pro-angiogenesis.

The signaling cues from TME are able to regulate macrophage

polarization and function. In most cases, TAMs tend to assume M2

phenotype. Increased number of infiltrating M2-like TAMs is often

associated with resistance to immune checkpoint therapies and

shorter survival among patients with various cancers (110–115).

Thus, drugs that can inhibit M2-like TAM phenotype and induce

M1-like phenotype may be beneficial for tumor therapy.

Recent studies have highlighted the importance of Hh in

regulating the phenotype and function of TAMs, both of which are

critical for tumor immune responses. Tumor-derived Shh has been

shown to facilitating M2 polarization of TAMs in hepatocellular

carcinoma, lung carcinoma, mammary tumors and multiple

myeloma in vivo and in vitro (93–97). Accordingly, pharmacological

or genetic inhibition of Smo in myeloid cells (including macrophages,

monocytes, and granulocytes) or Shh-deletion in tumor cells

dramatically decreased M2 polarization and tumor growth.
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Importantly, loss of Hh activity in TAMs was associated with

enhanced CD8+ T cell infiltration in the TME by the suppression of

chemokines CXCL9 and CXCL10, and CD8+ T cell effector functions

by promoting PD-L1 expression via STAT3, thereby influencing the

survival and tumor development in hepatoma, indicating that Hh

modulates T cell inhibition at least in part by TAMs in Hh-ligand

dependent paracrine tumors. Distinct mechanisms of Hh-induced

TAM polarization have been proposed, including GLI-triggered

transcriptional regulation of Krüppel-like factor 4 (KLF4) and IL-4

(93, 94), as well as metabolic reprogramming, such as O-

GlcNAcylation biosynthesis, lipid metabolism and mitochondrial

adaptations (95). Notably, combining a Hh inhibitor with

macrophage depletion may potentially improve the therapeutic

benefits, providing a probable combination strategy in clinical trials

for patients with Shh-overexpression cancers. Since Shh is also highly

expressed in other cancer types, such as colorectal cancer, pancreatic

adenocarcinoma and gastric cancer (116), it deserves exploring its

novel immunotherapeutic potential in these tumors in the future. In

addition to the effect on differentiation status of TAMs, a more recent

study demonstrated that Hh activity also influenced the proliferation

of TAMs in multiple myeloma (97). Mechanistically, Hh signaling

positively regulates BMI1 transcription, leading to TAMs

proliferation, which drives angiogenesis by upregulating VEGF, NO

expression and thus contributing to their pro-myeloma functions (97).

Moreover, Jayati and colleagues identified Shh as a chemoattractant to

induce macrophage migration by upregulating the expression of

CCR2, a crucial receptor expressed in macrophages for chemotaxis,

via SMO-dependent mechanism during gastric epithelial

regeneration (98).

On the other hand, macrophages may positively regulate Hh

activity during tumor initiation and progression by producing

soluble mediators. Jinushi et al. clarified that TAMs-derived milk-

fat globule-epidermal growth factor-VIII (MFG-E8) activated Hh
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signaling pathways in cancer stem cells, and induced tumorigenicity

and anticancer drug resistance (117). Besides, Wang and colleagues

also showed that IL-1ra production by macrophages enhanced

tumor cell stemness and metastasis via activating Hh pathway

(118). Moreover, LPS-activated M1 macrophages were able to

produce Shh, which furtherly promotes the stem cell phenotype,

consequently mediating tumor growth and chemoresistance (89).
4.2 Hedgehog signaling pathway controls
T cell activation and differentiation

Mature T lymphocytes are primarily divided into CD8+ or

CD4+ T cells according to their molecular characteristics (119, 120).

CD8+ T cells are the main effector cells that eliminate tumors and

protect tumor cells from immune escape via secreting cell cytolytic

molecules and pro-inflammatory cytokines. CD4+ T cells mainly

regulate immune effects by secreting cytokines to enhance or

dampen immune responses.

Growing evidence demonstrated the essential role of Hh

signaling on T-cell fate by regulating tumor-antigen specific T cell

receptors (TCRs) that recognize antigens and associate with the

activation and resolution of T cells, in physiological conditions

(121–123). Increased Hh activity diminished TCR signal strength,

thus impairing the ability of TCR to transduce signals to T cells for

activation and proliferation. Mechanistically, Hh activation

compromised TCR-induced calcium influx and major components

of the TCR signaling pathway, including AP-1, NF-kB and

phosphorylated ERK (124, 125). The role of Hh signaling in T cells

under pathological conditions has also been identified. T cell

differentiation is affected by Hh signaling. CD4+ T cells with GLI2

constitutively activated tend to adapt Th-2 like profiles, which is

characterized by secretion of IL-4 and IL-13, and this seems to be
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FIGURE 3

The role of Hh signaling in tumor immunity. Shh derived from tumor cells or stroma cells activates Hh signaling pathway in TME cells and regulate
the phenotype and function of TAMs, CAFs and T cells, which in turn secrete various immunomodulatory factors and many other soluble mediators
to promote tumor malignant progression. Please refer to the main text for details.
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associated with GLI-mediated transcriptional upregulation of Th-2

cell master regulator IL-4, consequently enhancing allergic

inflammation and inhibiting cytolytic CD8+ T cells in the context

of tumors (99, 126, 127). Conversely, Hh-deficient CD4+ T-cells

adopt Th-1 phenotype, which produces interferon-gamma (IFN-g)
and evokes CD8+ T cell activation and tumor suppression (99).

Regulatory T cell (Treg) plays an immunosuppressive role by

dampening the effector function of T cells. Interestingly, in mice

with induced atopic dermatitis (AD), Hh signals to CD4+ T cells to

trigger the upregulated expression of FOXP3 and TGF-b, which is

crucial to Treg terminal differentiation and consequently reduce T-
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cell function, suggesting the anti-inflammatory action of Hh in AD

(100). Since many cancers express excessive Hh ligands, we therefore,

hypothesize that Hh might also signal to tumor local T-cells to skew

immune response. Indeed, potential relevance between Hh and T cell

activity has also been reported in tumor microenvironment. Tumors

with high Hh levels tend to display lower fractions of CD8+ T cells

and significantly enrich more Tregs in pan-cancer analyses (128,

129). Similarly, Ptch-mutation and SmoM2 triggered BCC mouse

models exhibited strong infiltration with Tregs and secretion of

immunosuppressive signals, such as IL-10 and TGF-b in the tumor

lesions (130, 131). In line with this, Hh pathway inhibitor induced
TABLE 1 The functions of Hh signaling in regulating TME and the potential mechanisms.

Effector
TME cells/
checkpoint

Biological
functions Mechanisms Cancer/Disorder

models

References

Tumor cells

Increased
proliferation,

migration, drug
resistance and

stemness

Activated Hh signaling pathway Various tumors

(92)

Macrophages

Induced M2
polarization and

reduced
inflammatory
responses

Regulated the transcription of KLF4, IL-4 and promoted metabolic
reprogramming

Hepatocellular carcinoma,
lung carcinoma, mammary
tumor, multiple myeloma

(93–97)

Increased
proliferation

Enhanced BMI1 transcription Multiple myeloma (97)

Enhanced migration Upregulated chemokine receptor CCR2
Gastric epithelial
regeneration

(98)

T cells

Promoted Th2
transcriptional
programs and
differentiation

Positively regulated the transcription of IL-4 Allergic disease (99)

Promoted Treg
differentiation

Upregulated the expressions of FOXP3 and TGF-b Atopic dermatitis (100)

PD-L1

Induced PD-L1
expression in tumor
cells on hypoxia

context

Not determined
Multiple cancer cells in

vitro
(101)

Induced the
transcription of PD-
L1 in tumor cells

GLI1 and GLI2 directly bound to the PD-L1 promoter
Human gastric cancer

organoid
(102, 103)

Induced the
transcription of PD-

L1 in TAMs
Participated in STAT3-mediated PD-L1 induction

Hepatocellular carcinoma,
lung carcinoma

(96)

Induced PD-L1
expression in
dendritic cells

Induced PD-L1 expression at post-transcriptional level by blocking miR-324-
5p and miR-338-5

Mycobacterial infection (104)

Fibroblasts

Promoted myCAF
invasion

Not determined Pancreatic cancer (82)

Maintained myCAF
subtype

Hh inhibition reduced myCAF numbers and increased iCAF numbers,
which promoted to develop immunosuppressive microenvironment; Ihh
inhibited the secretion of CXCL12 and thus attenuated immune cell

infiltration

Pancreatic cancer; colon (80, 105)

Fueled malignant
phenotype of tumors

Induced the secretion of soluble mediators, such as IGF-1, Activin, lactate to
enhance Hh signaling in tumor cells

Multiple tumor types (106–108)
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tumor regression and accompanied by recruitment of CD4+ and

cytotoxic CD8+ T cells and an upregulation of MHC class I according

to IHC analysis of biopsies from patients with BCC, indicating the

activation of immune microenvironment (132). Activated T cell after

Hh inhibition was also observed in breast cancer, hepatoma, and

Lewis lung carcinoma (93, 94, 96). However, whether of the intrinsic

role of Hh in T cells also plays an immunosuppressive role in the

tumor microenvironment is largely unknown and remains to be

investigated in the future.
4.3 Hedgehog signal induces
PD-L1 expression

The immune checkpoint receptor PD-1 (also known as CD279)

and its ligand PD-L1 (also known as CD274) represent the

dominant immune checkpoint pathway. In the TME, PD-1 is

mainly expressed by lymphocytes, whereas PD-L1 has been

detected on several cell types, including tumor cells, fibroblasts,

TAMs and lymphocytes. Engagement of PD-1 with PD-L1 prevents

T cell proliferation, activation and cytokine production, thus

blockade of PD-1/PD-L1 interactions serves as a promising

strategy for cancer therapy (133).

Several studies report on the associations of Hh signaling for

modulating PD-L1. A recent pan-cancer analysis of gene signature

demonstrated that tumors with comparatively higher Hh activity,

especially in uterine corpus endometrial carcinoma, skin cutaneous

melanoma and ovarian serous cystadenocarcinoma, display

upregulated PD-L1 and relatively fewer immune effectors (129),

indicating possible links between Hh signaling and PD-L1-

mediated tumor immune responses. Further supporting this

notion was that the expression of GLI2 has a positive correlation

with PD-L1 and negatively correlated with infiltrating CD8+ T cell

in gallbladder cancer and gastric cancer tissues (103, 134). In vitro,

hypoxia-induced PD-L1 expression was shown to be at least

partially dependent on Hh signaling in various cancer cells,

subsequently skewing the lymphocyte activation (101). Also, in

human gastric cancer organoid models, Hh signaling induced PD-

L1 expressions, and GANT-61, a Hh inhibitor targeting GLI,

significantly downregulated PD-L1 and evokes anti-tumor

immune (102, 103). At the molecular level, GLI1 and GLI2 can

directly bind to the PD-L1 promoter to promote its transcription,

which is independent of SMO (103), suggesting that targeting GLI

may gain more favorable outcomes in this case.

In addition to regulating PD-L1 expression in cancer cells, Hh

signaling also has a role in modulating PD-L1 in immune cells. STAT3

represents one of the major transcription factors that induce PD-L1

expression (135). In TAMs, GLI1 directly binds to the promoter of

STAT3 and induces its expression, facilitating PD-L1 transcription

and thereby leading to suppression of CD8+ T cell effector functions.

In line with this effect, deletion of Smo in myeloid cells significantly

blocked PD-L1 expression and increased effector functions of CD8+ T

cell as measured by IFN-g and granzyme B secretion and reduced

tumor growth (96). Furthermore, GLI1 also facilitated PD-L1

expression by suppressing its negative regulators miR-324-5p and

miR-338-5 in human DCs, leading to the expansion of Tregs (104).
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Together, Hh signaling serves as a stimulator of PD-L1 expression in

multiple cell types, raising the possibility that Hh activity seems to be a

predictive biomarker for anti-PD-1 therapy and a rational

combination of checkpoint inhibitors with Hh inhibitors would gain

more therapeutic advantages than monotherapy.

4.4 Hedgehog signaling pathway regulates
interactions between cancer cells and
cancer-associated fibroblasts

CAFs are one of the most abundant cell populations in TME,

which is tightly involved in tumor immune evasion, cancer

metastasis and angiogenesis by synthesizing ECM and secreting

various immunomodulatory effectors and growth factors (136, 137).

Recent reports revealed their phenotypic and functional

heterogeneity across/within tumors. For example, several CAF

subsets have been identified in PDAC via single-cell RNA

sequencing, such as myofibroblastic CAFs (myCAFs) and

inflammatory CAFs (iCAFs) in TME, wherein myCAFs

characterized by high a-SMA expression, contribute to secreting

ECM proteins, tumor migration and resistance, whereas iCAFs

secrete inflammatory factors, such as IL-6, IL-11 (138). The

existence of CAF subpopulations with immunomodulatory

functions has also been identified in breast cancer and melanoma

(CAF S1)(139, 140). Functionally, most of CAFs in TME promote

tumor development, while tumor-suppressing CAFs have also been

identified, indicating the biphasic roles in TME. Changes in the

compositions of CAFs may cause distinct outcomes (137, 138, 141).

Knowledge in the correlation between Hh and CAFs is currently

emerging. CAF infiltration and fibrous tissue deposition are

positively correlated with Hh activity, indicative of biologically

relevant functions (142). Intriguingly, the functional role of Hh

signaling in CAF-mediated tumor development seems pleiotropic,

and modulation of Hh signaling in CAFs may lead to contradictory

results. In PDAC tumor xenograft models, acute inhibition of Hh

reduced tumor-associated ECM and improved sensitivity to

chemotherapy, thereby providing a survival advantage in vivo

(143, 144). However, recent studies have challenged this dogma.

In Kras-mutated (G12D) mouse models, CAFs with SMO depletion

resulted in pancreatic acinar-ductal metaplasia and subsequently

promoted the initiation of PDAC (83). Hh inhibition with genetic

deletion of Shh or chronic SMO inhibitors reduced myCAFs and

accelerated PDAC progression (79, 85). A disappointing response

of patients with PDAC to Hh inhibitors has also been observed in

clinic (79, 145–147). These results potentially indicate that Hh

signaling may regulate different CAF subsets to execute tumor-

restricting or tumor-promoting functions. Indeed, single-cell RNA

sequencing clarified the distinct activation state of Hh signal in CAF

subsets, of which myCAFs displayed higher Hh pathway activity

and are preferentially activated compared with iCAFs in mouse and

human PDAC. Long-term Hh pathway inhibition resulted in

myCAF depletion and iCAF enrichment, which contributed to a

more immunosuppressive microenvironment and disease

progression (80), indicating the importance of selectively

targeting CAF subpopulations, but not pan-CAF ablation as

previous description. Although, the tumor-restricting role of Hh-
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mediated CAF has also been reported in other tumors, such as colon

cancer, bladder cancer (84, 85), the specific functions of Hh

pathway in different CAF subpopulations are not clear and

remain to be identified. Furthermore, paracrine Hh ligands also

promotes CAFs to produce factors, such as IGF-1, activin, lactate,

which in turn fuel malignant phenotype of tumor cells (106–108).

Reciprocally, CAFs also activate Hh signaling in cancer cells by

producing soluble mediators, such as CCL2, CCL5 and IGF-1. All of

them can promote tumor progression in many aspects,

including enhanced proliferation, migration and stem cell

phenotype (148, 149). In patient-derived xenografts colorectal

cancer models, CAFs-secreted growth factor TGF-b2 directly

induced transcription of GLI2, thereby contributing to increasing

stemness and intrinsic resistance to chemotherapy (150).

Pharmacological inhibition of Hh and TGF-b2 synergistically

enhanced the effect of chemotherapies. Furthermore, CAFs-

derived exosomes cargo Shh promoted proliferation and

malignant progression of esophageal squamous cell carcinoma

and these effects can be partially mitigated by Hh inhibitor (151).

Thus, Hh signaling has non-negligible effects on the crosstalk

between CAFs and tumor cells, which is crucial for cancer therapy.

In summary, Hh signaling pathway not only directly promotes

the proliferation and survival of tumor cells, but also induces the

secretion of various immune suppressive cytokines, upregulates PD-

L1 expression to develop an immunosuppressive microenvironment,

and mediates the tumor-restricting or tumor-promoting functions of

CAFs (Table 1). Thus, proper modulation of Hh pathway may

represent reciprocal benefits for combating tumor growth and

reverting pro-tumor TME.
5 Targeting Hedgehog signaling for
antitumor therapy

Hh signaling has emerged as an attractive target in anticancer

drug development. In this part, we will review the latest advances of

Hh pathway inhibitors, with a focus on tumor immune therapy.
5.1 Small molecule inhibitors targeting at
Hedgehog pathway

In the last few decades, great efforts have been devoted by

pharmaceutical companies and academia to design new Hh

inhibitors and several central Hh pathway components have been

proved to be potential drug targets, mainly including Hh ligands,

SMO and GLI proteins (Table 2).

Owing to increased production of Hh ligands by many cancers,

disrupting the engagement between Hh and PTCH provides an

available way to inhibit Hh signaling and curtail tumor growth. Hh

neutralizing antibodies, including 5E1 (152, 153), a Shh monoclonal

antibody, and MEDI-5304 (154), a Shh and Ihh monoclonal

antibody, and small molecule compounds, including Robotnikinin

and HL2-m5 (155, 156), have been reported to disrupt Hh/PTCH

interactions, thereby suppressing Hh pathway and exhibiting anti-

tumor activity. Shh transcription is also a potential targeting
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approach. Our previous research identified that natural product

berberine significantly inhibited Shh expression at transcription

level and delayed the growth of Shh-paracrine colon cancer in vivo,

but the potential mechanism remains to be determined (158).

Besides, interfering Hh ligand stability is another promising

strategy. For example, RU-SKI has been reported to interfere Hh

acyl-transferase-regulated Hh palmitoylation, which is an essential

process for Hh protein stability and activity (159). However, one

should notice that this type of Hh inhibitors might only display

therapeutic effects in ligand-dependent tumors.

SMO inhibitors represent the predominant antagonists of Hh

signaling pathway. Cyclopamine, a steroidal alkaloid derived from

corn lilies, was the first identified Hh antagonist by directly binding

to SMO (23, 160, 180, 181). Owing to its poor solubility and

moderate potency, it was just used as a tool compound, not for

clinical development. Some derivatives of cyclopamine were

developed with more potent pharmacologic properties, such as

saridegib (aka IPI-926) by Infinity (161). Of all the specific SMO

inhibitors, there are only three on the market. The “first-in-class”

Hh inhibitor is vismodegib (also known as GDC-0449) from

Genentech, and approved by FDA in 2012 for the treatment of

metastatic, recurrent and locally advanced BCC (163, 164), followed

with sonidegib (aka LDE-225) from Novartis for locally recurrent

and advanced BCC in 2015 (165, 166). In general, these two drugs

displayed comparable response rates in patients with locally

advanced basal cell carcinoma (182). Currently, they are actively

undergoing clinical trials for other solid cancers. In 2018, a great

advance came with the FDA approval of another SMO inhibitor

glasdegib (aka PF-04449913) for treatment of patients with acute

myeloid leukemia (AML) (168). This orally administered drug

combination with low-dose cytarabine (LDC) improved the

overall survival duration to 8.8 months from 4.9 months

compared with LDC treatment alone in AML (167). Those

inhibitors against SMO discussed above almost all combine with

the 7-TMD of SMO (Table 2). Recently, SMO CRD has also been

identified as another binding domain(183–186). Since GDC-0449-

resistance mutations predominantly lie within 7-TMD domain,

compounds targeting at SMO CRD seems to have the potential,

at least in part, to overcome the resistance of FDA-approved SMO

inhibitors, thus providing an alternative strategy for inhibition of

resurgent Hh activity. Our group has demonstrated that ABT-199

appears to target at SMO CRD and can inhibit Hh activity provoked

by SMOmutations that do not respond to GDC-0449, in vivo and in

vitro (170) (Table 2).

Loss of SUFU, GLI amplifications and alterations in alternative

pathway, though less frequent than SMO mutations, have also been

observed in bench and bedside trials (187). Hence, development of

drugs targeting downstream of SMO aroused significant interest in this

field (188). Previous study found that BCL2 families (BCL2, BCL-XL,

MCL1) interact with SUFU, thus disturbing SUFU-GLI interactions

and inducing GLI targeting genes (169). Pharmacologic BCL2

inhibitors suppressed GLI-associated tumor growth. Intriguingly, we

recently reported a selective BCL-XL PROTAC degrader disabling

BCL-XL/SUFU interaction and countering drug resistance, especially,

without effect on the bone growth of youngmice (171). Compared with

SUFU inhibitors, more GLI antagonists have been identified. Cellular
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screening identified the first such inhibitors, GANT-61/GANT-58

which block GLI transcription by interfering GLI1- DNA binding

and effectively suppress the growth of tumors with elevated GLI1

expression, such as Ewing’s sarcoma (172, 173). Due to the poor

pharmacodynamics and pharmacokinetics, they are just widely used as

a tool. Similar to GANT-61, with virtual screening and structure

docking leads to the discovery of GlaB, which directly engages GLI1

and thus blocks GLI1-DNA binding (174). Remarkably, arsenic

trioxide, an FDA-approved drug for acute promyelocytic leukemia,

has also been reported to act at the level of GLI by not only disturbing

the stability and ciliary translocation of GLI2 but also directly binding

to GLI1 (61, 175). Arsenic trioxide effectively suppressed tumors with

abnormal Hh activation, such as primary medulloblastoma,

vismodegib-resistant medulloblastoma and Ewing sarcoma in vivo

when used alone or in combination with SMO inhibitor (61, 175,

189). It has been used in clinic for many years with clear safety-profiles,

thereby providing a strong opportunity for clinical trials. On the other

hand, in addition to direct GLI inhibitors discussed above, developing

indirect GLI antagonists is well appreciated, since the transcriptional

effector GLI has a shallow structure and lacks drug binding pocket. For

example, Prostaglandin E1, an FDA-approved drug, was reported to be

a potential indirect GLI inhibitor by promoting phosphorylation and

degradation of GLI2 via activating ubiquitin-proteasome pathway

(176). Besides, epigenetically or transcriptionally targeting GLI is
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another strategy to inhibit GLI by affecting gene transcription.

Histone deacetylases (HDACs) regulate transcription by removing

the acetylation status of histones or transcription factors (190).

HDAC1 and HDAC2 were identified as transcriptional enhancers of

GLI activity by deacetylation. Pharmacological inhibition of HDAC

using TSA inhibited Hh activity and the growth of Hh-dependent

cerebellar granule cell progenitors in vivo (177). Furthermore, BRD4

has been identified to occupy GLI1 and GLI2 promoters to enhance

GLI transcription (178). Hence, BRD4 inhibitors, such as JQ1 and

compound 25 synthesized by our group, are able to essentially block

GLI-mediated genes and Hh triggered tumors in vitro and in vivo (178,

179). Details of other compounds by antagonizing GLI can be found

elsewhere (188, 191, 192). Of all GLI inhibitor, only arsenic trioxide is

currently in clinical studies and has completed the phase II

(NCT01791894) clinical trial. However, poor effect and adverse side

effects have been reported (193).
5.2 Nanoparticle formulation for Hedgehog
pathway modulation

In recent years, nanobiomaterial is emerging as a promising

therapeutic strategy against multiple tumors. Nanoparticles (NPs)

are capable of loading therapeutic drugs, small molecules and
TABLE 2 Compounds discussed in this review.

Compounds Targets Models of action References

5E1 Shh Shh monoclonal antibody (152, 153)

MEDI-5304 Shh, Ihh Shh and Ihh monoclonal antibody (154)

robotnikinin Shh Binds to Shh (155)

HL2-m5 Shh, Ihh, Dhh Binds to Shh, Ihh and Dhh with similar affinity (156)

berberine Shh, SMO Promotes Shh mRNA degradation and targets SMO with unclear mechanisms (157, 158)

RU-SKI Shh Inhibits Shh palmitoylation (159)

cyclopamine SMO Binds to the 7-TMD and CRD of SMO and induces its cilia localization (160)

IPI-926 (saridegib) SMO Cyclopamine analogue (161)

GDC-0449 (vismodegib) SMO Binds to SMO 7-TMD (162–164)

LDE-225 (sonidegib) SMO Binds to SMO 7-TMD (165, 166)

PF-04449913 (glasdegib) SMO Binds to SMO 7-TMD (167, 168)

ABT-199 SMO/SUFU Targeting SMO CRD/Disturbing SUFU-GLI interactions (169, 170)

MIMX, ABT-263 SUFU Disturbing SUFU-GLI interactions (169)

SIAIS361034 SUFU Disturbing SUFU-GLI interactions (171)

GANT-61/GANT-58 GLI Binds to GLI1 and GLI2 to prevent their binding with DNA (172, 173)

GlaB GLI Binds to GLI1 to prevent its binding with DNA (174)

arsenic trioxide GLI Binds to GLI1 and interferes with the stability of GLI2 (61, 175)

prostaglandin E1 GLI Promotes the ubiquitin-mediated degradation of GLI2 via cAMP-PKA axis (176)

TSA GLI Modulate GLI deacetylation by targeting HDAC (177)

JQ1 GLI Inhibits GLI1 and GLI2 transcription by targeting BRD4 (178)

Compound 25 GLI Inhibits GLI1 and GLI2 transcription by targeting BRD4 (179)
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therapeutic peptides at intended target sites, such as tumor, and

thus enhancing antitumor capabilities. Intriguingly, several studies

have reported the beneficial of engineered NPs for modulating

tumor microenvironment by encapsulating Hh inhibitors alone or

in combination with cytotoxic agents.

Jun’s group designed a polymeric micelle nanoformulation (M-

CPA/PTX) to co-deliver cyclopamine (CPA), which inhibited

stroma-producing CAFs, and cytotoxic chemotherapy drug

paclitaxel (PTX) to kill tumor cells (194). M-CPA/PTX

significantly suppressed tumor growth and extended survival

time, importantly, without influencing on collagenous matrix,

which is key to restrain tumor growth and metastasis (79). This

could indicate that reprogramming NPs would be a potential

approach for targeting both TME and tumors with less adverse

effects. Similarly, erythrocyte membrane-camouflaged PLGA

nanoparticles (MNP)-encapsulated cyclopamine (CMNP) in

combination with PTX-loaded MNP displayed more obvious

tumor growth inhibition in vivo (195). A more recent study

designed polyoxazoline block copolymer micelles-formulated

vismodegib (POx-vismo), which actively functioned within the

vascular compartment, thus displaying improved brain and tumor

drug delivery and prolonged survival in medulloblastoma-bearing

mice. This study has demonstrated the value of developing

nanoparticle formulation to enhance anti-tumor efficiency,

especially in brain tumor therapy (196). Indeed, Tylawsky’s group

reported a fucoidan-based nanocarrier targeting endothelial tumor

vasculature to promote blood-brain barrier crossing(197). This NPs

encapsulating GDC-0449 significantly enhanced anti-tumor efficacy

and drug exposure to healthy brain tissue with reduced bone

toxicity. Given the important role of Hh signaling pathway across

multiple cancers and TME, it is valuable to completely probe this

strategy in many other Hh-dependent tumors.
5.3 Hedgehog antagonists in
tumor immunotherapy

New insights into Hh signaling pathway regulation in TMEmay

provide a novel opportunity for cancer immunotherapy. A clinical

retrospective study showed that Hh targeting therapy was

accomplished with increased infiltration of cytotoxic T cells in

BCC (132). In vitro and in vivo, pharmacological inhibition of Hh

pathway ameliorates several aspects of immunosuppressive TME

via regulating the TAM polarization, CAF fate, T cell functions, and

coordinating cell metabolic responses, suggesting that inhibition of

Hh axis may serve as a promising strategy for immunotherapy.

In recent years, the application of PD-1/PD-L1 immune

checkpoint inhibitors (ICIs) has revolutionized tumor therapy

(133). However, most patients exhibit resistance to single-agent

ICIs. Since GLI can both directly and indirectly regulate the

expression of PD-L1 in tumor and immune cells, it is worthwhile

to further interrogate its rational combination use with ICIs for

tumor immunotherapy. Analysis of four independent clinical

cohorts demonstrated that Hh signaling appears to be a negative

biomarker for patients treated with ICIs (129). In an orthotopic

PDAC mouse model, nanodrug encapsulated cyclopamine and
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chemotherapy drug paclitaxel significantly reversed primary

resistance to ICIs and enhanced antitumor efficacy and prolonged

animal survival, which at least partially due to Hh inhibition-

triggered increased CD8+ T cells in TME (198). In hepatocellular

carcinoma, Hh pathway inhibition with vismodegib or genetic

depletion results in immunologic changes, including reduced PD-

L1 expression, improved cytotoxic function of T cells and improved

ICIs therapeutic efficiency (94, 96). In ovarian cancer, single therapy

with anti-PD-L1 received modest effect, whereas combination with

SMO inhibitor IPI-926, regained responses to immunotherapy,

furtherly demonstrating the superiority in combination treatment

(199). Importantly, their clinical combinations appear to be feasible,

since two clinical trials observed encouraging responses to anti-PD-

1 therapy, using pembrolizumab or cemiplimab, respectively, in

patients with advanced basal cell carcinoma after treatment with Hh

targeting inhibition, proving a proof-of-principle basis for rational

combinations with ICIs in Hh abnormal tumors (200, 201).

However, another clinical trial with patients suffering from

metastatic or unresectable basal cell skin carcinoma demonstrated

that pembrolizumab in combination with vismodegib treatment did

not display increased responses, although it showed superior one-

year progress ion-free survival compared with single

pembrolizumab treatment (202). Thus, whether Hh inhibitors in

combination with ICIs function as a more favorable therapeutical

strategy in tumors and what specific type of tumors deserve

further investigation.
6 Conclusions and perspectives

Aberrant Hh signaling pathway is implicated in a wide range of

tumors. Emerging studies have described the associations between

Hh signaling pathway and tumor immunity. These findings

underscore that Hh signaling not only play an intrinsic role in

tumor cells but also has an immunomodulatory role in TME by

modulating the adaptions of macrophage polarity and maturation,

T cell response, CAF function, and PD-L1 expression. In particular,

the tumor-suppressive effects of Hh signaling in CAFs have recently

been identified in a variety of tumors. Hence, Hh signaling activity

must be finely balanced. As many compounds targeting Hh

pathway are being developed in preclinical and clinical research

for cancer therapy, it is valuable to detect changes in TME while

monitoring the changes in tumor size and progression, which will

not only be helpful to optimize treatment strategies, but also avoid

drug-induced immunosuppression.

The presence of reciprocal regulatory crosstalk between cancer

cells and TME, modulated by Hh pathway argues strongly for the

development of rational combination strategy targeting Hh

pathway and immune suppression, such as immune checkpoint

inhibitors. However, our knowledge of the mutual determinism of

Hh signaling and TME across diverse cancers remains largely

limited. A better understanding detailed mechanisms in each

tumor will allow to develop optimal combination therapy to

improve clinical responses and decrease drug resistance. With the

development of medicine and innovative technologies, such as

single cell sequences and metabolomics, we are confident that
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t a rge t ing Hh pathway wi l l r e su l t in more pos i t i ve

therapeutic outcomes.

NPs have emerged as a potential tool for anti-tumor therapies

due to their prolonged retention time, reduced toxicity, and tissue

targeted delivery (203). Recently, nanoparticle formulation of Hh-

inhibitors has also been reported to target various aspects of tumor

TME, such as CAFs and abnormal angiogenesis. Despite those

significant advances, however, most of these NPs are still at the early

stage and have not been evaluated in clinic. Besides, further studies

are needed to focus on a comprehensive understanding of TME cell-

specific effects of NPs-based Hh inhibition and identifying

inhibitory efficiency in different Hh-dependent tumors. Improved

understanding of Hh signaling in TME would pave the way for

innovative NPs-based approaches in tumor therapy.
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14. Panáková D, Sprong H, Marois E, Thiele C, Eaton S. Lipoprotein particles are
required for hedgehog and wingless signalling. Nature (2005) 435(7038):58–65.
doi: 10.1038/nature03504
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