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Heterogeneity describes the differences among cancer cells within and between

tumors. It refers to cancer cells describing variations in morphology,

transcriptional profiles, metabolism, and metastatic potential. More recently,

the field has included the characterization of the tumor immune

microenvironment and the depiction of the dynamics underlying the cellular

interactions promoting the tumor ecosystem evolution. Heterogeneity has been

found in most tumors representing one of the most challenging behaviors in

cancer ecosystems. As one of the critical factors impairing the long-term efficacy

of solid tumor therapy, heterogeneity leads to tumor resistance, more aggressive

metastasizing, and recurrence. We review the role of the main models and the

emerging single-cell and spatial genomic technologies in our understanding of

tumor heterogeneity, its contribution to lethal cancer outcomes, and the

physiological challenges to consider in designing cancer therapies. We

highlight how tumor cells dynamically evolve because of the interactions

within the tumor immune microenvironment and how to leverage this to

unleash immune recognition through immunotherapy. A multidisciplinary

approach grounded in novel bioinformatic and computational tools will allow

reaching the integrated, multilayered knowledge of tumor heterogeneity

required to implement personalized, more efficient therapies urgently required

for cancer patients.
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1 Tumor heterogeneity: a
multifaceted phenomenon

The NCI Dictionary of Cancer describes cancer heterogeneity as

“the differences between tumors of the same type in different

patients, the differences between cancer cells within a single

tumor, or the differences between a primary (original) tumor and

a secondary tumor” ((NCI), n.d.). Tumor heterogeneity first

originates from the clonal expansion of individually mutated cells

that, interacting with the evolution of the tumor microenvironment,

provide the genetic and epigenetic material upon which Darwinian

and non-Darwinian evolutionary trajectories drive cancer evolution

(1). The cancer phenotypic properties are modulated at the

epigenetic, transcriptional, protein, and environmental levels,

where different cell types contribute to the heterogeneity of the

cancer tissue in both time (as the tumor evolves) and space, where

the evolving composition of the tumor microenvironment—that

includes dynamically interacting cancer, immune, or stromal cells—

originates the ability of the cancer tissue to respond to

environmental cues and access nutrients, growth factors, and

oxygen. In turn, this molecular and cellular heterogeneity

translates to intra- and interpatient spatiotemporal variability in

the global properties of the tumor, deeply affecting drug response

and disease outcome (2).

Intertumoral heterogeneity describes the tumor-by-tumor

differences among different patients and is dependent on

environmental factors impacting patients’ phenotypes.

On the other hand, intratumor heterogeneity (ITH) is the

cellular diversity within the same tumor or between primary and

metastatic lesions. It includes copy number variations (3),

epigenetic alterations, coding and non-coding somatic alterations,

and transcriptome, proteome, and metabolome differences

(4) (Figure 1).

In tumor sites, the accumulation of genetic and epigenetic

alterations and chromosomal aberrations is strongly accelerated

for various reasons. It can be fostered by: i) the expression of

oncogenes or the loss of tumor suppressor genes that compromise

the DNA repair mechanisms or the spindle assembly checkpoint,

causing genomic instability; ii) exposure to endogenous or

exogenous toxic factors including therapeutic agents; iii) the

tumor microenvironment (TME) (nutrient limitation/hypoxia/

immune system); iv) other genetic and non-genetic factors.

Among the several genes whose deregulation contributes to

tumor heterogeneity, the tumor suppressor TP53 stands out. The

loss of function of the TP53 gene determines the deregulation of the

cell cycle arrest checkpoint allowing cell proliferation despite the

presence of stress signals and DNA damages or skipping apoptosis

also in the presence of severe DNA damages (5). Also, the

deregulation of genes involved in the DNA repair system

(mismatch repair or proofreading machinery) drives genome

instability and subclonal heterogeneity in the tumor sites (6, 7).

Large-scale chromosomal alteration events causing the loss of

genetic material in the order of hundreds of genes greatly

accelerate subclonal evolution and increase the tumor mutational

burden (the total number of mutations per coding area of a tumor
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genome) which can positively or negatively correlate with prognosis

and pharmacological response (8).

Exogenous factors contributing to tumor heterogeneity include

physical factors, such as ionizing and non-ionizing electromagnetic

radiation (UV); chemical factors such as heavy metals and toxic

chemicals including drugs used in anticancer treatments; and

biological factors, such as viruses, bacteria, and reactive oxygen

species (ROS) arising as a by-product of the mitochondrial energy

metabolism (9). In this context, it has been shown that some types

of tumors such as melanoma and lung cancer have a high clonal

“homogeneous coding” mutational burden due to the continuous

exposure of stem cell niches to carcinogens, such as UV for skin and

tobacco for lungs.

Nutrient shortage and hypoxia experienced by the cells within

the core of a newly formed and non-vascularized tumor mass

impose profound metabolic rearrangements, selecting clones

preferring fermentative anaerobic metabolism (10–12). The TME

can also affect tumor heterogeneity in terms of quantity and

phenotypic characteristics of immune and stromal cells recruited

at the tumor site (13–15).

The stroma and immune system’s role in tumor heterogeneity

will be extensively described in Section 6.

In this manuscript, we will review established and emerging

models used to study tumor heterogeneity and how the integrated

use of these models and technologies can improve our knowledge of

tumor heterogeneity, with a special focus on the increasing role of

immune cells.
2 Non-human models to study
heterogeneity

Animal models and cellular in vitro models have long been

exploited to better understand the complex biological processes

characterizing normal human physiology and disease (Figure 2).

In particular, the mouse is the most used animal model for

biomedical research, discovery, and validation. More recently, novel

approaches leveraging bioengineering and complex culture

methods have become more present in the field. Since TME is

such a complex and dynamic microenvironment, different models

and more comprehensive ways to dissect the mechanism underlying

heterogeneity and response to treatment have been developed.

Remarkably, for every single research application and biological

question, there is a right model and strategy to apply.
2.1 Murine models used to uncover tumor
heterogeneity

The most used animal models for cancer research are

genet ica l ly engineered mice (GEMMs) . GEMMs are

immunocompetent transgenic mice that spontaneously develop

malignancies (16). GEMMs allowed the fundamental discovery

that tumor development is driven by the gene loss of a tumor

suppressor gene and/or an oncogene overexpression (17, 18).
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While the field has relied extensively in the past 20 years on Cre/

Lox models, the more recent development of CRISPR/Cas9

approaches has further accelerated the development of mouse

models of human cancers.

Because the mice used in these experiments live in

controlled environments and are genetically similar, tumor

deve lopment and as soc ia t ed phenotypes are h igh ly

reproducible, allowing longitudinal studies that are more

difficult in humans. Nevertheless, even in the most controlled

environment, mouse tumors arising from defined genetic events

do evolve to be genetically different and unique, like human

tumors (19). However, mouse tumors may evolve with a lower

level of genet ic heterogeneity due to the absence of
Frontiers in Oncology 03
environmental mutagens in most cases leading to limited

translational value.

A great strategy to study heterogeneity in murine models is

lineage tracing allowing for the definition of the mode of tumor

growth by clonal analysis. This technique has been extensively used

in differentiation studies, and it has also been exploited in cancer.

For example, leveraging this, Schepers et al. identified Lgr5+ stem

cell activity in mouse intestinal adenomas (20).

Another simple way to mimic the human situation is to treat

mice with the same carcinogens that are known to cause cancer in

humans (21). For example, the 4NQO carcinogen present in

tobacco has been used to induce head and neck cancer

development in mice mimicking up to 94% tobacco mutational
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FIGURE 1

Stroma (A), immune cells (B), nutrients present in the microenvironment (C), and intrinsic factors such as DNA damage and epigenome (D) work
together to produce the primary tumor heterogeneity (E). Intratumor heterogeneity can arise from the primary tumor (F) or from its metastasis (G).
Both processes collaborate in the establishment of intertumoral heterogeneity in the population (H).
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signatures (22). The importance of these types of models is

supported by their extremely extensive use (23–25).

The use of GEMMs is limited by intrinsic problems, including

reduced viability if the mutations occur in the germline, early death

in case of simultaneous development of multiple tumors, and non-

synchronous tumor development in different mice due to

incomplete mutation penetrance (26). Some of these limitations

can be overcome with the application of novel technologies (17, 27,

28), but mostly reliable heterogeneity studies rely on patient-

derived xenograft (PDX) models (29, 30). Human tumor cells are

transplanted into an immune-deficient mouse to obtain a PDX,

maintaining the heterogeneity of the primary tumor (31). A greater

success rate can be achieved with major immunosuppression in the

animal host, and the exploitation of mice lacking B and T

lymphocytes and NK cells shows a better success rate (32). An

advantage of using PDXs is that aggressive tumors such as

colorectal and gastric cancer have more possibilities to engraft in

the host, making PDX an extremely valuable resource to study

aggressive pathologies. Human hormonal treatment of transplanted

mice can improve the engraftment rate of hormone-driven

tumors (30).

The biological differences between mice and humans are

limiting factors in the direct translation of many discoveries to

the clinical setting. Thus, a growing need for a mouse model that

better recapitulates the important features of human biology and

immunity became more urgent . With the advent of

immunotherapeutic drugs leveraging the immune system and

since the mouse immune system does not always replicate the

human one, new humanized mouse models providing the immune

components required to test new therapies have been generated.

These humanized models represent a tremendous advantage in

providing a platform resembling the human response. Humanized

mice with a partial or fully reconstituted immune system have been

developed through stem cell transplant, and they are a promising
Frontiers in Oncology 04
platform to assess the efficacy of immune checkpoint inhibitors.

However, since the human immune system engraftment process

necessitates multiple donors, this generates a high variability in the

results requiring both an increased number of donors and mice. As

an alternative, knock-in mice have been developed. These models

express human genes such as immune checkpoint inhibitors, PD-1,

allowing efficacy studies in immune-competent systems (33).
2.2 Non-murine models exploited in the
understanding of tumor heterogeneity

Although most of the research that focused on cancer

heterogeneity has relied on primary patient samples, murine

xenograft, and murine models, there are more evolutionarily

distant model organisms that are genetically, histologically, and

behaviorally similar to the human cancer disease, and they can have

a potential key role in our understanding of cancer heterogeneity.

2.2.1 Yeast
The yeast Saccharomyces cerevisiae—a eukaryotic unicellular

organism that has long been successfully used as a model organism

for human biology (34)—can grow both in liquid and solid media

using different sugars to support its growth. Approximately half of

the yeast genes exhibit periodic expression patterns when grown

under continuous, nutrient-limited conditions. The cell cycle stage

significantly exacerbates the natural variability present in the

population (35). Similarly, tumor cells could respond differently

to the TME according to their cell cycle stage.

Individual yeast cells respond differently to sugar sources, and

variability in the expression of sugar-metabolizing genes is

observed. For example, single-cell sequencing data showed that

only 1.5% of cells express genes required for galactose metabolism

without this sugar (36).
A
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FIGURE 2

Models to study tumor heterogeneity: (A) non-murine models (Drosophila melanogaster, Danio renio, Saccharomyces cerevisiae), (B) murine models
(syngeneic models, GEMMs), (C) human in vitro models (organoids, organ-on-chip), and (D) humanized murine models.
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The group of Teusink showed that metabolic heterogeneity

within a yeast population could be established and maintained

without any genetic difference (37).

This metabolic variability is observable and even amplified in

yeast colonies growing on solid media. The cells within a yeast

colony are all the progeny from a single founder and share the same

genome. Nevertheless, individual cells in a colony have different

access to resources. Cells in the colony’s lower part—i.e., closer to

the solid medium—have easier access to nutritional resources,

expressing genes related to respiratory metabolism, while in the

upper part, the cells which cannot directly access the nutrients rely

on fermentation (38). As a result, in a single colony, a small number

of cells survive using gluconeogenesis, releasing metabolites

consumed by another subpopulation with a different metabolic

phenotype (39).

2.2.2 Zebrafish
Zebrafish and humans share 70% of protein-coding genes

(40), and their cancers are genetically and histologically similar

(41), also sharing some important drivers in the onset (42). In

the field of heterogeneity studies, zebrafish optical clarity has

been combined with tumor labeling and new imaging techniques

by White et al., who transplanted single-cell tumors into

zebrafish and studied the clonal evolution in response to drug

delivery, also taking advantage of the possibility of using

thousands of fish simultaneously, generating a massive amount

of data (41).

Stemness is another characteristic of cancer involved in the

heterogeneity process and a mechanism that needs to be

uncovered. Ignatius et al. selectively labeled differentiated and

non-differentiated cells with different fluorophores, being able to

sort through FACS the two different populations, revealing

divergent expression profiles and behaviors (with the more

differentiated cells being highly migratory) after microarray

analysis (43). FACS sorting has been also exploited to isolate

zebrafish leukemia cells and transplant them into syngeneic

recipients allowing the production of monoclonal antibodies

and paving the way to new zebrafish cancer models for drug

development (44).

It is also possible to prepare libraries of single tumors and

transplant them into recipient fish to recapitulate the ITH and to

study the effects of drugs (43, 45). The Zebrabow technology based

on the multispectral cell labeling for cell tracing and lineage analysis

in zebrafish allows the labeling of different tumor clones with

different colors and in vivo following their migrations and

competition in the heterogeneous tissue, also assessing the effects

of drug treatments (46, 47).

The optically clear immune-compromised zebrafish “casper”

allows the direct visualization of fluorescently labeled transplanted

cancer cells and supports the neovascularization and the tumor

propagation of heterogeneous clones (48). The “Modeling

Approach in Zebrafish for Rapid Tumor Initiation” (MAZERATI)

allows to express oncogenes and inactivate candidate tumor

suppressor genes using two particular CRISPR vectors, spatially

controlling the tumor spreading (49).
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2.2.3 Drosophila
Sixty percent of the Drosophila melanogaster genome is

homologous to humans, with 90% of genes involved in human

cancer development having an ortholog in the fly (50, 51). Together

with a fast generation time and low maintenance costs, these

features contributed to the development of genetic tools to use

the fly as a model organism for cancer research (52). The “genetic

mosaic technique” lately perfectioned into the “mosaic analysis with

a repressible cell marker (MARCM)” creates individually labeled

homozygous cells in a heterozygous population, generating cells

with a different genotype in a single organism, allowing the

researchers to follow the labeled subpopulation destiny (53).

MARCM revealed how a single mutated cell in a healthy tissue

does not simply overgrow but mostly stimulates the overgrowth and

metastasis in the neighbor cells, contributing to cancer progression

and probably recurrence (54). The same technique also showed that

heterogeneity induces cancer and metastasis by signal propagation

(55), molecule exocytosis (56), amino acid release (57), or ROS

production (58). Other studies highlighted how different cell

populations cooperate in generating tumors: cells mutated in the

spindle assembly checkpoints extrude from the epithelium, losing

epithelial morphology and adhesion. These mesenchymal-like cells

are unable to proliferate but establish a tumor environment by

secreting molecules which promote the growth of epithelial cells. So,

in this case, epithelial and mesenchymal/mutant cells, which at the

beginning are genetically identical, cooperate in the tumor

establishment, with the mutant cells unable to proliferate but still

activating the others (59–61).
3 Human in vitro models to study
heterogeneity

The biological similarity between animal models and humans

has been the basis of the extensive use of these approaches in the

study of cancer. However, the failure of many clinical trials and the

undeniable evidence of discrepancies in the fidelity of the different

models in replicating human physiology generated the necessity of

human-derived models.
3.1 Organoids

Organoids can be described as microscopic self-organizing,

three-dimensional structures, recapitulating many structural and

functional aspects of their in vivo counterpart organs (62).

Biological material such as primary tissues (single cells or tissue

chunks), stem cells like adult stem cells (ASCs), induced pluripotent

stem cells (iPSCs), and embryonic stem cells (ESCs) can be

employed as starting material for organoid production (63). The

cells are embedded in an extracellular matrix structure resembling

the tissue scaffold and mirroring the physiological milieu to

contemplate both matrix influence on cell growth and spatial

organization (64); the final result is a heterotypic three-

dimensional structure that replicates the multilineage composition
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of the tissue of origin as well as its molecular, metabolic, and

spatial heterogeneity.

It is possible to derive lineage heterogeneity through

organogenesis using stem cells (65), while unfortunately, the

different cell lineages are not easily preserved in patient-derived

organoids (PDOs) obtained from tumor sampling due to the

selection of epithelial cells during tissue processing (66, 67). To

work around this issue, the introduction of further cell lineages has

been applied to organoid models to depict a more complex

microenvironment. For example, the desmoplastic reaction

represents a neoplastic feature influencing inflammatory response

and drug distribution, especially in pancreatic cancer, one of the

deadliest cancers worldwide (67); to better investigate tumor–

fibroblast interactions in pancreatic ductal adenocarcinoma (68),

Biffi et al. (69) developed a co-culture system combining naive

pancreatic stellate cells, a precursor of cancer-associated fibroblast

(CAF), to organoids generated from pancreatic cancer cells arising

from a GEMM spontaneously developing pancreatic cancer. This

model was able to reproduce the functional differentiation of

pancreatic stellate cells to inflammatory CAF and myofibroblastic

CAF elicited by the tumor milieu.

Organoids are also applied to a wide range of tissues and

pathologies, e.g., breast cancer (70), liver cancer (71, 72), gastric

cancer (73), colorectal cancer (74), prostate cancer (75), and

pancreatic cancer (76–78).

In the immune context, Neal et al. (79) were able to establish a

patient-derived organoid culture from samples coming from 100

individual patients, covering 19 different tissue sites and 28

pathology subtypes using an air–liquid interface method;

however, they encountered major difficulties in preserving the

stromal population. The generated organoids mostly recapitulated

the parental tumor histology and maintained a complex tissue

architecture, but in 70% of the tumors, the stromal myofibroblast

population progressively decreased. On the other hand, they

observed that PDO-retained tumor-infiltrating lymphocytes

(CD3+) were integrally embedded in close proximity to the tumor

epithelium, macrophages, cytotoxic T cells (CD8+), helper T cells

(CD4+), natural killer (NK) cells, and natural killer T (NKT) cells,

which they were able to support using IL-2 supplementation until

60 days of culture. Instead of evaluating resident and tumor-

infiltrating immune cells, Dijkstra et al. (80) successfully

produced colon-rectal and non-small cell lung cancer PDOs, and

later, to study immune response toward cancer and delineate a

strategy to develop tailored immunotherapy, they used T-cell

populations from peripheral blood to generate a co-culture with

organoids; in such a manner, they were able to elicit a specific

antitumor immune response mediated by CD8+ T cells toward the

PDOs. Extensive genetic heterogeneity within cancer cell

populations is also documented beyond lineage heterogeneity.

ITH, as already presented, provides a substrate for tumor

development promoting drug resistance and metastasis.

Therefore, it is necessary to model the mutational diversity

associated with the branched evolution of clonogenicity, which

can be an innate characteristic of PDOs coming from the genetic

diversity in the tumor of origin (81) or can be promoted in stem

cell-derived organoids through genetic engineering (74, 82, 83).
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Bolhaqueiro et al. (84) employed colorectal cancer PDOs to

investigate the prevalence of chromosomal instability. Single-cell

analysis through three-dimensional live-cell imaging and karyotype

sequencing highlighted a high frequency of chromosomal

instability, which results in aneuploidy and genomic heterogeneity

and promotes drug resistance in colorectal cancer.

The highlighted attention to intratumor diversity in molecular

studies is promoting an overrunning of personalized medicine and

individual clinical plan toward a precision medicine approach that

targets heterogeneity itself embracing intracellular modification

as well.

In the field of metabolism, three-dimensional organization and

multicellular diversification drive the development of differentiated

areas and layers resulting in the impaired distribution of nutrients

and oxygen with an impact on cell proliferation and metabolism

(85); indeed, metabolic heterogeneity affects drug response as well

as carcinogenesis (86). Several methodological approaches have

been developed for real-time and spatial-resolved metabolism

analysis in organoids such as extracellular flux analysis (Seahorse

XF analyzer) which allows measuring at the same time and in real

time on living cells the oxygen consumption rate (OCR) and the

extracellular acidification rate (ECAR) on both cells, spheroids, and

organoids in a microplate (87–89). Advanced metabolic flow

cytometry analysis such as SCENITH (90) monitors the

metabolism through protein synthesis, while MET-FLOW detects

rate-limiting enzymes (91). FLIM and PLIM are live-cell

microscopy techniques (70, 92–98) that provide unique sensitivity

in detecting the metabolic changes occurring during carcinogenesis

and anticancer drug response.

While PLIM requires the use of dedicated cell-penetrating

phosphorescent O2-sensitive probes to perform live-cell

microscopy of oxygen, FILM is a non-invasive, label-free, cell-

specific direct analysis of metabolism which takes advantage of

the intrinsic fluorescence properties of NADH and FAD; an

increment in the NADH/FAD ratio observed through metabolic

imaging enabled the identification of malignant cells exploiting the

Warburg effect (70). These technologies also brought the discovery

of metabolic differences between epithelial and fibroblast cells inside

an organoid (96) or the detection of intratumor differential response

to paclitaxel mediated by the heterogeneous metabolic shift among

cancer cell populations (94, 95).

The presence of intratumor multiple stemness niches could be

generated as a response to metabolic rewiring due to limited access

to nutrients or metabolic changes, which are required to adapt to

proliferation rate modifications. Sundar et al. (99) studying cancer

stem cell populations (CSCs) in glioblastoma PDO noted that

therapeutic resistance is driven by altered biological mechanisms

rather than physical limitations of therapeutic access due to the

presence of a highly heterogeneous population of CSCs and cycling/

senescent cells. Another study shows that tumor organoids

displayed spatial heterogeneity with highly proliferating outer

region cells surrounding a hypoxic core of mainly non-stem

senescent cells, sensitive to radiotherapy, and diffuse, quiescent

CSCs which on the contrary were radioresistant (100).

Ultimately, multiple approaches for the unraveling of tumor

heterogeneity have been converged in the recent study of Dekkers
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et al. With the aim to study tumor infiltration and targeting by

engineered immune cells (e.g., CAR T cells), the authors developed

BEHAV3D, an organoid-based 3D imaging transcriptomic

platform (101). This approach integrates multiple techniques to

allow functional single-cell behavior analysis of multilineage

organoids with spatial resolution (3D imaging) and integrated

transcriptomic profiling.
3.2 Microfluidic on-chip models, macro
models, and advanced co-culture systems

Although the so-far described strategies provide a valuable

complement to traditional preclinical models in the study of

tumor invasiveness or drug effects concerning specific DNA

aberrations, they lack the representation of the stromal

compartment which plays a crucial role in cell spatial

distribution, growth, invasiveness, and drug sensitivity (102, 103).

Basically, in the models mentioned above, the environmental

context, which could both contribute to the development of tumor

heterogeneity or be affected by it, is missed.

A step forward in this direction is represented by bioprinted

models (104). Indeed, combining organoids with bioprinting

technology could be a promising strategy to mimic the genetic,

histological, and functional aspects of cancer heterogeneity,

proposing it as a useful platform for personalized therapies (102).

The introduction into the system of the extracellular matrix (ECM)

with the control of its mechanical properties (e.g., matrix stiffness,

architecture, density, protein crosslinking, and fiber network

configuration) mimics cell growth, cell proliferation, and

differentiation reproducing the surrounding physiological

environment for cancer heterogeneity development. This

approach allows not only to reproduce the background behind

the tumor and tumor microenvironment heterogeneity but also to

identify the elements involved in this process, controlling and

targeting them.

A crucial element that is still missed also by the bioprinted

model is the vasculature which could significantly affect and interact

with tumor cell differentiation. In trying to overcome this limitation

and to resemble the conditions that surround the development of

tumor heterogeneity, many efforts have been done in the field of

tissue engineering (103–107). Magdeldin et al. developed

biomimetic tumoroids which recreate the spatially different

exposition to nutrients and oxygen, allowing to test how the

induced cancer cell heterogeneity affects the formation of the

vascular network and cancer-invasive capability (108). Gilardi

et al. developed a variety of in vitro assays and readouts to dissect

different extravasation steps involved in the metastatic cascade. The

authors highlighted a key role of FAK phosphorylation in trans-

endothelial migration validating the results in a metastatic in vivo

model (109). These results drag a parallel between in vitro and in

vivo fostering the employment of in vitro models in the

development of new effective antimetastatic treatments.

Another attempt aimed to include the stromal compartment

within the study of cancer heterogeneity correlates the development

of different morphological phenotypes of tumor cells with the
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heterogeneity of collagen organization confirming the key role

played by the tumor microenvironment (110).

A fundamental component of the tumor microenvironment

that develops heterogeneous phenotypes is represented by immune

cells, particularly T effector cells, T helper, NK cells, B cells, and

dendritic cells (24, 111–113). In the context of immune regulation,

many cells are involved such as T and B regulatory cells and

medullary thymic epithelial cells (mTECs); however, the most

studied are the macrophages and neutrophils (112, 114, 115),

known to be able to polarize toward both the anti- and protumor

phenotypes. Specific protocols have been developed to recreate in

vitro the polarization of immune cells, paving the way for the

possibility of better mimicking the heterogeneity of the tumor

microenvironment (116).

A promising future development is represented by on-a-chip

models, which allow complex and dynamic culture systems to

mimic the heterogeneity of the tumor microenvironment. Indeed,

these models potentially include 3D structures, such as the

microvasculature, and chemical or physical stimuli (117). Despite

their potential, these platforms have not yet been really exploited for

cancer heterogeneity studies, but they could hopefully be coupled

with patient-derived models to increase the complexity and the

reliability of preclinical studies.

Another aspect of tumor heterogeneity is represented by the

tumor surrounding environment including the cell–cell and cell–

matrix interactions and their role in the tumor fate.

The most suitable model to elucidate this is represented by

microfluidic devices which recreate a controlled 3D structure in

terms of matrix composition and stiffness, including patient-

derived materials (118) and the addition of chemical and physical

stimuli, stromal cells such as fibroblast (109) and mesenchymal cells

(119), and vascular compartments (120–123). Through microfluidic

models, it is possible to reproduce the recruitment of immune cells

(124–127) and their heterogeneous behavior able to develop both

pro- and antitumor phenotypes (127, 128).

As ide from the improvement brought by the 3D

microfluidic models , there are st i l l some important

limitations that need to be overcome. Since the complete

recreation of all cellular and structural elements of a

physiological environment is still unreachable, it is important

to carefully focus on the elements principally involved in the

pathway of study (119), trying to include at least the most

relevant ones. Indeed, the next challenges consist of increasing

the complexity of these models, extending the range of analysis

techniques applicable, and promoting the validation through

clinical studies to obtain evermore reliable platforms.

The works presented in paragraphs 2 and 3 showed the huge

ongoing effort in developing preclinical models including the

heterogenei ty of the tumor i tse l f and of the tumor

microenvironment. We showed that there are different

approaches to face this peculiar characteristic of the tumor, from

the collection of data from patients to the attempt to recreate the

heterogeneity through genetic manipulation or the stimuli and the

composition of the surrounding microenvironment. All of them

have the same goal of identifying and targeting the drug-resistant

tumor subphenotypes responsible for therapy failure.
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4 Emerging technologies to study
heterogeneity: single-cell sequencing
and spatial genomic analysis

As it will be better described later, heterogeneity depends on

cellular interactions and knowing the rules orchestrating the TME

and how different cellular subtypes correlate to the clinical relevance

would make a huge difference in improving current

therapeutic strategies.

In the past, proteomics and transcriptomics in cancer have been

studied at the macroscopic level leveraging techniques that are still

very important including bulk DNA/RNA sequencing and flow

cytometry. For studies regarding rare cellular populations within

the TME, such as immune cells, it was difficult to extensively study

the impact of the different immune populations.

In the past, bulk RNA-seq has been incredibly helpful in

identifying different tumor mechanisms. The gene expression

profiles of deconvolution methods estimating the abundance of

cells in a mixed population such as the CIBERSORTx algorithm

(129) and xCell (130) have been fundamental in understanding the

contribution of each cellular population.

More recently, with the increased awareness of the role played

by TME and the underlying complex cellular interactions, more

complex technologies providing single-cell data have been

developed. Emerging single-cell technologies and spatial

transcriptomics provide new tools to give insights at the single-

cell level within tumors and dissect the roles each cell plays in tumor

progression (Figure 3).
4.1 scRNA-seq and spatial analysis

In the last 10 years, the most used technologies to uncover

heterogeneity are represented by single-cell RNA (scRNA) and

DNA sequencing methods. scRNA sequencing allows the

identification of tumor subtypes, definition of cancer cell states,

lineage tracing and phenotyping of cellular subpopulation, and

differential expression analysis (131).

The new technology applied to cancer heterogeneity allows to

detect rare cell subpopulations within the tumor mass, which are

very important when it comes to defining the probability of relapse

leading to better precision medicine (132). Single-cell data define

divergent survival probability improving the clinical prognostic

evaluation of each case and therapeutic regimens.

Single-cell profiling of tumor heterogeneity and the

microenvironment has been done in many cancer types and

metastasis (133) including advanced non-small cell lung cancer,

triple-negative breast cancer (TNBC) primary tumor, and paired

lymph nodes (134).

Leveraging scRNA, Xue et al. stratified patients into five

separate subtypes spatially organized and associated with

chemokine networks and genomic features. Remarkably, the

authors found that tumor-associated neutrophil (TAN) enriched

in the myeloid-cell-enriched subtype was associated with a negative

prognosis (135).
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Moreover, single-cell transcriptome analysis revealed tumor

immune microenvironment heterogenicity and granulocyte

enrichment in colorectal cancer liver metastases (131), the role of

M2 macrophages in TNBC aggressiveness (136), and the role of

TLR4 and TLR8 in TNBC (137). Furthermore, single-cell

sequencing coupled with TCR and BCR sequencing allows not

only the transcriptomic analysis at the single-cell level but also the

possibility to study immune cell clonal expansion. The single-cell

level information regarding the immune populations is

fundamental to understanding how the diverse immune players

will react to different drugs boosting immunotherapy efficacy and

the complexity of researchers’ approaches to design novel and more

effective combinatorial treatments.

Huipeng Li et al. were able to exploit the single-cell approach to

discriminate into subgroups presenting divergent survival

probability tumors that were previously assigned to single

subtypes through bulk RNA-seq (138). The single-cell technology

allowed Wai-Hung Ho et al. to explore the interrelationship

between liver cancer stem cell markers reporting new

subpopulations of cells and novel stemness-related genes (132).

Single-cell sequencing revolutionized the cancer field providing

detailed information at the cellular level. However, given the

procedure used to prepare the single cells, the spatial data and all

the information regarding the hierarchical structure and how the

cells are distributed in the TME are not included in the output.

Digestion of solid tumors characterizes the single-cell RNA

sequencing (scRNA-seq) protocol eliminating spatial information

and the organization of individual cells in the neighborhood.

Tissues are characterized by hierarchical structure organizing how

the cells composing the tissue are localized reciprocally. Spatial

localization is fundamental in defining cellular interactions and

tumor progression. In fact, clones, subclones, immune cells,

endothelial cells, and stroma localize in different districts within a

tumor tissue, and the spatial information can be used as predictive

of therapy response.

Spatial phenotyping allows the combination of various markers

within the same tissue slide underlying novel patterns and

correlations that would not be evident with non-spatial

technologies. A comprehensive overview describing the

differences in spatial technologies has been extensively

reported (139).

PhenoCycler CODEX, NanoString GeoMx Digital Spatial

Profiler (DSP), CosMx, 10X Visium, and MERFISH are among

the most used technologies which allow a spatial analysis.

Meyer et al. used the highly multiplexed immunofluorescence

imaging technology CODEX to generate a tissue atlas of

inflammation in the context of ulcerative colitis compared with

healthy tissues. The authors characterized the cell types, cell–cell

contacts, and cellular neighborhoods highlighting that cellular

neighborhood dictates the functional states of the cells

composing the tissue. In addition, this analysis was able to

identify different inflammatory cell subsets and spatial

neighborhoods peculiar to patients treated with TNF inhibitors,

paving the way for targeting specific cellular niches responsible for

resistance (51). Spatially resolved data provided insights into ITH

allowing phenotype tracking and clonal evolution within tumors.
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In this context, Rovira-Clave et al. realized the in situ tracking of

barcodes in small cell lung cancer tumor microenvironment

coupling epitopes for imaging (EpicTags) and multiplexed ion

beam imaging (EpicMIBI) (140). This approach promoted the ITH

spatial investigation interrogating both cell-intrinsic and cell-

extrinsic events leading to therapeutic resistance. Hajiran et al.

compared survival outcomes to patterns of immune cell

distributions defined by spatial analysis in metastatic clear cell

renal cell carcinoma (ccRCC). In this study, augmented

macrophages together with the decrease in Th1 presence within

the tissues correlated with both poor overall survival and worse

patient outcome (141). These pieces of evidence support the

importance of spatial analysis of immune cells in the tumor

microenvironment for the future assessment of clinically relevant

associations for improved patient treatments.
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Another use of spatial technology is the study of the tumor

microenvironment profile to identify potential biomarkers to

predict clinical outcomes. Within the new technologies for spatial

analysis, 10X Visium and NanoString GeoMX DSP are the most

used and often combined (139). The first is based on fixed tissues

permeabilized to allow the RNA capture through oligo-dT

overhangs, which will be later reverse-transcribed and sequenced,

while the second is based on regions-of-interest selection guided by

fluorescence methods. Bullman’s group exploited the Visium to

study the tumor microenvironment in OSCC and colorectal cancer,

showing a spatial heterogeneity in the microbiota with bacterial

communities populating the less vascularized and highly

immunosuppressed area. Also, they showed that cancer cells

infected with bacteria can recruit myeloid cells into the bacterial

regions (142).
A
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FIGURE 3

Brief description of the major spatial technologies. (A) CODEX is based on a panel of antibodies that binds to specific fluorescent reporters that
reveal their position during the imaging phase. At the end of the first cycle of image acquisition, the reporters are detached, and another cycle with
new reporters starts. (B) 10X Visium is based on slides of barcoded capture probes that bind to the polyA tail of RNAs released from the tissue. RNA
is retrotranscribed into cDNA and sequenced. (C) GeoMX DSP is based on panels of antibodies or photocleavable barcoded probes. Once an area of
interest is selected, a stream of light releases the probes that are lately sequenced. (D) MERFISH is based on fluorescently tagged probes that label
RNA of interest. Sequential rounds of imaging enable spatial resolution. All the pictures have been adapted from the providers’ web pages.
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On the other hand, the GeoMX DSP approach allowed Toki

et al. to associate different series of expression patterns to

immunotherapy response. Remarkably, this study highlights that

PD-L1 expression on macrophages correlates with a positive

response to immunotherapy that could potentially be used to

predict clinical response to immune therapy in melanoma

patients (143). In the context of NSCLC, the treatment with

immune checkpoint inhibitors does not provide complete benefit

in the clinic, and one of the reasons is that there is still a lack of

effective biomarkers to stratify the patient for aPD-1 treatments.

The exploitation of the DSP technology showed that the correlation

of CD44 levels exclusively in the tumor compartment was

associated with a positive response to immunotherapy excluding

the immune cells from the analysis. This type of compartmentalized

analysis on only the tumor’s immune compartment is peculiar to

the DSP workflow and very useful for immunotherapy response

biomarker discovery. Leveraging this, Moutafi et al. identified a

novel promising biomarker to predict NSCLC sensitivity to aPD-1
therapy (143), while Rimm’s group quantified 39 immune

parameters simultaneously in four tissue compartments,

correlating overall survival with a high count of CD56+ immune

cells (143). Remarkably, Hwang et al. recently applied the power of

DSP in the context of pancreatic cancer, identifying a new neural-

like malignant progenitor enriched after chemo- and radiotherapy,

associating it with poor prognosis (144). Nirmal et al. took

advantage of the possibility of studying boundaries between

different cell populations, identifying a spatially restricted

suppressive microenvironment along the tumor stroma boundary

in cutaneous melanoma (145).

A recent upgrade of the GeoMX DSP which provides cellular-

level data is the CosMx, which brings the spatial analysis to the next

level, allowing the localization of RNAs at the subcellular level.

Despite being a very novel and recent technology, CosMx has been

exploited already by Beechem’s group who analyzed 980 RNAs in

non-small cell lung and breast cancer, identifying 10 unique tumor

microenvironments inside the cell, proving the presence of spatial

heterogeneity inside a single cell (146). A similar output has been

obtained by Xia et al. using a different technology called MERFISH,

based on a combination of imaging and in situ hybridization. The

authors determined the subcellular compartmentalization of RNAs

and identified populations that are cell cycle-dependent and

independent inside the same cell (147).

One major challenge in spatial transcriptomics is the resolution

of the data, as the number of cells within a single spatial location

(also known as a “spot”) can range from a few to several hundred.

This variability can make it difficult to accurately assign cell types

and identify spatial patterns of gene expression. Various approaches

have been developed to overcome these limitations, such as the use

of supervised learning approaches and leveraging cell type profiles

learned from scRNA-seq data (148).

The huge amount of data generated by spatial transcriptomic

technologies requires new computational methods for the storage

and annotation of spatially resolved single-cell data. Another

challenge is the integration of gene expression and spatial

information. Traditional scRNA-seq techniques do not capture

spatial information, so methods have been developed to integrate
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scRNA-seq data with spatial transcriptomics data (149, 150), as

recently reviewed by Longo et al. (151). However, these methods

can be complex and may not always produce reliable

results (151).

There is also a need for robust downstream analysis tools that

can extract biological signals from raw spatial transcriptomics data

and identify the spatial organization and cell–cell communications.

Some of the existing tools may be limited by technology-specific

biases or may not be suitable for all types of spatial transcriptomics

data. Computational methods are emerging (152). Recently, new

efforts in the field promoted the generation of new methods of

analysis of spatially resolved single-cell data allowing a more

accurate cell-type annotation and phenotyping such as Seurat,

stellaR, SpatialDecon, and tangram, summarized elsewhere (153).

These types of tools favor the discovery of new types of cells in

spatially resolved datasets at a single-cell level, a fundamental step

in the definition of tissue hierarchy and underlying biological

processes. The reader is referred to Dries et al. for a review of the

art of spatial transcriptomic data downstream analysis methods and

pipelines (154).

This recent progress is just an anticipation of how single-cell

RNA sequencing and spatial transcriptomics techniques will play an

essential role in the next future in incorporating tissue architecture

with transcriptomics data. The ability to see what is going on at the

reface of a tumor-infiltrated tissue and its healthy neighbors at the

RNA and protein levels or the possibility of visualizing what a

particular group of immune cells express when they are interacting

will greatly impact our prognostic abilities and our knowledge

on heterogeneity.

Being able to combine the data coming from different

techniques will require interdisciplinary teams composed of

molecular biologists, pathologists, and wet lab and data scientists.

Yet, the information implemented in the clinical system will unlock

enormous achievements in the field of targeted therapies to

overcome resistance to treatment and prevent metastasis.
4.2 Bioinformatics and computational
modeling

The computational approaches that are fundamental to tackle

ITH can be grouped into three families: 1) approaches that try to

infer the tree of clonal evolution from sequencing data, 2)

approaches that aim to identify the different cell types in a cancer

cell mixture from single-cell and/or spatial transcriptomics and

epigenomics data, and 3) knowledge-based models that aim at

simulating the dynamics of cancer cell populations (Figure 4).
4.2.1 Inference of cancer progression models
from sequencing data

Genomic alterations [i.e., single-nucleotide variants (SNVs);

structural variants, such as insertions and deletions; and copy

number alterations (CNVs)], which can be identified by

opportunely processing next-generation sequencing (NGS) data

(e.g., DNA-seq, RNA-seq, or ATAC-seq) of tumor samples, can
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be used to track tumor progression. The philosophy and clinical

implications of this approach are reviewed elsewhere (3).

The basic idea is that the positively selected (i.e., functionally

advantageous) genomic alterations (i.e., drivers) identified in every

cancer cell represent the clonal trunk, whereas those identified in a

subset of cancer cells defined the coexisting (sub)clones.

In the last years, a plethora of bioinformatics tools have been

developed to exploit mutational profiles of cancer samples to

reconstruct a model of cancer evolution, either at the population

or at the individual level. Genomic alterations can be used to

characterize and track down tumor progression through NGS (3).
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Population-level models are typically inferred from cross-

sectional bulk sequencing data, in which one sample is available

for each patient. The objective is to infer a unique progression

model for the patient cohort under study, which usually represents a

specific tumor (sub)type (155). In the final model (which can either

be trees or direct acyclic graphs), edges represent the most likely

trends of accumulation of genomic alteration for that specific tumor

(sub)type and can be used to both predict the next evolutionary

steps and to stratify patients in risk groups.

Individual-level models aim to reconstruct a personalized

progression model for each individual. These models ideally
A

B

C

FIGURE 4

Schematic representation of the inputs (left) and outputs (right) of the main families of computational approaches to tackle intratumor
heterogeneity. (A) Cancer progression models. (B) Clustering of single cells. (C) Multiscale modeling and simulation.
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require multiple measurements for the same tumor, which can

either be:
Fron
• single-cell sequencing data, collected either at single (156)

or multiple time points (longitudinal), e.g., from patient-

derived cell cultures, xenografts, or organoids.

• multiregion bulk sequencing data (156).
In this case, the output model (a mutational/clonal tree) depicts

the evolutionary history of a single tumor and, in the case of

longitudinal experiments, allows one to assess the impact of

external interventions, such as therapies.

The methodology at the core of these tools is generally based on

traditional sequence-based phylogenetics (157, 158) or on Bayesian/

maximum-likelihood statistical frameworks (159–161). The main

differences between the two approaches are illustrated here (162).

Fundamental data preprocessing steps are needed upstream of all

aforementioned methodologies and differ according to the specific

experiment type (single cell or bulk) and data type (DNA, RNA,

ATAC, and related technology/protocol). A non-exhaustive list

includes the correction of sequencing reads; the correction for purity,

ploidy, absolute copy number, andmutationmultiplicity; variant calling;

and estimation of variant allele frequency (VAF), which must be

converted into a cancer cell fraction (CCF) taking into account gene

copy numbers. To maximize the sensitivity and specificity of calling

clonal and subclonal mutations, the PCAWG Evolution and

Heterogeneity Working Group and the PCAWG Consortium used an

ensemble approach integrating the output of alternative algorithms

(163). However, the number of tumor regions sequenced and the depth

and purity of what is sequenced largely affect the ability to distinguish

truly clonal from pseudoclonal mutation. Strong tumor sampling bias,

high levels of technical noise, and biological variability also hinder the

robust inference of cancer progression models. To mitigate this

problem, a recent work has proposed to use a transfer learning

approach to infer from multiregion data multiple patient evolutionary

models simultaneously, seeking to maximize their structural

correlation (164).

It remains an open question whether cancer progression models

can truly predict the likely course of tumor progression or whether

the occurrence of neutral evolution and drift may limit the ability to

predict a tumor’s next step. To address this question, Diaz-Uriarte

and Vasallo (165) analyzed four different approaches and concluded

that these methods can predict only with moderate success and only

under representable fitness landscapes and with very large sample

sizes, but even perfect algorithms might not work if intrinsic

evolutionary unpredictability is large.
4.2.2 Clustering and lineage inference from
single-cell transcriptomics and epigenomics data

Phenotypic data at the single-cell level allow variability due to

the environment and interactions among cancer subclones as well

as with the other player in the TME to be considered. In this regard,

unsupervised machine learning methods (clustering) on single-cell

RNA-sequencing data were successful in unraveling the
tiers in Oncology 12
composition in terms of cell phenotypes of a cancer mixture (166,

167). RNA velocity and cell lineage reconstruction might also be

employed to investigate the similarity and dynamics of cancer cell

types (168). Computational methods to infer cell–cell

communication events from scRNA-seq data have also been

proposed (169), even focused on the identification of metabolic

cooperation phenomena (170).

The noisy nature of single-cell RNA-sequencing data requires

ad hoc preprocessing steps. To this aim, the best practices (171) and

tools implementing them such as Seurat (148) and Scanpy (172) are

now well established. A preprocessing stage that requires special

care and that is largely debated is denoising of scRNA-seq data, as

reviewed by Patruno et al. (173) This step becomes fundamental

when the aim is to identify metabolic subpopulations from scRNA-

seq, as demonstrated by Galuzzi et al. (174).

Approaches to integrate scRNA-seq data with other -omics

have recently emerged. For example, CONGAS integrates bulk

DNA and single-cell RNA measurements from independent

assays to jointly identify clusters of single cells with subclonal

CNAs and differences in RNA expression. The opportunity

provided by the latest technologies to simultaneously profile

intranuclear proteins, chromatin accessibility, and gene

expression in single cells is pushing forward the need for single-

cell multiomics data integration (175, 176). In particular,

methodologies for handling sequencing data that simultaneously

measure gene expression and chromatin accessibility in the same

cell are increasingly being proposed (177–179); for instance,

statistical and machine learning methods for spatially resolved

transcriptomics data analysis are currently being developed and

have been previously reviewed (179).

4.2.3 Multiscale modeling and simulation
The data science approaches described above cannot identify

mechanisms nor probe whether the correlation is causal. On the

contrary, multiscale modeling in systems biology allows the

behavior at the larger scale to emerge naturally from the

collective action at smaller scales.

Multiscale models integrate a priori knowledge from the tissue,

cellular, and molecular levels and can simulate complex cell–cell

interactions and emerging population-level dynamics. These

models are generally based on ordinary differential equations that

can simulate the integral response of the tumor to pharmaceutical

interventions (180) but fail in capturing spatial phenomena. For the

study of invasion and metastasis, models based on partial

differential equations or agent-based models are applied (181). In

particular, agent-based modeling is the most suitable framework to

model ITH because it can describe the dynamics of a large number

of heterogeneous and interacting agents (i.e., cells or clones) that act

autonomously in an environment according to certain rules. Agent-

based models have been used to study the differentiation of cancer

stem cells (182), clonal evolution (183, 184), and interaction

between different cell types (185) and different metabolic

phenotypes (186).

While multiscale models can provide unprecedented insight

into mechanistic detail, they are computationally expensive and
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require a large number of unknown parameters to be defined. Real-

world data are generally used only to fit the model parameters, for

example via approximate Bayesian computation (ABC), whereas

attempts to include omics data directly as parameters of the

multiscale model are still in their infancy (187, 188).

The definition of new computational frameworks that bridge

the gap between top-down approaches (close to the data but far

from the mechanisms) and bottom-up approaches (close to the

mechanisms but far from the data) is a key objective to enable the

reconstruction of digital twins that integrate biological knowledge

and population data with personalized data. In this regard,

machine learning and multiscale modeling can naturally

complement each other to create robust predictive models that

include physicochemical constraints (189). Data generated by

mechanism-based simulations can also supplement training data

for machine learning models.
5 Tumor heterogeneity, drug
resistance, and clinical outcomes

It is well established that tumors with high levels of ITH may

predispose patients to worse clinical outcomes (189). The main

reason is that ITH implies the coexistence of subclones with

different genetic, epigenetic, and metabolic endowments.

On the one hand, this can expose to a greater probability of

achieving in at least one tumor cell population, with subsequent

genetic and epigenetic alterations, a molecular combination that

leads to the acquisition of a physiological alteration determining a

clonal expansion in situ or dissemination, thus contributing to

tumor progression.

On the other hand, it guarantees the tumor greater adaptability

to environmental changes, possibly induced by exogenous factors

such as pharmacological treatment, and therefore, increases the

fitness and survival of cancer cells and intrinsic resistance to

therapeutic treatments that determine tumor relapse.

Resistance is considered intrinsic when conditions for escape

from the drug response are already inherent in the treated tumor. It

is considered acquired when the treatment itself activates adaptive

mechanisms that lead to resistance.

An example of intrinsic and acquired resistance is found in

tumors associated with hyperactivation of the epidermal growth

factor receptor, EGFR, which transduces the mitogenic signal in

response to the growth factor by activating Ras proteins and

their cellular effectors. The oncogenic activation of this receptor

may be due to gene amplification (copy number variation)

increasing its expression level, deletions (truncations of

regulatory regions as in EGFvII and EGFR carboxyl-terminal

deletions), or point mutations (substitutions of residues critical

for the function) that make the receptor constitutionally

activated (190, 191).

Although many effective treatments are available (192, 193),

there is also a very high percentage of patients who after a few

months of treatment manifest resistance and tumor relapse (194)

due to on-target mechanisms dependent on the coexistence of cell
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populations with different sensitivities to the drug (present before

the treatment or acquired by selective pressure) (195) and/or off-

target mechanisms depending on the oncogenic activation of other

genes and proteins (196, 197). Other examples of drug resistance

due to heterogeneity can be found in the study of Blaquier et al.

(198) and in other studies (192, 194, 199).

Another example of ITH leading to drug resistance concerns the

presence of cancer stem cell niches in the tumors, with a small

population of cells endowed with stemness properties, including

enhanced capacity for self-renewal cloning, the undifferentiated

state combined with differentiating potential, long cell cycling,

genome repair abilities, peculiar energy metabolism, ability to

educate the neighboring cells to provide nutrients although highly

resistant to lack of nutrients and hypoxia, and ability to collaborate

in the elusion from the immune system (200). Cancer stem cells

confer high plasticity to the tumor and contribute to drug resistance

with multiple mechanisms, for instance by remaining quiescent

during chemotherapeutic treatment specifically targeting

proliferating cells and then regrowing for repopulation or

effic ient ly repair ing DNA damage induced by some

chemotherapeutic agents, such as platinum drugs and

alkylating agents.

In summary, ITH and the response to drug treatment are

interdependent phenomena. On the one hand, pretreatment

tumor heterogeneity is mainly responsible for intrinsic drug

resistance and relies on multiple mechanisms including the

presence of cells in the tumor site expressing elements that bypass

target inhibition because they promote aberrant downstream

signaling (i.e., Ras oncoproteins in EGFR-hyperactivated tumors),

or cells expressing MDR pumps, or cells endowed with potentiated

DNA repair system, or cancer stem cell niches. On the other hand,

the adaptation to pharmacological treatment, particularly if directed

against a specific target as in the context of precision medicine, feeds

the ITH and predisposes it to drug resistance negatively affecting

clinical outcomes.

Historically, heterogeneity has been mostly associated with

mutations, and only recently, heterogeneity has acquired an

enlarged origin including selective stimuli from targeted therapy

and the tumor immune microenvironment. All these factors have

been known to be responsible for the heterogeneity mechanisms,

yet the emergence of new features peculiar to cancer cells only has

been associated with the generation of neoantigens correlated with a

positive outcome, especially in immunotherapy. Thus,

understanding how to modulate the immune response by

controlling heterogeneity should be further investigated to better

develop targeted therapies.
6 The role of the tumor
microenvironment in heterogeneity

Selective death in the TME can lead to heterogeneity. To explain

this concept, we will leverage a conservation biology theory by

Martin and Sapsis. The “pyrodiversity promotes biodiversity”

theory first proposed that fire promotes biodiversity by generating
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heterogeneous ecological niches and inducing species to adapt to

environmental changes (201, 202).

We can look at the cancer ecosystem in the same way. Usually,

selective pressure such as therapy (fire) eliminates all the cells.

However, in rare special niches, the conditions for clonal evolution

instead of death are presently leading to adaptation through

mutation, evolution, and in the end, cancer progression (203).

Many other different things can happen to a tumor cell exposed

to the challenges peculiar to the microenvironment. Stromal cell

interaction and immune recognition can be some of the key

heterogeneity driving factors which a cancer cell should adapt to

survive (204) (Figure 5).
6.1 Immune recognition and cancer
heterogeneity

In the past, heterogeneity has been seen as a negative factor

present in tumors correlated to an increased mutational burden,

cancer progression, and acquired resistance. In the context of

heterogeneity-involved diseases, it is dutiful to mention

metastases. Metastases are responsible for more than 90% of

cancer-related mortality, and one of the triggering processes is the

selective pressure in the TME (205–207). Thus, a deep

understanding of heterogeneity underlying these mechanisms will

provide the required insight for primary tumor and

metastasis eradication.

The advent of improved experimental technologies, such

as RNA sequencing, single cells, and spatial analysis of

tissues, together with better bioinformatic tools boosted

correlative studies between immune profiling, mutational

burden, and patient outcomes which will be discussed later

in this review.
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Neoantigens derived from cancer mutations are one of the keys

to unleash an effective and lasting immune response, yet they are

derived from mutations that are known to lead to heterogeneity and

resistance. A consistent portion of research has been done in the

neoantigens field in the last 20 years (3, 163, 208, 209). Yet, the

argument is still controversial.

Clinical studies reported a tight association between high tumor

mutational burden (TMB) and improved outcomes during immune

checkpoint inhibitor regimens. TMB is also reported as a biomarker

to predict immunotherapy and chemotherapy efficacy (210).

Ke-Yue Ma et al. (211) characterized in lung adenocarcinoma

the ITH of immune response-related genes. They showed that the

decrease in the number of neoantigens was correlated with an

acquired resistance phenotype. Moreover, the authors reported that

MHC-II genes were the common genes shared by the top favorable

prognostic pathways supporting that neoantigen presentation by

MHC-II may be a positive factor triggering cancer eradication by

immune cells.

The improved response to therapy observed in high TMB

tumors is also probably due to a broader repertoire of tumor-

specific mutant epitopes presented by antigen-presenting cells

(APCs) (212) and to enhanced epitope-spreading mechanisms

diversifying the ability of the immune cells to recognize multiple

targets (113).

Epitope spreading is a mechanism enhancing and diversifying

endogenous lymphocyte recognition to new antigens beyond the

original one which was the initial target antigen. This mechanism

can involve intramolecular antigens (recognition of epitopes within

the same protein) or intermolecular ones (involving other proteins)

and can lead to enhanced cytotoxic T-cell activity and anticancer

antibody production by B cells (213). Although epitope spreading

positively correlates with patients’ responses representing an

important predictive marker (214), it correlates also with side
A B

C

FIGURE 5

The different components of the tumor microenvironment: (A) the immune system, (B) stroma, and (C) external factors.
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effects due to T-cell recognition of autoantigens and to the

expansion of the autoantibody repertoire (215, 216).

Epitope spreading is an incredibly powerful mechanism

triggering parallel immune recognition and also autoimmunity.

Its fine regulation makes the process very complex; thus, more

efforts need to be made to be able to leverage it therapeutically to

overcome autoimmunity.

Reuben et al. (217) studying lung adenocarcinoma showed that

although an increasing variety of neoantigens promote a wider

heterogeneity in the T-cell receptor repertoire, it also correlates with

impaired survival and tumor relapse. There can be many reasons

why more neoantigens lead to negative outcomes. One of the

hypotheses can be designed by dragging a parallel between cancer

cells and pathogens. The mechanism underlying cancer immune

escape leveraging heterogeneity can be associated with the ability of

some pathogens, such as Borrelia burgdoferii, to escape immune

recognition by overwhelming the immune system with antigens

that are not determinants of pathogen eradication (218).

Other immune cells beyond lymphocytes are involved in

reshaping the heterogeneity of the TME. Clinical cancer stage and

metastatic tumor burden are linked to ineffective immune response

and increased immune suppression due to myeloid cell infiltration

in different tumor types including pancreatic cancer (219) and

breast cancer (220). In line with these findings, Zhang et al. (131)

revealed tumor immune microenvironment heterogenicity and

granulocyte enrichment in colorectal cancer liver metastases.

A common model for cancer heterogeneity is the “cancer stem

cell” in which tumor-propagating cells have the same genetic

mutations as the differentiated cells but are blocked in a different

maturation stage. This is known to correlate with poor patient

outcomes, resistance, metastasis, and immune suppression

(221, 222).

Cancer cells can leverage epigenetic reprogramming to increase

stemness and escape the immune system (223). Consistent with

this, Miranda et al. (224) described a negative parallel correlating

decreased survival, impaired T cells, natural killer cells, B-cell

immune infiltration, and increased stemness. Barker et al. (225)

identified cancer stem cells in the small intestine and colon using

Lgr5 as a marker opening the door to targeted therapy directly

tackling stem cells. This type of antigen could be exploited for

targeted immunotherapy. Another way to see stemness is that

cancer cells do not upregulate stemness on purpose. Instead, it

could be that the cells with stemness characteristics are those that

can escape the immune system recognition being the resistant ones.

Supporting this, it has been discovered in animal models that NK

recognition of metastatic cells in the liver is responsible for

dormancy (226) (a quiescent cell state often associated with

stemness), highlighting how cancer cells’ interaction within the

TME regulates cancer cell survival to modulate their behaviors to

escape (227). In another study, it has been highlighted how the

macrophage-secreted factor supports pancreatic cancer metastasis

by inducing fibrosis (228). Thus, impaired immune recognition by

the immune system due to other circumstances can lead to

metastatic overt colonization.

The so-called epithelial-to-mesenchymal transition (EMT) is

involved in cancer evolution concurring with the development of
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more aggressive subclones (229). Different studies leveraging RNA-

sequencing data correlated EMT-related gene expression profiles

with increased aggressiveness. Although these data are very

important to reveal the mechanisms involved in the TME, it is

unknown if EMT signatures were from cancer or stromal cells given

the bulk nature of the analysis. McCorry et al. (230) highlighted

EMT signatures in the stromal fibroblast within the tumor

microenvironment instead of a change in the cancer cells.

Fibroblasts within the TME are not only involved in EMT; Chen

et al. (231) showed that tumor-associated macrophages promote

EMT and cancer stem cell properties in TNBC. Altogether, these

lines of evidence show how important stromal and immune cell

heterogeneity is in tumor progression.

In clinical and preclinical work, huge efforts are currently active

toward combinatorial therapies leveraging both chemotherapy and

immune checkpoint inhibitors targeting the TME (232–235). In this

setting, while chemotherapy mediates tumor destruction which

leads to the release of tumor neoantigens, immunotherapy keeps

the immune system active, targeting exhaustion and suppression.

These combinatorial strategies tackle cancer from both angles

leveraging neoantigens (generated by mutations) as weapons to

train the immune soldiers to fight more efficiently. In solid tumors,

high quality and quantity of neoantigens correlate with improved

survival and response to immunotherapies (236, 237). In a deeper

analysis, a decrease in expressed clonal neoantigens correlates with

increased immune infiltration (238) indicating the impact of the

immune activity regulating tumor heterogeneity. Altogether, these

data show that modulating heterogeneity will be an effective way to

have controlled and targeted immunotherapy increasing efficacy

while overcoming unwanted side effects.
6.2 Stroma heterogeneity in the TME

Other cells within the tumor immune microenvironment can be

responsible for selective pressure on cancer cells since they are able

to modulate environmental conditions such as cytokines, nutrients,

metabolites, matrix stiffness, pH, and redox status.

One of the main populations involved in shaping the TME is the

fibroblast. This population of cells is heterogeneous and responsive

to different stimuli. CAFs turned out to be responsible for the

immunosuppressive microenvironment linked to therapy resistance

(239, 240) and metastatic progression (239, 241, 242). Furthermore,

fibroblasts are responsible for fibrosis leading to hypoxia, reduced

immune infiltration and vascularization, and nutrient deprivation

in pre-HCC conditions, leading to HCC cancer progression

(243–245).

The heterogeneity of CAFs has been associated with organ-specific

metastasis in pancreatic ductal adenocarcinoma (241). Furthermore, in

another study, the promotion of cholangiocarcinoma growth by

diverse cancer-associated fibroblast subpopulations has been

reported (246).

Cancer cells are also able to reprogram CAF gene expression

and metabolism (247). More recently, it has been reported that

CD10+GPR77+ CAFs promote cancer format ion and

chemoresistance by supporting cancer cell stemness (242). In the
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context of metabolism, cancer-derived exosomal HSPC111

promotes colorectal cancer liver metastasis by reprogramming

lipid metabolism in CAFs (248).

Mentioning the interaction between CAFs and immune cells,

Krishnamurty et al. (249) reported that LRRC15+ myofibroblasts

dictate the stromal setpoint to suppress tumor immunity.

Endothelial cells are fundamental players in the TME being

involved in angiogenesis and adhesion molecule expression on the

vasculature regulating immune cells and nutrient trafficking. The

endothelium is a heterogeneous tissue, and different expression

profiles have been reported characterizing endothelial cells from

different organs. Ultimately, in order to generate more effective

targeted approaches against cancer progression and metastasis, we

need to take into account the different endothelial barrier properties

contributing to organotropism metastatic behaviors of different

tumors (250).

The cellular component is not only involved in the control of

tumor heterogeneity. The sensing compartment composed of the

matrix is important as well in regulating how the cells sense the

surrounding environment. The tumor matrix stiffness plays a

role in the mechanotransduction of tumor cells involving

integrins signaling to modulate how cancer cells can feel

the microenvironment.

It has been demonstrated that different stiffness leads to

modified gene expression (251–255). Stiffness reduction has been

proven to improve bevacizumab response in metastatic colorectal

cancer (256). Changes in other parameters such as pH have also

been reported to improve immunotherapy efficacy (257).

This plethora of parameters present in the TME modulates in

turn the immune system leading to inflammation (14) or

immunosuppression (114, 115, 258). These two types of TME

determine the fate of cancer cells (229) selectively pressuring

them to evolve or perish. Learning how to control the

mechanisms underlying heterogeneity will provide knowledge to

leverage this information therapeutically. The final aim will be

modulating heterogeneity to make cancer cells seen by the

immune system to unlock immune recognition.
7 Discussion and conclusions

The recent awareness of the importance of heterogeneity in the

development and establishment of tumors opens up new

possibilities for understanding tumor development and—in

perspective—improving and personalizing therapeutic approaches

to tumors. Different technologies, some of which are discussed in

this review, open hitherto unexplored windows to the

understanding of tumor biology at the single-cell and spatial levels.

In particular, single-cell techniques enabled the discovery of

cellular differences that usually get lost during bulk RNA-

sequencing sampling methods, helping the scientific community

to understand how different cellular populations express

different sets of genes. The spatially resolved transcriptional

analysis revolutionized the study of heterogeneity allowing

transcriptome analysis without losing the spatial organization of

tissue architecture.
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Both single-cell and spatial transcriptomics can generate heavy

databases of data, challenging the scientific community in

developing new ways to analyze, store, and integrate the data.

Multiomics technologies with the promise to deliver high-

throughput genomic and epigenetic molecular data in parallel will

combine RNA, DNA, and ATAC sequencing technologies for more

comprehensive studies. For instance, scATAC-seq allows epigenetic

studies, lineage tracing, and genomic regulation, providing insights

on chromatin accessibility, and the full-length mRNA profiling in

single cells exploited to study the alternative splicing (259). The

processing of millions of cells is required to detect a rare

subpopulation of cells, and this can be achieved by single-cell

sequencing (combinatorial indexing). Accordingly, integrating

data of a widely diverse nature in terms of dimensionality of data

(a few proteins, hundreds of biochemical or imaging features, the

whole transcriptome) and experimental approach (targeted,

hypothesis-driven vs. exploratory genome-wide) is probably the

primary challenge. Therefore, it is necessary to use computer and

computational techniques for an in-depth analysis of individual

data (i.e., transcriptomic, proteomic, or any -omics data) and also to

integrate and structure data related to different layers of biological

complexity: the final aim is to describe the emergent properties

derived from the interaction of the system components and those

that cannot be derived by the mere knowledge of the properties of

the individual components (260). For instance, because of the

special role played by metabolism in orchestrating cellular

activities (261), the simulation of computational models of

metabolism acts as an integrator able to explain at the system

level the phenotypic properties of cellular systems and even their

interaction (262). The modeling approach is somehow

complementary to the artificial intelligence/machine learning

approach, which excels in differentiating and stratifying patient

populations but so far has proven less suitable for identifying the

laws governing complex biological phenomena (261, 263). Wiring

together the analytical and correlative ability of machine learning

with the ability of mathematical models of metabolism and other

cellular functions to structure biological information could allow a

quantum leap in our understanding of tumor heterogeneity.

The generation of enhanced computational models to prioritize

and predict therapeutic efficacy leveraging cancer molecular profiles

has been recently developed.

An example of successful integration of multiomics data

together with phenotypic and therapeutic response profiles falls

into the computational strategy called pharmaco-pheno-

multiomic (PPMO).

This model allowed the establishment of novel complex

biomarker profiles to predict prospective therapeutic regimen

response in acute myeloid leukemia and ovarian tumor cohorts

(264). These strategies already demonstrated their extraordinary

potential in predicting therapeutic response in human tumors and

need to be further exploited on different cancer types and broader

cohorts in the future.

The availability of different non-human models of tumor

heterogeneity is of great value since it will allow us to

experimentally test in an iterative cycle the computer-generated

predictions (265). Figure 6 graphically summarizes some of the key
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properties of different models highlighted in this review. Despite

lacking some aspects of the complexity present in mammalian

systems, non-murine models can be exploited for preliminary

screening to answer precise biological questions. Zebrafish,

Drosophila, and yeast, among others, have already proven their

efficacy in recapitulating basic and conserved biological

mechanisms, coupling this with the possibility of collecting

thousands of data points in a quick and cheap way. Although the

way of life of yeast is unicellular, yeast cells demonstrate the ability

to coordinate to form multicellular communities with specialized

subpopulations, as what happens in a tumor mass where, from a

single progenitor, many cells arise and specialize to survive. An

extra layer of complexity concerns the signaling between different

colonies, which induces metabolic reprogramming (38) to maintain

the identity of the single colony. The study of this intra-and

intercolony crosstalk could uncover evolutionarily conserved

mechanisms that can be targeted to prevent the establishment of

a colony/tumor mass in a new environment. With 90% of genes

involved in human cancer development, fast generation time, and

low maintenance costs, Drosophila is perfectly suited to study the

basic mechanisms of cancer heterogeneity. Zebrafish is a unique

model that allows extensive characterization of the mechanism of

clonal evolution, also allowing the identification of dominant

drivers. Transgenesis, transplantation, single-cell functional

assays, and live imaging can provide an economical and large-

scale in vivo screening tool which provides statistically relevant data

to complement focused studies done in mice or humans, as

published by Smith et al. (44), where a zebrafish study revealed

that one in 100 leukemia transplanted cells was able to drive tumor
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growth, a higher number than expected if compared to

mouse studies.

Models such as yeast and 2D cultures excel in their ability to

perform genetic and environmental modulation of growth

conditions and in their ability to run omics analyses, including

single-cell transcriptomics. Although the clonal nature of cell lines

grown as monolayer offers high reproducibility and low intrinsic

heterogeneity, their high intrinsic plasticity allows fostering of

different phenotypes within the same cell line, for instance by

using inflammatory cytokines and growth factors (266).

Murine models, on the other hand, provide a complex systemic

platform to evaluate biological mechanisms and both drug efficacy

and toxicity.

Since their development, mouse models have become more

sophisticated and accurate in replicating human tumors including

ad hoc models to study heterogeneity.

Among these, GEMMs and syngeneic models are exploited for

their high reproducibility and flexibility, yet mouse tumors have

different evolution routes if compared to human ones. This results

in decreased genetic heterogeneity which penalizes the clinical

translational relevance of these models. To overcome the species-

specific issues, human cell line-derived xenografts (CDXs) are

largely leveraged due to their fast and standardized growth.

Although CDXs are composed of clonal populations, their level

of genetic heterogeneity does not compare with human tumors.

Immortalization and in vitro clonal selection can be the cause of

genetic drift. In addition, the lack of cell–cell interactions within a

3D human microenvironment limits the clinical predictivity of the

findings obtained by exploiting human cell lines.
FIGURE 6

Key properties (cost, time, scalability, ease of manipulation, direct translation to TME heterogeneity) of the different models highlighted in this review.
From left to right: murine models, non-murine models, and human models. + = low, ++ = medium, +++ = good / high, ++++ = excellent / very
high.
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The type of mouse model that mostly translates the results of

the experiments to clinical response is the PDX which maintains the

heterogeneity of the patient’s primary tumor especially when used

at low passages (less than 10). PDXs have been successfully used in

the context of personalized cancer treatment as an investigational

platform for therapeutic decision-making (267).

Given the predictive capacity of PDXs in clinical translational

studies, the urgent need to leverage them to predict immunotherapy

outcomes emerged quickly. In fact, to study immune therapeutic

regimens with PDXs, the animal host requires a functional immune

system of human origin. The implementation of humanized mice

together with low-passage PDXs in the same study allows for both

the clonal heterogeneity of the human tumor and the immune

microenvironment to be reconstituted. One of the limitations is the

graft-versus-host disease (GVHD) happening when the engrafted

human immune cells are from a different donor with respect to the

PDX one. To avoid unwanted GVHD which will impair the validity

of the study results, human leukocyte antigen (HLA) matching

strategies between the donors should be done. Ideally, autologous

models can be proposed. However, this option is still very limited

given the lack of primary matched tumor and immune material

from the same patient.

In basic science and preclinical settings in the attempt to

replicate tumor heterogeneity, animal models have been

extremely powerful and extensively used. Searching for faster,

cheaper, and more ethical models to evaluate in high-throughput

entire libraries of drugs and the divergence of these models in

mimicking some aspects of human biology paved the way for the

establishment of human-derived advanced in vitro models.

Organoids and on-chip microfluidic models using human-

derived cells are great tools for retaining tumor heterogeneity,

especially when employing low-passage primary human cells.

These in vitro models are suitable for high-throughput screening

of multiple therapeutic combinations or as a platform to investigate

human key molecular pathways allowing the analysis of complex

cell–cell and cell–matrix interactions in biochemically and

biophysically controlled conditions. In addition, the reduced time

in providing the results makes the in vitro humanized models ideal

for preclinical studies adding value to the animal models, which, on

the other hand, are still essential for systemic and toxicological

studies. Despite the tremendous advances in modeling, when the

preclinical use of these models is required, researchers need to

consider that different models display variable fidelity to human

tumor biology. Organoids represent the best option to preserve

tissue heterogeneity using in vitro culture. By carefully choosing the

protocol of production, it is possible to retain molecular, spatial, and

metabolic heterogeneity of the tissue of origin. However, there are

limitations regarding the cell lineage that can survive inside the

organoids during culture (e.g., immune cells), and the sampling of

the tissue of origin can affect the heterogeneity of the cell population

itself. If there is a need to keep the model simple and preserve

reproducibility and feasibility, simplified organoids (spheroids) can

be produced starting from a single cell line. Spheroid heterogeneity

can be improved stepwise either by co-culturing different cell lines

and/or by providing a cocktail of different extracellular matrices.

Microfluidic devices are tunable platforms in which cell lines as well
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as organoids can be cultured. The flexibility of the system allows to

compartmentalize and add different components of the tumor

including vasculature immune cells and stroma in highly

controlled experimental conditions. Given the unique

interchangeable geometry of the system, physical stimuli such as

stiffness or shear stress can be modulated in the system adding to

the level of environmental heterogeneity, known to play a key role

in tumor progression. High resolution and live imaging are still the

main readouts; thus, good image analysis expertise is required to

extract data and succeed in quantifying different parameters

including tumor growth and migration. Unfortunately, omics

analyses are not always easy to perform given the low number

of cells.

Thus, the use of each model should be carefully evaluated in

terms of its faithfulness in replicating a given human biological

feature or mechanism. In an attempt to define the transcriptional

fidelity, the Cancer Genome Atlas dataset has been compared with

cell lines, 3D cultures, GEMMs, and PDXs leveraging the

CancerCellNet (CNN) tool. Unfortunately, this effort is limited to

a small number of tumor-derived models making the validity of this

effort very limited.

Recently, immunotherapies have revolutionized the entire

cancer treatment field. Immuno-oncology studies and the

development of immune checkpoint inhibitors able to boost

cancer cell immune recognition have led to recognizing the

fundamental role of the immune system in tumor progression.

On top of this, increased awareness has been reserved regarding the

importance of stromal cells including the ones composing the

vasculature and CAFs.

Taking together all this information about the complex

hierarchy within the tumor immune microenvironment, it is clear

why, despite the different models already available, there is an

urgent need to further improve the complexity and fidelity of the

platforms replicating humanized settings.

Extending the efforts beyond generating complex models, the

need for new technologies to analyze the TME promoted the

emergence of single-cell genomics and spatial approaches as

powerful strategies in delineating the complex molecular

landscapes of cancers.

The acquired knowledge will ultimately be implemented in a

digital twin (i.e., “a virtual model” of a physical entity, with

dynamic, bi-directional links between the physical entity and its

corresponding twin in the digital domain) (268). A digital twin can

then be personalized using biological data (269). Personalized

digital twins can then be used to test treatment protocols, in the

development and identification of new pharmacological targets, and

in the rational identification of more effective combined

pharmacological protocols that will maximize the therapeutic

efficacy for each individual, minimizing the side effects.

In conclusion, understanding tumor heterogeneity and its

exploitation in the clinical field will require quantitative

determination of multiple features and their integrated analysis by

combined machine learning and simulation approaches. Only the

combined effort of an interdisciplinary team of scientists with

expertise in different fields, such as pathology, molecular biology,

bioengineering, clinic, and computation, able to communicate and
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work in synergy will provide new integration and interrogation

modality to predict therapy response and to implement more

efficient targeted and combinatorial therapies which are urgently

required for cancer patients.
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Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease
modeling and drug screening. Nat Med (2017) 23(12):1424–35. doi: 10.1038/nm.4438

72. Nuciforo S, Fofana I, Matter MS, Blumer T, Calabrese D, Boldanova T, et al.
Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep
(2018) 24(5):1363–76. doi: 10.1016/j.celrep.2018.07.001

73. Wang K, Yuen ST, Xu J, Lee SP, Yan HHN, Shi ST, et al. Whole-genome
sequencing and comprehensive molecular profiling identify new driver mutations in
gastric cancer. Nat Genet (2014) 46(6):573–82. doi: 10.1038/ng.2983

74. Drost J, van Boxtel R, Blokzijl F, Mizutani T, Sasaki N, Sasselli V, et al. Use of
CRISPR-modified human stem cell organoids to study the origin of mutational
signatures in cancer. Science (2017) 358(6360):234–8. doi: 10.1126/science.aao3130

75. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid
cultures derived from patients with advanced prostate cancer. Cell (2014) 159(1):176–
87. doi: 10.1016/j.cell.2014.08.016

76. Boj SF, Hwang C, Baker LA, Chio IIC, Engle DD, Corbo V, et al. Organoid
models of human and mouse ductal pancreatic cancer. Cell (2015) 160(1–2):324–38.
doi: 10.1016/j.cell.2014.12.021

77. Tsai S, McOlash L, Palen K, Johnson B, Duris C, Yang Q, et al. Development of
primary human pancreatic cancer organoids, matched stromal and immune cells and
3D tumor microenvironment models. BMC Cancer (2018) 18(1):335. doi: 10.1186/
s12885-018-4238-4

78. Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, et al.
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