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infiltration and drug responses
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Osteosarcoma (OS) is a cancer that is frequently found in children and

adolescents and has made little improvement in terms of prognosis in recent

years. A recently discovered type of programmed cell death called cuproptosis is

mediated by copper ions and the tricarboxylic acid (TCA) cycle. The expression

patterns, roles, and prognostic and predictive capabilities of the cuproptosis

regulating genes were investigated in this work. TARGET and GEO provided

transcriptional profiling of OS. To find different cuproptosis gene expression

patterns, consensus clustering was used. To identify hub genes linked to

cuproptosis, differential expression (DE) and weighted gene co-expression

network analysis (WGCNA) were used. Cox regression and Random Survival

Forest were used to build an evaluationmodel for prognosis. For various clusters/

subgroups, GSVA, mRNAsi, and other immune infiltration experiments were

carried out. The drug-responsive study was carried out by the Oncopredict

algorithm. Cuproptosis genes displayed two unique patterns of expression, and

high expression of FDX1 was associated with a poor outcome in OS patients. The

TCA cycle and other tumor-promoting pathways were validated by the

functional study, and activation of the cuproptosis genes may also be

connected with immunosuppressive state. The robust survival prediction ability

of a five-gene prognostic model was verified. This rating method also took

stemness and immunosuppressive characteristics into account. Additionally, it

can be associated with a higher sensitivity to medications that block PI3K/AKT/

mTOR signaling as well as numerous chemoresistances. U2OS cell migration and

proliferation may be encouraged by PLCD3. The relevance of PLCD3 in

immunotherapy prediction was verified. The prognostic significance,

expressing patterns, and functions of cuproptosis in OS were revealed in this

work on a preliminary basis. The cuproptosis-related scoring model worked well

for predicting prognosis and chemoresistance.
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1 Introduction

Osteosarcoma (OS) continues to be the most prevalent primary

bone cancer in children and adolescents, although being

uncommon globally (1). With 4.4 instances per million people in

the US, this tumor reaches its peak incidence in adolescence, which

is consistent with a pubertal growth surge (2). Patients with OS have

a >60% five-year survival rate thanks to the present conventional

therapeutic approach of surgery and chemotherapy, but since 1980,

little has been learned about the pathophysiology and targeted

therapy of OS. Patients with metastatic disease and relapse cannot

benefit from additional surgery or chemoradiotherapy (3). In-depth

research on novel etiology and treatment targets for OS is urgently

needed given the non-negligible severe socioeconomic burden on

young people.

The tailored treatment of OS may greatly benefit from further

study into programmed cell death (PCD), which is still a hot topic

in oncology. For instance, cisplatin, a traditional first-line

chemotherapeutic treatment for OS, induces apoptosis (4). By

inducing oxidative stress dependent on GSH depletion and ROS

overproduction, ferroptosis promoters such as phenethyl

isothiocyanate (PEITC), baldachin, and ursolic acid have been

identified as potential adjuvant chemotherapy treatments (5–7).

Similar to this, inhibiting RIP1- and RIP3-dependent necroptosis

effectively reduced lung metastasis and tumor growth in an OS

mouse model (8).

A new PCD variant called cuproptosis was published in March

2022 by Peter T et al. (9). The buildup of monovalent copper ions

may interact directly with proteins that have been lipoylated, which

are mostly found in the mitochondria that power the TCA cycle.

The loss of proteins containing the Fe-S cluster and the production

of acute proteotoxic stress as a result of copper chelating lipoylated

protein aggregation led to an independent type of cell death. For

oncology researchers interested in copper toxicity in the treatment

of cancer, this result is encouraging. A significant anti-tumor effect

in patients with low plasma lactate dehydrogenase (LDH) was

revealed in the phase 3 clinical trial to apply copper ionophores

for melanoma, suggesting malignancies with a high dependence on

mitochondrial metabolism were likely to benefit from cuproptosis-

related molecular therapies (10).

The metabolic reprogramming in OS (11) is characterized by

abnormally suppressed TCA cycle and high levels of oxidized

glutathione (GSH), and GSH regulates copper ion cytotoxicity by

inhibiting the oxidation of divalent copper ions to monovalent

copper ions (9). It is important to talk about the activities of the

lipoylation and cuproptosis pathways. In this investigation, we seek

to identify functional pathways and genetic targets closely

associated with cuproptosis, investigate the expression patterns of

cuproptosis regulatory genes, and assess the influence of these

targets on the prognosis of OS patients. Additionally, immune

infiltrates landscapes, chemotherapeutic responsiveness, and

cancer stem-like cellular features are also implicated in identifying

their distinctions in patients with various cuproptosis patterns. This

study might offer initial recommendations and a feasibility analysis

for treatment plans that aim to treat copper toxicity in OS patients.
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2 Materials and methods

2.1 Dataset obtaining and processing

In this investigation, public transcriptional profiling datasets from

OS patients were used, including the TARGET OS dataset and the

GSE21257 dataset from GEO. For the TARGET OS dataset, the GDC

portal (https://portal.gdc.cancer.gov/), along with complete clinical

information and RNA expression data in raw count and TPM

format, were downloaded by GDC client. Expression data in TPM

format was then converted into a log2(TPM+1) matrix for further

analysis, and 85 samples with full RNA expression and clinical data

were finally included. The URL for GSE21257 was https://

www.ncbi.nlm.nih.gov/geo/. 53 samples with complete information

were eventually included after starting with raw data and moving on to

obtain a normalized expression matrix and clinical data using the R

package beadarray and illuminaHumanv2.db. R (version 4.1.3) and

Bioconductor programs for data cleaning and gene analysis were used

to analyze all the aforementioned data signature annotation.
2.2 Cuproptosis regulatory gene set and
unsupervised consensus clustering

The cuproptosis regulatory gene set was obtained from the latest

literature by Peter T et al. (9), including FDX1, LIAS, LIPT1, DLD,

DLAT, PDHA1, PDHB, MTF1, GLS and CDKN2A. The sweep()

function in R was used to normalize the expression matrix for these

genes in log2(TPM+1) format before package ConsensusClusterPlus

was used for unsupervised clustering. The study’s parameters were

maxK = 4, reps = 500, pItem = 0,8, pFeature = 1, title = title, clusterAlg

= hc, and distance = canberra. Each clustering was evaluated using the

consensus CDF value and CDF curve delta area.
2.3 Differential expressing analysis

The TARGET OS dataset’s expression data in raw count format

and the R package DEseq2 were used for the DE analysis. Briefly,

grouping information was first established using results from previous

clustering; next, the entire expression matrix in TARGET OS was pre-

screened to remove genes with zero expression in more than 20% of

samples; finally, a DEseqDataSet object was built; the DESeq() function

was used to calculate DE fold change and perform a significance test.

FDR 0.05 was the cutoff for identifying genes as significantly

differentially expressed (DE), and these genes were referred to as

cuproptosis-related DE genes (CRDEGs).
2.4 Weight gene correlation network
analysis and identification of cuproptosis-
related hub genes

To find additional genes connected to cuproptosis clustering,

WGCNA was carried out using DE genes. Hierarchical clustering
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analysis was first performed using the hclust tool. Then, the

pickSoftThreshold duty during module construction screened the

soft thresholding power setting (6 in this study). Various modules’

average connectivity degrees and independence were tested using

candidate power (1 to 30). A suitable power value was chosen if the

autonomy level was greater than 0.8. Co-expression networks

(modules) were built using the WGCNA R package (The R

package WGCNA is a collection of functions for calculating

various weighted association analyses, which can be used for

network construction, gene screening, gene cluster identification,

topological feature calculation, data simulation, and visualization).

The minimum module size was set to 30, giving each module a

distinct color label. On the basis of its correlation with clusters, the

core module was chosen. Genes in the core module with GS values

greater than 0.8 and Module Membership (MM)>0.5 was defined as

hub genes, termed cuproptosis-related hub genes (CRHGs).
2.5 Construction and validation of the
cuproptosis-related prognostic 0
0predicting model

Based on the aforementioned CRHGs, a Random Survival

Forest (RSF) plus Cox regression algorithmic technique was used

for the selection of predictive features, model development, and

internal and external validation. Details are as follows:

2.5.1 Univariate Cox regression for preliminary
feature screening

TARGET_OS dataset was first randomly divided into the train

(70%) and internal test (30%) datasets by createDataPartition()

function in the R package caret. Univariate Cox regression analysis

was then applied for all CRHGs by R package survival and

survminer. Given the low sample volume for the TARGET_OS

dataset, a bootstrap (12) sampling strategy was adopted: in 1,000

replicates of sampling with replacement, a gene was proved as

prognosis-related only when the univariate cox regression results

showed FDR< 0.05 for more than 900 times; this step was

accomplished by sample() function in R.

2.5.2 RSF model for prognostic genes selection
The randomforestSRC (13) R package’s rfsrc() function was

used to access the remaining genes in order to build an RSF model.

The optimal values were ntree=1000, block.size=1, mtry=2,

nodesize=13, splitrule=“logrank” after adjustments. The var.select

() function was used to choose features based on minimal depth in

order to build the final prognostic model. As cuproptosis-related

prognostic genes, these genes (CRPGs).

2.5.3 Prognostic model construction by
multivariate Cox regression

Amultivariate Cox regression model was built based on CRPGs.

Coefficients in this regression were applied for a final cuproptosis-

related prognostic scoring (CRP score) model calculated as follows:
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CRP score =o
n

i=1
Coef i ∗ xi

Where Coefi was the coefficient of multivariate Cox regression

and xi was the log2(TPM+1) expression value corresponding to the

No.i CRPG.

2.5.4 Model validation
Then, for patients in TARGET OS for train and internal tests

and GSE21257 for external validation, the CRP score was

determined. The timeROC package represented the Time-

dependent ROC curve, and the area under the curve (AUC) was

used as the foundation for evaluating the CRP score model’s ability

to predict outcomes.
2.6 Gene set variation analysis

GSVA was used by the R package GSVA and GSEAbase to

investigate various enrichment statuses in gene function for distinct

clusters and subgroups. Two gene sets, c2.cp.kegg.v7.4.symbols and

h.all.v7.4.symbols, were used for functional annotation from

MsigDB (http://www.gsea-msigdb.org/gsea/msigdb/). After that,

the LIMMA package was used to identify the enrichment

variations between various subgroups (13–15).
2.7 Calculation of the stemness
index (mRNAsi)

Based on the mean-centered gene expression profiles of PSCs in

the PCBC database (syn2701943), the stemness signature was

derived via the one-class logistic regression (OCLR) machine

learning algorithm (16), which was also verified by leave-one-out

cross-validation. Then, we calculated the Spearman correlations

between the normalized expression matrix of OS samples and the

stemness signature. Eventually, the stemness index was identified by

scaling the Spearman correlation coefficients to be between 0 and 1.

The higher the mRNAsi, the greater the tumor dedifferentiation and

higher stemness (17).
2.8 Compound resistance and
sensitivity analysis

Genomics of Drug Sensitivity in Cancer (GDSC, http://

www.cancerrxgene.org/downloads) database (18), which contained

drug sensitivity data (IC50) of 1,000 cell lines, was accessed to get

drug sensitivity and resistance information for osteosarcoma cell lines.

Then R package Oncopredict (19) based on the Ridge Regression

algorithm was applied to predict the drug response of samples in the

TARGET_OS cohort. Spearman correlation analysis was performed to

calculate the correlation between drug sensitivity and CRP_Score. The

absolute value of correlation coefficient > 0.4 and FDR< 0.05 were

regarded as significant.
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2.9 Analysis for immune cell infiltration and
immune signatures

Following the usual analysis procedure, we first used the

ESTIMATE program in R to evaluate the stromal purity and

general immune infiltration of tumor samples. For the

investigation of tumor immune cell infiltration, we used the

algorithms CIBERSORT and ssGSEA (13, 20, 21). The original

publications’ archives with the defining gene signatures for each

type of immune cell were obtained.
2.10 q-PCR experiment

The primers used for q-PCR are as follows: b-actin (https://

www.ncbi.nlm.nih.gov/gene/60; F ACCCTGAAGTACCCCATCGAG; R

AGCACAGCCTGGATAGCAAC) . P LCD3 ( h t t p s : / /

www.ncbi.nlm.nih.gov/gene/113026; F CTCATTCGGGAGGCAGGGAA;

R CTGGGGACTGTAGTTGGCTG). The cell groups are as follows:

NC, si-PLCD3-1, si-PLCD3-2, and si-PLCD3-3.
2.11 Transwell experiment

In DMEM with 10% FBS and 1% double antibody, U2OS cells

were grown. Pancreatic enzymes were used to digest the U2OS

cells at the logarithmic growth stage before being counted and

distributed uniformly in six-well plates with roughly 1x105 cells

per well. The cells were transfected with NC and si-PLCD3 on the

second day. The cells were switched to a full medium for 48 hours

after 6 hours, and they were then cultured in an EDU37°C

incubator overnight. Paraformaldehyde was used to fix the

samples after collection. To defrost on ice, remove the

necessary si-PLCD3 and NC. They took four sterile tubes. A

total of 95 uL of serum-free MEM/DMEM media was added to

two tubes. The tubes were then filled with 5 uL of NC and 5 uL of

Lip2000, respectively. The equivalent centrifuge tubes received

the addition of si-PLCD3 in the same manner. Mix gently, then

set aside for five minutes at room temperature. Following a 20-

minute rest period at room temperature, combine the two tubes.

Finally, the mixture was blended and added uniformly to the

transfection hole. Replace with fresh and full culture medium six

hours after starting the culture in incubators at 37°C. The

following are the cell groups: Si-PLCD3-1 and Si-PLCD3-2,

NC. Corning sold the Transwell chamber (3428), which

was acquired.
2.12 EdU experiment

In DMEM with 10% FBS and 1% double antibody, U2OS cells

were grown. Pancreatic enzymes were used to digest the U2OS cells

at the logarithmic growth stage before being counted and

distributed uniformly in six-well plates with roughly 1x105 cells
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per well. The cells were transfected with NC and si-PLCD3 on the

second day. The cells were switched to a full medium for 48 hours

after 6 hours, and they were then cultured in an EDU37°C incubator

overnight. Paraformaldehyde was used to fix the samples after

collection. To defrost on ice, remove the necessary si-PLCD3 and

NC. They took four sterile tubes. A total of 95 uL of serum-free

MEM/DMEM media was added to two tubes. The tubes were then

filled with 5 uL of NC and 5 uL of Lip2000, respectively. The

equivalent centrifuge tubes received the addition of si-PLCD3 in the

same manner. Mix gently, then set aside for five minutes at room

temperature. Following a 20-minute rest period at room

temperature, combine the two tubes. Finally, the mixture was

blended and added uniformly to the transfection hole. Replace

with fresh and full culture medium six hours after starting the

culture in incubators at 37°C. The following are the cell groups: Si-

PLCD3-1 and Si-PLCD3-2, NC. Ribo supplied the EdU kit

(RN: R11078.2).
2.13 Statistical analysis

All statistical calculations were done in R. (version 4.1.3). The

comparison of count data was assessed using Fisher’s test and the

Chi-square test. The Student-t test was used for measurement data

with a normal distribution, whereas the Wilcox test was used for

data with an abnormal distribution. All correlation investigations

must be completed using Spearman analysis. The Kaplan-Meier

survival curve was represented using the R package survival

and survminer.
3 Results

The workflow chart of the study is shown in Supplement

Figure 1.
3.1 Distinct expression patterns for
cuproptosis regulatory genes were
identified in osteosarcoma patients

We initially examined the expression pattern of the genes that

regulate cuprotosis based on the log2(TMP+1) expression matrix.

All 10 genes were expressed in the TARGET OS and GSE21257

datasets, as seen in Figures 1A, B, and their expression followed a

normal distribution, which gave us the foundation for further

investigation. By combining the Kaplan-Meier survival curve and

univariate Cox regression with survival data, we found that elevated

FDX1 expression is linked to both lower overall survival (OvS) and

disease-free survival (DFS) in OS patients (Figures 1C–E). These

findings suggested that cuproptosis might contribute to the

malignant biological activity of OS since FDX1 was shown to be a

key regulator in cuproptosis by linking the cytotoxicity of cooper

ions and protein lipoylation in the TCA cycle.
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Following that, unsupervised consensus clustering was carried

out using the expression matrix of 10 genes involved in

cuproptosis. Eighty-five samples in TARGET OS were best

grouped into two clusters, referred to as Cu ClusterA (42

samples) and Cu ClusterB (43 samples), as shown in
Frontiers in Oncology 05
Figures 1F, G. The samples in Cu ClusterB tended to

overexpress all cuproptosis genes, as seen in Figure 1H, whereas

CDKN2A appeared to be indistinguishable. These results showed

that the cuproptosis pathway genes’ activity in OS patients showed

two different patterns.
A B

D E

F

G

H

C

FIGURE 1

Cuproptosis regulatory genes were expressed in distinct patterns in OS samples. (A, B) Expression distributions of cuproptosis regulatory genes in
TARGET_OS (A) and GSE21257 (B) datasets. (C–E) K-M survival curve for FDX1 high- and low- expression subgroups in TARGET_OS (C, D) and
GSE21257 datasets (E), Ovs, overall survival; DFS, disease-free survival. (F, G) Results of consensus clustering based on the expression of cuproptosis
regulatory genes, (F) Consensus heatmap, (G) Item-Consensus plot. (H) Heatmap shows the expression of cuproptosis genes in distinct patterns.
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3.2 Cuproptosis clusters in OS patients
represented differences in immune
infiltration and stemness properties

Then, we pondered how the two clusters’ malignant biological

characteristics varied from one another. So, we carried out a

number of functional investigations. The expression of

cuproptosis genes was typically active in Cu ClusterB samples,

according to GSVA analysis, which first revealed a number of

pathways that were sparked. TCA cycle-related pathways (such as

citrate metabolism, oxoglutarate metabolism, and pantothenic acid

biosynthesis) and traditional cancer-promoting pathways (such as

TGF-, WNT/-catenin, p53, and IL./STAT5 signalings) are two

categories of important findings (Figure 2A). We developed the
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mRNAsi index to show the difference in cellular stemness between

the two clusters because the majority of these enriched pathways

were involved in the destiny control of cancer stem-like cells

(CSLCs). Cu ClusterB displayed a substantially higher mRNAsi

than Cu ClusterA, as illustrated in Figure 2B, indicating that

enhanced cuproptosis gene expression may function as an

initiating factor in immortal proliferation, quick metastasis, and

chemo-resistance linked to CSLC activities.

In addition, we carried out a number of researches on

immunological infiltration between two clusters. Figures 2C–E

illustrates how the ESTIMATE approach revealed that samples in

Cu ClusterB had lower stromal scores than Cu ClusterA, indicating

that Cu ClusterB had fewer stromal components. Samples in Cu

ClusterA tended to enhance activated immune cells, according to
A B

D E

F

C

FIGURE 2

OS samples in different Cu_Clusters exhibited distinct tumor biological characteristics. (A) GSVA analysis showed diverse enriched pathways in
different Cu_Clusters. (B) Divergence in the mRNAsi index showed differences in stemness properties between Cu_ClusterA and Cu_ClusteB. (C–E)
ESTIMATE analysis for the overall status of immune cell infiltration and stromal component samples in the TARGET_OS dataset. (F) ssGSEA for the
infiltration analysis of 29 types of immune cells in different Cu_Clusters *P < 0.05; **P < 0.01.
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CIBERSORT and ssGSEA for a study of just one type of immune

cell (e.g., Activated CD4 T cell, dendritic cell, and Macrophages

M2). In contrast, models in Cu ClusterB (such as Regulatory T cell,

MDSC, and Macrophages M0) may show signs of a dormant

immunological state (Figure 2F and Supplement Figure 2A).
3.3 Screening of cuproptosis-related genes
revealed a functional connection between
cuproptosis and other biological processes
in OS

We first performed a differential expression (DE) study to find

CRGs associated with cuproptosis clusters. A total of 6537 genes,

including 3565 up-regulated genes in Cu ClusterA and 2972 up-

regulated genes in Cu ClusterB, matched the criteria for DE, as

shown in Figures 3A, B. WGCNA analysis was used, using DEGs as

input objects, to further narrow down the potential genes highly

connected with cuproptosis clusters, and 16 modules were

ultimately discovered (Figures 3C, D). Notably, the cuproptosis

clusters had the strongest correlation with Module turquoise

(MEturquoise), which had 1762 genes and had a R = 0.73 with

Cu ClusterB, p = 1e-15, in Figure 3E. Further verification showed

that genes in MEturquoise had strong consistency in principal

component representation (shown by Module Membership, MM)

and external connection with cuproptosis clusters (indicated by

Module Membership, MM) (Figure 3F).

We eventually discovered 331 hub genes in MEturquoise based

on the selection criteria of GS>0.8 and MM>0.5 described above.

For further examination, these signatures were classified as CRGs.

For CRGs, enrichment analysis was used to investigate the co-

regulated pathways and biological processes. Notably, as shown in

Figures 3G, H, the KEGG analysis revealed a high enrichment of the

TCA cycle and NAD(P)+ activity pathways, further demonstrating

the close relationship between cuproptosis and the TCA cycle. The

terms RNA synthesis, metabolism & splicing, and ubiquitin-

proteasome pathway also commonly appeared in search results.

Traditional methods of controlling cuproptosis are suggested by

AMPK and Hedgehog signaling. The emergence of the PD-1

checkpoint pathway suggested that cuproptosis might contribute

to the responsiveness of tumor treatment.
3.4 Selection of cuproptosis-related
prognostic genes and construction
of cuproptosis-related prognostic
score model

Patients in the TARGET OS cohort were 7:3 randomly split

between the training and testing groups. 16 prognostic CRGs were

left after performing univariate Cox regression with bootstrap

sampling to reduce redundancy based on CRGs. Then, using a

1,000-tree random survival forest model, the minimum depth

values selected the five gene signatures that would ultimately be

used as CRPGs: BTBD10, DLX1, MRTFA, PLCD3, and RFX3

(Figures 4A, B). The scatter plot revealed no obvious association
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between the expression of these five genes, ruling out model

redundancy in the process (Figure 4C). The CRP score model was

then created by performing multivariate Cox regression using

CRPGs:

CRP score = ( − 1:8626130)*ExpBTBD10 + 0:2978399*ExpDLX1

− 0:9252084*ExpMRTFA

+0:1514946*ExpPLCD3 + 1:0547832*ExpRFX3

For each patient in a train, test, and external validation dataset,

we computed a CRP score. In these datasets, we used a time-

dependent ROC curve to find the prediction power for overall

survival. The area under the curve (AUC) was convincingly

confirmed in the TARGET testing set GSE21257 validation set

and reached 0.809 at three years, 0.816 at five years, and 0.769 at

eight years (Figures 4D–F). Based on the median score, OS patients

were divided into CRP score high and CRP score low subgroups.

The K-M curve further demonstrated that OS patients with higher

CRP scores had considerably worse OvS times (Figures 4G, H).
3.5 Correlation analysis between CRP
score and malignant biological behaviors

We also carried out a number of functional studies. First, GSVA

analysis indicated that the CRP high subgroup was enriched for

various cancer-promoting pathways, including Wnt/-catenin, TGF-

, and JAK/STAT signaling, which overlapped with Cu ClusterB.

Improvements were made to the TCA cycle-related pathways,

demonstrating the coherence between Cu Clusters and CRP

subgroups. Notably, the CRP high fraction also had activation of

the epithelial-mesenchymal transition (EMT) pathway, suggesting

that samples with poorer prognoses were more likely to develop

distant metastases (Figure 5A).

Additionally, the mRNAsi index was used in connection studies

with CRP results. In contrast to the CRP low subgroup, samples in

the CRP high subgroup showed a considerably higher mRNAsi

index (Figure 5B). Additionally, the TARGET OS dataset revealed a

strong association between CRP score and mRNAsi in every person

(R=0.32, p=0.031, Figure 5C), suggesting that OS samples with

higher CRP values may have more pronounced stemness features.

According to the immune infiltration analysis, a higher CRP score

was linked to immunosuppression (R = - 0.25, p = 0.023; Figure 5D);

while a lower CRP score was linked to a greater stromal score (R = -

0.31, p = 0.017; Figure 5E). The CRP high subgroup was related with

higher infiltration of Macrophages M0, Type 17 T helper cells, and

T cells, according to an examination of infiltration for various immune

cells. The CRP low subgroup, on the other hand, was connected to

enhanced infiltration of Macrophages M2, Regulatory T cell, Central

memory CD8 T cell, and Activated B cell, showing different immune

infiltration patterns in OS patients (Figure 5F and Supplement

Figure 2B). It should be highlighted that the CRP low subgroup

showed increased expression of PDL1, TIM3, and TIGIT

(Supplement Figure 2C). Because immunosuppression and CRP

score are correlated, anti-PD-1/PD-L1 immunotherapeutic medicines

may be more effective for OS patients with lower CRP values.
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3.6 Correlation analysis between CRP
score and malignant biological behaviors

From CCLE, 10 OS cell lines and their expression matrix were

taken. In order to determine the link between the CRP score and the

IC50 for each molecule contained in the GDSC v2 database, we first

calculated the CRP score for these cell lines. The elevated CRP score

was linked to greater resistance to a number of medications,
Frontiers in Oncology 08
particularly those that target the ERK/MAPK pathway and cell

cycle, as shown in Supplement Figure 3A. Unexpectedly, cell lines

with higher CRP ratings appeared to be more responsive to

AT13148, a medication that blocks PI3K/Akt/mTOR signaling.

To further forecast the pharmacological reactions of samples in

the TARGET OS dataset, we utilized a machine learning system.

Two medications that target the PI3K/mTOR pathway, AZD6482

and AZD8055, were probably more sensitive in OS samples with
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FIGURE 3

Screening of cuproptosis-related genes by DE analysis and WGCNA. (A, B) Results of DE analysis in different Cu_Cluseters; (A) Volcano plot of DEGs;
(B) Heatmap of DEGs. (C–F) WGCNA analysis for DEGs to identify gene module that was most correlated with Cu_Clusters; (G, H) Pathway
enrichment analysis for hub genes obtained from WGCNA; (G) Molecular function analysis of WGCNA hub genes in GO (H) Pathway enrichment
analysis of WGCNA hub genes in KEGG.
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higher CRP scores, as demonstrated in Supplement Figure 3B and

Supplement Figure 2D. Additionally, samples with high CRP values

responded more favorably to linsitinib targeting IGF1R.

In light of the aforementioned findings, treating patients with

high CRP scores who were thought to have bad prognoses may

involve targeting PI3K/Akt/mTOR signaling. Contrarily, drugs that

target the cell cycle and Wnt signaling pathways are frequently

ineffective against patients with high CRP values. Given that most

first-line chemotherapeutics for OS used cell cycle inhibition as
Frontiers in Oncology 09
their primary mechanism of action, the CRP score model may also

be able to predict clinical chemoresistance in OS patients.
3.7 Pan-cancer analysis on model genes

The expression pattern of model genes in pan-cancer is shown

in Figure 6A. BTBD10, DLX1, MRTFA, PLCD3, and RFX3 were

highly expressed in PRAD, COAD, LUSC, HNSC, and KIRC. The
A B
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C

FIGURE 4

Construction and validation of CRP score model. (A, B) RSF model training and variable selection; (A) error rate trends as the number of trees
increased when training RSF model; (B) Variable importance of selected features. (C) Correlation of expression in 5 genes that RSF selected to
train CRP score model. (D–F) Time-dependent ROC curve to test the predictive ability of CRP score for OS patients in TARGET_OS train set (D),
test set (E), as well as GSE21573 external validation set (F). (G, H) K-M curve of CRP scores high and low subgroups for patients’ overall survival in
TARGET_OS (G) and GSE21573 (H) datasets.
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somatic mutation frequency of model genes is shown in Figure 6B.

BTBD10, DLX1, MRTFA, PLCD3, and RFX3 had relatively high

mutation rates in UCEC and SKCM. The somatic mutation

landscape of model genes is shown in Figure 6C. BTBD10 (43%),

PLCD3 (27%), and RFX3 (24%) were frequently mutated in

pan-cancer.

The heterozygous CNV profiles (amplification and depletion)

of model genes are shown in Figure 7A. The homozygous CNV

profiles (amplification and depletion) of model genes are shown in

Figure 7B. Pathway analysis revealed that PLCD3 was related to

activated apoptosis, EMT, hormone AR, hormone ER, PI3K/Akt,

RAS/MAPK, RTK, and TSC/mTOR (Figure 7C). The miRNA

regulation network of model genes is shown in Figure 7D.
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3.8 In vitro validation on PLCD3

The tumor-promoting activity of PLCD3 was investigated by in

vitro tests since it is a crucial gene in the CRP score. Three si-RNA

significantly reduced the relative RNA expression of PLCD3 in the

NC and three si-RNA groups, according to a q-PCR experiment

(Figure 8A). Figure 8B displays the statistical analysis of the cell

counts in the NC and two si-RNA groups using the Transwell test.

Figure 8C illustrates the statistical analysis of the proliferation rate

(EdU/DAPI) in the NC and two si-RNA groups. Transwell assay

representative photos of the cell counts in the NC and two si-RNA

groups (Figure 8D), showing that the number of migrated cells was

dramatically decreased in the two si-RNA groups. Typical pictures
A B
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C

FIGURE 5

Correlation analysis between CRP score and malignant biological behaviors. (A) GSVA analysis showed diverse enriched pathways between
CRP_high and CRP_low subgroups. (B, C) mRNAsi index analysis revealed differences in stemness properties between CRP_high and CRP_low
subgroups and a significant correlation between CRP_score and mRNAsi. (D, E) ESTIMATE analysis for the correlation between CRP_score and
immune cell infiltration as well as a stromal component in samples of the TARGET_OS dataset. (F) ssGSEA for the infiltration analysis of 29 types of
immune cells in CRP_high and CRP_low subgroups *P < 0.05; **P < 0.01; ***P < 0.001.
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of the proliferation rate in NC (EdU/DAPI). Examples of the

proliferation rate (EdU/DAPI) in the NC and two si-RNA groups

by EdU test are shown in Figure 8E, where the positively stained

cells in the two si-RNA groups were dramatically decreased.
3.9 Immunotherapy prediction of PLCD3

Figure 9A depicts the expression of PLCD3 in immunotherapy

cohorts of responders and non-responders, with responders

exhibiting higher expression of PLCD3 in the Lauss cohort of

2017 and Kim cohort of 2019. Regarding the two groups’ PLCD3

expression in immunotherapy cohorts, a survival analysis was

carried out (Figure 9B). In the VanAllen cohort of 2015 and the
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Cho cohort of 2020, PLCD3 was linked to improved survival; in the

Kim cohort of 2019, the Nathanson cohort of 2017, and the Lauss

cohort of 2019, PLCD3 was linked to worse survival. In eight

immunotherapy cohorts, PLCD3 demonstrated strong predictive

power for immunotherapy response (Figure 9C).

Figure 10A illustrates the relationship between PLCD3 and T

dysfunction value (core dataset), normalized Z score calling from

Cox-PH regression (immunotherapy datasets), normalized Z score

calling from selection log2FC (CRISPR screening datasets), and

normalized expression value from immune-suppressive cell types.

PLCD3 had an AUC greater than 0.5 in ten immunotherapy cohorts

with regard to its predictive value (Figure 10B). In seven mouse

cohorts, the cytokine treatment prediction revealed that PLCD3

could strongly predict the treatment with cytokines (Figure 10C). In
A

B

C

FIGURE 6

(A) Pan-cancer expression pattern of model genes. (B) Pan-cancer SNP analysis on model genes. (C) Pan-cancer SNP landscape on model genes.
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two mouse cohorts, the immunotherapy prediction demonstrated

that PLCD3 could accurately predict immunotherapy (Figure 10D).
3.10 Protein interaction network, illness
network, and pan-cancer immune
infiltration pattern of PLCD3

PLCD3 was found to interact with ITRP3, ITPR1, PRKCA, and

PIP4K families by STRING (Figure 11A). PLCD3 was involved in

hypertension, cutaneous melanoma, and breast adenocarcinoma by

Open Targets Platform (Figure 11B). PLCD3 positively correlated

with macrophages and negatively correlated with T cells in most

cancers by TIMER (Figure 11C).
Frontiers in Oncology 12
4 Discussion

Cuproptosis is a recently identified type of programmed cell

death. Little is currently known about this unique, mitochondrial-

dependent mechanism, however Peter T. et al. This work provides a

preliminary description of the regulatory environment of

cuproptosis-related pathways in osteosarcoma based on the

available information. Some key findings may serve as an

inspiration for work on OS and many other pathological

conditions. First, it is found that OS patients have a poor

prognosis and high FDX1 expression. FDX1 was first discovered

as a mitochondrial electron transporter for cytochrome P450

metabolism (22, 23). Some sporadic studies identified FDX1 as a
A

B

D

C

FIGURE 7

(A) The heterozygous CNV profiles (amplification and depletion) of model genes. (B) The homozygous CNV profiles (amplification and depletion) of
model genes. (C) Pathway analysis related to PLCD3. (D) The miRNA regulation network of model genes.
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tumorigenesis regulator. In xenograft models of multi-tumors,

Tsvepkov P et al. (24) proved that FDX1 worked as an oncogene

rescuing elesclomol-induced cell death. Zhang Y et al. (25) found

that FDX1 could regulate iron metabolism and mitochondrial

homeostasis in tumor cells through the p53 pathway. Our work

may inspire more research on FDX1 as a key element in cuproptosis

and an oncogene to control the pathogenesis of OS because no

studies on the association between FDX1 and OS have been located.

Our study has also thoroughly examined the regulatory

pathways connected to cuproptosis and its potential roles in OS.
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Cuproptosis gene up-regulation resulted in the enrichment of a few

well-known cancer-promoting pathways, including TGF-, Wnt/-

catenin, and p53 signaling. These results might offer suggestions for

further experiments on cuproptosis regulation pathways.

Additionally, we discovered that cuproptosis may also generate an

immunosuppressive state and CSLC characteristics. Ferroptosis and

cuproptosis have certain molecular commonalities in several types

of programmed cell death. Both were correlated with the reduction

of metal ions and redox metabolic pathway mediated by GSH/

NADPH in mitochondria (26, 27). Some recent studies have
A B
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C

FIGURE 8

The tumor-promoting role of PLCD3. (A) The relative RNA expression of PLCD3 in NC and three si-RNA groups by q-PCR assay. (B) Statistical
analysis of the cell counts in NC and two si-RNA groups by Transwell assay. (C) Statistical analysis of the proliferation rate (EdU/DAPI) in NC and two
si-RNA groups by EdU assay. (D) The cell counts in NC and two si-RNA groups by Transwell assay. (E) The proliferation rate (EdU/DAPI) in NC and
two si-RNA groups by EdU assay. **, P<0.01; ***, P<0.001; ****, P<0.0001.
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suggested that CSLCs might be sensitive to ferroptosis due to their

relatively strong dependency on nutrition intake and higher

intracellular levels of metal trace elements to maintain their self-

renewal (28, 29). For tumor immunology, ferroptosis might also

play a crucial role in regulating T cells. Ferroptosis induction in

CD8+ and CD4+ T cells could lead to phospholipid hydroperoxide

and impair its antitumor function (30, 31). These results are in line

with our research, which show that cuproptosis-regulated gene

activation is positively correlated with a higher mRNAsi
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index and an increase in the infiltration of immunosuppressive

cells. Therefore, it is encouraging that future studies will

concentrate on controlling cuproptosis in CSLCs and

tumor microenvironments.

Our study identified five cuproptosis-related prognostic genes

and built a reliable prognostic predicting model (CRP score model)

based on them using a number of bioinformatic and machine

learning methods. Our search revealed that studies on the role of

these five genes, except MRTFA and RFX, in the etiology of OS had
A B

C

FIGURE 9

Immunotherapy prediction of PLCD3. (A) The expression of PLCD3 in responders and non-responders in immunotherapy cohorts. (B) Survival
analysis was performed on the two groups regarding PLCD3 expression in immunotherapy cohorts. (C) The ROC curve of PLCD3 in predicting
immunotherapy response in immunotherapy cohorts.
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yet to be published. Matrix stiffness regulates EMT via cytoskeletal

remodeling and MRTFA translocation in osteosarcoma (32).

MRTFA is strongly associated with cell viability of its correlation

with cytoskeleton and actin (33). It has been identified as an EMT

and metastasis regulator in NPC (34) and NSCLC (35). BTBD10

functions as an activator of AKT family members by inhibiting

PPP2CA-mediated dephosphorylation, and a few studies have
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identified it as a prognostic risk factor in hepatocellular

carcinoma (36) and glioma (37). DLX1 serves as a two-sided

transcriptional regulator of the TGF-b superfamily that may be

either an oncogene or a suppressor in different types of tumors (38,

39). PLCD3 is a member of the phospholipase C family, which

catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate to

generate the second messenger diacylglycerol and inositol 1,4,5-
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FIGURE 10

Immunotherapy prediction of PLCD3. (A) Regulator prioritization performed by TIDE. (B) Biomarker evaluation by TIDE. (C) Cytokine treatment
prediction by TISMO. (D) Immunotherapy prediction by TISMO.
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trisphosphate (IP3) (40). PLCD3 is involved in the proliferation,

migration, and invasion of nasopharyngeal carcinoma (41). PLCD3

inhibits apoptosis and promotes thyroid cancer’s proliferation,

migration, and invasion via the Hippo pathway (42). As PLCD3

was not studied in osteosarcoma, the in vitro validation was

performed on PLCD3. PLCD3 could facilitate the proliferation

and migration of osteosarcoma. p53 could directly regulate target

genes, including MDM2, TP53I3, and RRM2B, or indirectly

regulate numerous further genes through several hub genes,

including EHF and RFX, through various drug treatments in

osteosarcoma (43). RFX3 is a transcription factor that is essential

for the differentiation of nodal monocilia (44). It has been reported

that these two genes may also be involved in malignant biological

behaviors of cancers (42, 45), but the mechanisms are poorly

understood. Given that drug responses were predicted for OS
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patients with varying CRP scores, this 5-gene prognostic model is

not only deserving of exploration of their mechanism in cuproptosis

regulation and OS tumorigenesis/progression but also potential for

translational medical outcomes, particularly for the future targeted

therapy targeting PI3K/AKT/mTOR signaling, as compounds

targeting this pathway could remain highly sensitive in patients

with high CRP scores (poor prognosis).

We had to acknowledge that this study has limitations as

researchers in the fields of bioinformatics and machine learning.

Since OS is a relatively uncommon tumor, it is challenging to gather

WGS data, and the sample size is modest when compared to other

cancer types. The TARGET database provided by GDC has to have

certain types of data, including SNP, copy number variation, and

protein expression profiling, completed or accessible. These flaws

likely decreased the power of statistical tests throughout the study,
A B
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FIGURE 11

(A) The PLCD3 protein interaction network. (B) The PLCD3 illness network. (C) PLCD3’s pan-cancer immune infiltration pattern.
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particularly for machine learning-related studies like ridge

regression and random survival forests. In a summary, our study

demonstrated the distinctive cuproptosis regulatory gene

expression profiles in osteosarcoma patients. It revealed some

fresh information on the connections between this recently

discovered kind of PCD and cancer-related pathways, stemness

features, and immune infiltration traits. A scoring model based on

cuproptosis-related clustering may have a significant impact on OS

patient prognosis prediction and may influence clinical

chemotherapy regimen selection and the creation of novel

targeted medications.
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FIGURE S1

Workflow diagram of this study.

FIGURE S2

Figure S2 (A) The expression of immune cells in two Cu Clusters. (B) The
expression of immune cells in two CRP score groups. (C) The expression of

checkpoints in two CRP score groups. (D) The correlation of drug response

and CRP score.

FIGURE S3

Figure S3 Pharmacogenomics Analysis of CRP score. (A) Signaling pathways

targeted by drugs resistant or sensitive to CRP_score in OS cell lines; (B)
Molecular targets and signaling pathways targeted by drugs resistant or

suscept ib le to CRP_score in OS samples pred icted by the

Oncopredict algorithm.
References
1. Mirabello L, Troisi R, Savage S. Osteosarcoma incidence and survival rates from
1973 to 2004: Data from the surveillance, epidemiology, and end results program.
Cancer (2009) 115(7):1531–43. doi: 10.1002/cncr.24121

2. Siegel R, Miller K, Fuchs H, Jemal A. Cancer statistics, 2021. CA: Cancer J Clin
(2021) 71(1):7–33. doi: 10.3322/caac.21654

3. Isakoff M, Bielack S, Meltzer P, Gorlick R. Osteosarcoma: Current treatment and
a collaborative pathway to success. J Clin Oncol (2015) 33(27):3029–35. doi: 10.1200/
JCO.2014.59.4895

4. Li S, Liu F, Zheng K, Wang W, Qiu E, Pei Y, et al. CircDOCK1 promotes the
tumorigenesis and cisplatin resistance of osteogenic sarcoma via the miR-339-3p/
IGF1R axis. Mol cancer (2021) 20(1):161. doi: 10.1186/s12943-021-01453-0

5. Tang Z, Dong H, Li T, Wang N, Wei X, Wu H, et al. The synergistic reducing
drug resistance effect of cisplatin and ursolic acid on osteosarcoma through a multistep
mechanism involving ferritinophagy. Oxid Med Cell longevity (2021) 2021:5192271.
doi: 10.1155/2021/5192271

6. Luo Y, Gao X, Zou L, Lei M, Feng J, Hu Z. Bavachin induces ferroptosis through
the STAT3/P53/SLC7A11 axis in osteosarcoma cells. Oxid Med Cell longevity (2021)
2021:1783485. doi: 10.1155/2021/1783485

7. Lv H, Zhen C, Liu J, Shang P. PEITC triggers multiple forms of cell death by GSH-
iron-ROS regulation in K7M2 murine osteosarcoma cells. Acta pharmacologica Sinica
(2020) 41(8):1119–32. doi: 10.1038/s41401-020-0376-8
8. Li S, Zhang T, Xu W, Ding J, Yin F, Xu J, et al. Sarcoma-targeting peptide-
decorated polypeptide nanogel intracellularly delivers shikonin for upregulated
osteosarcoma necroptosis and diminished pulmonary metastasis. Theranostics (2018)
8(5):1361–75. doi: 10.7150/thno.18299

9. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al.
Copper induces cell death by targeting lipoylated TCA cycle proteins. Sci (New York
NY) (2022) 375(6586):1254–61. doi: 10.1126/science.abf0529

10. O'Day S, Eggermont A, Chiarion-Sileni V, Kefford R, Grob J, Mortier L, et al. Final
results of phase III SYMMETRY study: Randomized, double-blind trial of elesclomol plus
paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with
advanced melanoma. J Clin Oncol (2013) 31(9):1211–8. doi: 10.1200/JCO.2012.44.5585

11. Zhong Z, Mao S, Lin H, Li H, Lin J, Lin J. Alteration of intracellular metabolome
in osteosarcoma stem cells revealed by liquid chromatography-tandem mass
spectrometry. Talanta (2019) 204:6–12. doi: 10.1016/j.talanta.2019.05.088

12. Hesterberg T. Bootstrap Vol. 3. Wiley Interdisciplinary Reviews: Computational
Statistics (2011) p. 497–526.

13. Chi H, Xie X, Yan Y, Peng G, Strohmer DF, Lai G, et al. Natural killer cell-related
prognosis signature characterizes immune landscape and predicts prognosis of
HNSCC. Front Immunol (2022) 13:1018685. doi: 10.3389/fimmu.2022.1018685

14. Chi H, Jiang P, Xu K, Zhao Y, Song B, Peng G, et al. A novel anoikis-related gene
signature predicts prognosis in patients with head and neck squamous cell carcinoma
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2023.1156455/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1156455/full#supplementary-material
https://doi.org/10.1002/cncr.24121
https://doi.org/10.3322/caac.21654
https://doi.org/10.1200/JCO.2014.59.4895
https://doi.org/10.1200/JCO.2014.59.4895
https://doi.org/10.1186/s12943-021-01453-0
https://doi.org/10.1155/2021/5192271
https://doi.org/10.1155/2021/1783485
https://doi.org/10.1038/s41401-020-0376-8
https://doi.org/10.7150/thno.18299
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1200/JCO.2012.44.5585
https://doi.org/10.1016/j.talanta.2019.05.088
https://doi.org/10.3389/fimmu.2022.1018685
https://doi.org/10.3389/fonc.2023.1156455
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2023.1156455
and reveals immune infiltration. Front Genet (2022) 13:984273. doi: 10.3389/
fgene.2022.984273

15. Chi H, Peng G, Wang R, Yang F, Xie X, Zhang J, et al. Cuprotosis programmed-
Cell-Death-Related lncRNA signature predicts prognosis and immune landscape in
PAAD patients. Cells (2022) 11(21). doi: 10.3390/cells11213436

16. Malta T, Sokolov A, Gentles A, Burzykowski T, Poisson L, Weinstein J, et al.
Machine learning identifies stemness features associated with oncogenic
dedifferentiation. Cell (2018) 173(2):338–54.e15. doi: 10.1016/j.cell.2018.03.034

17. Lian H, Han Y, Zhang Y, Zhao Y, Yan S, Li Q, et al. Integrative analysis of gene
expression and DNA methylation through one-class logistic regression machine
learning identifies stemness features in medulloblastoma. Mol Oncol (2019) 13
(10):2227–45. doi: 10.1002/1878-0261.12557

18. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al.
Genomics of drug sensitivity in cancer (GDSC). Nucleic Acids Res (2015) 41:955–61.
doi: 10.1093/nar/gks1111

19. Maeser D, Gruener RF, Huang RS. oncoPredict: An r package for predicting in
vivo or cancer patient drug response and biomarkers from cell line screening data.
Briefings Bioinf (2021) 11). doi: 10.1093/bib/bbab260

20. Chi H, Peng G, Yang J, Zhang J, Song G, Xie X, et al. Machine learning to
construct sphingolipid metabolism genes signature to characterize the immune
landscape and prognosis of patients with uveal melanoma. Front Endocrinol
(Lausanne) (2022) 13:1056310. doi: 10.3389/fendo.2022.1056310

21. Peng G, Chi H, Gao X, Zhang J, Song G, Xie X, et al. Identification and validation
of neurotrophic factor-related genes signature in HNSCC to predict survival and
immune landscapes. Front Genet (2022) 13:1010044. doi: 10.3389/fgene.2022.1010044

22. Sheftel A, Stehling O, Pierik A, Elsässer H, Mühlenhoff U, Webert H, et al.
Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in
steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci United States
America (2010) 107(26):11775–80. doi: 10.1073/pnas.1004250107

23. Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park H.
Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase
system. Proc Natl Acad Sci United States America (2011) 108(25):10139–43. doi:
10.1073/pnas.1019441108

24. Tsvetkov P, Detappe A, Cai K, Keys H, Brune Z, Ying W, et al. Mitochondrial
metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol (2019) 15
(7):681–9. doi: 10.1038/s41589-019-0291-9

25. Zhang Y, Qian Y, Zhang J, YanW, Jung Y, ChenM, et al. Ferredoxin reductase is
critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev
(2017) 31(12):1243–56. doi: 10.1101/gad.299388.117

26. Zheng J, Conrad M. The metabolic underpinnings of ferroptosis. Cell Metab
(2020) 32(6):920–37. doi: 10.1016/j.cmet.2020.10.011

27. Chen X, Li J, Kang R, Klionsky D, Tang D. Ferroptosis: Machinery and
regulation. Autophagy (2021) 17(9):2054–81. doi: 10.1080/15548627.2020.1810918

28. Raz N, Daugherty A. Pathways to brain aging and their modifiers: Free-Radical-
Induced energetic and neural decline in senescence (FRIENDS) model - a mini-review.
Gerontology (2018) 64(1):49–57. doi: 10.1159/000479508

29. Wu S, Li T, Liu W, Huang Y. Ferroptosis and cancer: Complex relationship and
potential application of exosomes. Front Cell Dev Biol (2021) 9:733751. doi: 10.3389/
fcell.2021.733751
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