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This study summarizes the latest achievements, challenges, and future research

directions in deep learning technologies for the diagnosis of renal cell carcinoma

(RCC). This is the first review of deep learning in RCC applications. This review aims

to show that deep learning technologies hold great promise in the field of RCC

diagnosis, and we look forward to more research results to meet us for the mutual

benefit of renal cell carcinoma patients. Medical imaging plays an important role in

the early detection of renal cell carcinoma (RCC), as well as in the monitoring and

evaluation of RCC during treatment. The most commonly used technologies such

as contrast enhanced computed tomography (CECT), ultrasound and magnetic

resonance imaging (MRI) are now digitalized, allowing deep learning to be applied to

them. Deep learning is one of the fastest growing fields in the direction of medical

imaging, with rapidly emerging applications that have changed the traditional

medical treatment paradigm. With the help of deep learning-based medical

imaging tools, clinicians can diagnose and evaluate renal tumors more accurately

and quickly. This paper describes the application of deep learning-based imaging

techniques in RCC assessment and provides a comprehensive review.
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1 Introduction

Renal cell carcinoma (RCC) is one of the most common and fatal tumors of the urinary

system. It originates from the urinary tubular epithelial system of the renal parenchyma

and accounts for 4% of human malignancies. Its annual incidence exceeds 400,000 cases,

with a total of approximately 431,288 cases worldwide in 2020 (1). Clear cell RCC (ccRCC)

is the predominant type of RCC pathology. RCC is usually detected on computed
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1152622/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1152622/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1152622/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1152622/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1152622&domain=pdf&date_stamp=2023-09-01
mailto:jiaowei3929@163.com
https://doi.org/10.3389/fonc.2023.1152622
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1152622
https://www.frontiersin.org/journals/oncology


Wang et al. 10.3389/fonc.2023.1152622
tomography (CT) scans, and it is estimated that about 15-40% of

patients are found incidentally while undergoing CT examinations

(2, 3). RCC is usually asymptomatic in its early stages, and

approximately 25-30% of patients present with metastases at the

time of diagnosis. Early diagnosis of RCC will significantly improve

prognosis; therefore, with the increasing number of RCC cases, it is

critical to develop effective strategies for early diagnosis and

identification of tumors with poor prognosis (4).

Deep learning is a branch of machine learning techniques.

Traditional machine learning techniques include support vector

machine (SVM), random forest, decision tree, K-nearest neighbor,

naive Bayes, logistic regression, etc. (5, 6). The emergence of

convolutional neural networks (CNN) has raised the accuracy of

machine learning to a new level. As models continue to iterate in

complexity, machine recognition capabilities are reaching human

levels for the first time (7) which has led to the explosion of deep

learning applications today. Deep learning technologies are starting

to change various fields of production and life, such as AlphaGo,

Face Payment, and Autopilot, which are well known to the public.

With the rapid development of computer hardware and deep

learning theory, deep learning has been widely used for the

classification of medical image processing (8). Currently, deep

learning models have achieved diagnostic accuracy for most

tumor images at the level of radiologists. (e.g., rectal cancer (9),

breast cancer (10), lung cancer (11), etc.). CNNs and improved

models have been widely used for medical image processing (12). In

the field of urology, deep learning-based predictive models have

achieved excellent results in the diagnosis and treatment of various

diseases such as RCC, prostate cancer (13–15), bladder cancer (16–

18), and urolithiasis (19–21). This paper summarizes the research

on deep learning in the areas of pathological identification,

pathological grading, and prognostic treatment of RCC, and
Frontiers in Oncology 02
discusses its future research directions. The flowchart and

application overview of deep learning research can be seen

in Figure 1.
2 Deep learning to identify benign and
malignant renal tumors

It is important to have an accurate imaging description of renal

tumors because not all incidental findings of renal tumors are RCC.

Up to 20% of solid renal tumors less than 4 cm in size are benign,

most commonly renal oncocytoma (RO) and renal fat-poor

angiomyolipoma (fpAML) (22). Currently, methods to

differentiate between benign and malignant renal tumors are still

limited. Although a percutaneous biopsy can confirm the diagnosis

in most cases, it is relatively invasive. Studies have shown (23) that

there is a risk of biopsy channel implantation in renal tumors

(1.2%), especially in papillary RCC (pRCC) (12.5%). Therefore, as

stated in the EAU (24), the “small but real” risk of channel

implantation must be weighed in patients with renal tumors

when puncture is necessary to determine subsequent treatment

options. Also, although relatively uncommon, complications of

renal tumor biopsy (e.g., hematoma, back pain, severe hematuria,

pneumothorax, and hemorrhage) should not be ignored as well

(25). Therefore, an ideal method for the diagnosis of renal tumors

should ensure a high accuracy and detection rate while avoiding

unnecessary potential risks to patients as much as possible. This

calls for further improvements in complementary diagnostic

techniques to increase sensitivity and specificity. The preoperative

image diagnosis system constructed based on deep learning is

mostly trained with pathological results as the golden standard,

and the accuracy can often reach more than 90%. Its application in
FIGURE 1

The flowchart and application overview of deep learning research. First, data such as radiological, pathological, and genomic data from patients are
collected as inputs. These data are preprocessed and fed into the deep learning model for training. The trained model can output a variety of
prediction results, such as the pathological grade, pathological type, and prognosis of RCC patients, providing references for doctors’ subsequent
diagnosis and treatment.
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clinical practice can help patients avoid the risk of puncture and

improve the diagnosis rate significantly (See Table 1).

Zabihollahy, F. et al. (28) included 77 benign renal tumors (57

RO, 20 fpAML) and 238 malignant renal tumors (123 ccRCC, 69

pRCC, 46 chromophobe RCC (chRCC)) to construct a model,

which was based on a self-created semi-automatic and fully

automatic method (39) to segment the tumor from normal renal

tissue. Ultimately, the semi-automatic method achieved 83.75%,

89.05% and 91.73% accuracy, precision and recall on the test set,

respectively. The fully automated method obtained 77.36%, 85.92%,

and 87.22% accuracy, precision, and recall, respectively.

Tanaka, Takashi et al. (27) wanted to identify benign and

malignant at the scale of small renal tumors ≤ 4 cm, they

collected four-phase contrast enhanced CT (CECT) data of 168

renal tumors and trained 6 models (unenhanced (UN),

corticomedullary (CM), nephrographic (NP), and excretory (EX)

phase, enhanced three-phases, and all four-phases), respectively,

using the Inception-v3 architecture CNN model, And finally the

highest accuracy (88%) was found for the NP phase images, with an

area under the subject operating curve (ROC) (AUC) of 0.846.

Magnetic resonance imaging (MRI) is suitable for patients

allergic to intravenous CT contrast agents and pregnant women
Frontiers in Oncology 03
and has a better function than CECT for the assessment of inferior

vena cava involvement. Xi, I. L. et al. (29) included data from 1162

renal lesions to develop a deep learning model by applying a

residual network (ResNet) on MRI (T1C and T2WI) to

distinguish benign renal tumors from RCC. The accuracy (0.70),

sensitivity (0.92), and specificity (0.41) of the deep learning model

were significantly higher than those of the radiomics model as well

as the expert models.
3 Deep learning to identify RCC
pathological subtypes

According to the type of pathology, 60% to 80% of RCC are

ccRCC and the rest are non-ccRCC. The World Health

Organization (WHO) has developed a total of 4 versions of renal

tumor classification criteria, and the current one is followed by the

introduction of the fourth version of tumor classification criteria in

2016 (40). The growth pattern, treatment options, and risk of

recurrence vary among different pathological subtypes of tumors.

For example, AML, RO, renal cyst, cystic renal cancer, and other
TABLE 1 Summary of studies on the identification of renal tumor subtypes.

Author
Publication
Date

Research
Objectives

Imaging
Type

Patients DL model Predicted Outcome Accuracy

Zhou, L
(26).

2019

benign &
malignant
tumor
differentiation

CECT: CM
or CP or EX

134 malignant
(117ccRCC, 8
pRCC, 9 other) &
58benign (50 renal
cysts, 8 AML)

Inception-v3
The model had an accuracy of 97%, a sensitivity of
95% and a specificity of 97%

Tanaka,
Takashi (27)

2020

benign &
malignant
tumor
differentiation
(tumor ≤
4 cm)

four‐phasic
CECT

32 benign (11 RO,
20 fpAML, 1
other) & 136
malignant (117
ccRCC, 7 pRCC, 6
chRCC, 4 other)

Inception-v3 The CM phase images achieved highest accuracy (88%)

Zabihollahy,
F (28).

2020

benign &
malignant
tumor
differentiation

CECT: UN
CM CP

77 benign (57 RO
& 20 fpAML) and
238 malignant
(123 ccRCC & 69
pRCC & 46
chRCC)

CNN made up
of 6 Conv.
layers

The semi-automated majority voting-based CNN
algorithm achieved accuracy, precision, and recall of
83.75%, 89.05%, and 91.73%

Xi, I. L (29). 2020

benign &
malignant
tumor
differentiation

MRI: T2WI
T1C

655 malignant &
507 benign

ResNet-50
Ensemble deep learning model had high test accuracy
(0.70), sensitivity (0.92), and specificity (0.41).

Han, S (30). 2019

distinguish
three major
subtypes
(ccRCC,
pRCC, chRCC)

CECT: UN
CM CP

57 ccRCC & 56
pRCC & 56
chRCC

GoogLeNet
The network showed about 0.85 accuracy, 0.64-0.98
sensitivity, 0.83-0.93 specificity, and 0.9 AUC.

Zheng, Y
(31).

2021
renal tumor
subtype
differentiation

MRI: T2WI
77 ccRCC & 42
pRCC & 46
chRCC & 34 AML

ResNet

The model had a 60.4% overall accuracy, a 61.7%
average accuracy, and a macro-average AUC of 0.82.
The AUCs for ccRCC, chRCC, AML, and pRCC were
0.94, 0.78, 0.80, and 0.76, respectively.

(Continued)
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lesions can be followed up and observed. Precise preoperative

evaluation of such tumor pathology can reduce unnecessary

surgical treatment. Targeted therapy and immunotherapy also

need to change the type and dose of drugs according to the

pathological subtype of the tumor. In conclusion, if the

pathological type of renal tumor can be known preoperatively,

patients can benefit significantly.

Coy, H. et al. (35) used the open source Google TensorFlow™

Inception model to discriminate between RO and ccRCC, and

three-phase CECT data as well as coronal, sagittal, and horizontal

data were incorporated into the training model, achieving a positive

predictive value of 82.5%. Biopsy differentiation between RO and

chRCC currently remains a challenge, as both have similar

molecular characteristics in addition to the typical histological

features of tumor cells. Baghdadi, A. et al. (36) constructed an

original predictive metric that can discriminate RO from chRCC on

CECT images by measuring the tumour-to-cortex peak early-phase

enhancement ratio (PEER) (41). They automatically identified

tumor types by building deep learning algorithms to

automatically measure the metric. The authors also introduced

the concept of Dice similarity score (DSS) to quantitatively

evaluate the difference between the model outline and the expert

outline as another indicator of the model accuracy. The PEER

assessment achieved 95% accuracy (100% sensitivity and 89%

specificity) in the classification of tumor types compared to actual

pathology results.
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PRCC and chRCC are the most common types of non-ccRCC.

Differences in origin factors and driver genes between the two have led

to different treatment options and prognosis (42). PRCC and chRCC

have some differences in imaging findings. PRCC presents with cysts,

necrosis, and calcification, whereas chRCC presents with central whorl-

like enhancement (43). However, in early stage or small sized masses,

these aforementioned features are atypical and usually cause diagnostic

difficulties. Teng et al. (32) used a total of six deep learning models to

identify pRCC and chRCC. They extracted four case samples from The

Cancer Imaging Archive (TCIA), a public database of cancer images, to

participate in forming an external test set, and the best model

(MobileNetV2) achieved 96.9% accuracy in the validation set (99.4%

of sensitivity and 94.1% of specificity) and 100% (case accuracy)/93.3%

(image accuracy) in the test set. Han, S. et al. (30) constructed a

multiclassification model to discriminate ccRCC, pRCC, and chRCC

based on the GoogLeNet model, the network showed an accuracy of

0.85, sensitivity of 0.64-0.98, specificity of 0.83-0.93, and AUC of 0.9.
4 Deep learning to identify RCC
pathological grading

The Fuhrman grading system is highly recognized in the field of

oncology diagnosis and is widely used in the pathological grading of

ccRCC (44). In 2012, the International Society of Urological

Pathology (ISUP) introduced a new grading system for ccRCC
TABLE 1 Continued

Author
Publication
Date

Research
Objectives

Imaging
Type

Patients DL model Predicted Outcome Accuracy

Zuo, T (32). 2021
classification of
pRCC &
chRCC

CECT: CM
CP EX

42 PRCC & 38
ChRCC

MobileNetV2,
EfficientNet,
ShuffleNet,
ResNet-34,
ResNet-50,
ResNet-101

The best model achieved 96.8640% accuracy (99.3794%
sensitivity and 94.0271% specificity) in the validation
set and 100% (case accuracy) and 93.3333% (image
accuracy) in the test set. The manual classification
achieved 85% accuracy (100% sensitivity and 70%
specificity) in the test set.

Lee, H (33). 2018
classification of
fpAML &
ccRCC

CECT
39 fpAML & 41
ccRCC

AlexNet,
VGGNet,
GoogleNet,
ResNet

AlexNet model achieved the highist accuracy of 76.6%

Oberai, A
(34).

2020
classification of
fpAML & RCC

four‐phasic
CECT

46 fpAML & 97
RCC

a simple CNN
architecture

The CNN-based classifier demonstrated an overall
accuracy of 78% sensitivity of 70%, specificity of 81%
and an AUC of 0.82.

Coy, H (35). 2019
classification of
RO & ccRCC

four‐phasic
CECT

128 ccRCC & 51
RO

Google

TensorFlow™
Inception

Classification performance was best in the EX-phase
with an accuracy of 74.4%, a sensitivity of 85.8% and a
PPV of 80.1%

Baghdadi, A
(36).

2020
classification of
RO & chRCC

CECT: UN
CM CP

212 renal masses NiftyNet
Model achieved accuracy of 95% in tumour type
classification (100% sensitivity and 89% specificity)

Pedersen, M
(37).

2020
classification of
RO & RCC

CECT: UN
CM CP

369 patients ResNet-50 V2
Test_1 AUC of 0.973 with 93.3% accuracy and 93.5%
specificity. Test_2 AUC of 0.946 with 90.0% accuracy
and 98.0% specificity.

Nikpanah,
M (38).

2021
classification of
RO & ccRCC

MRI: T2WI
T1WI

203 ccRCC & 40
RO

AlexNet
Overall accuracy of the AI system was 91% with an
AUC of 0.9.
RCC, renal cell carcinoma; ccRCC, clear cell RCC; pRCC, papillary RCC; chRCC, chromophobe RCC; RO, renal oncocytoma; fpAML, fat-poor angiomyolipoma; DL, deep learning; CNN,
convolutional neural networks; CECT, contrast enhanced computed tomography; UN, unenhanced; CM, corticomedullary; NP, nephrographic; EX, excretory; AUC, area under the curve; MRI,
magnetic resonance imaging.
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and pRCC (45), which was incorporated into the latest World

Health Organization (WHO) classification of renal tumors and

designated as the WHO/ISUP grading system (40). In this grading

system, tumors are classified into four different grades (I, II, III and

IV), with higher grades indicating more severe disease. The

automatic classification of pathology using deep learning methods

can significantly reduce the workload of pathologists, and the

acquisition of pathology grading based on preoperative imaging

data can help urologists to develop fine treatment strategies earlier,

significantly improving patient survival and reducing suffering

(See Table 2).

Lin, F. et al. (48) classified WHO/ISUP classification I and II as

low grade and III and IV as high grade. They then trained ResNet

models based on CECT images and achieved good results on both

internal validation set (accuracy=73.7, AUC=0.82) and external test

set (accuracy=77.9, AUC=0.81).

Xu, L. et al. (47) first validated the model on data from a large

cohort, where they used a cohort containing 706 ccRCC patients to

construct a deep learning model to predict Fuhrman classification.

The traditional model was also refined by adding a two-step process

of mixed loss strategy and sample reweighting to identify high-

grade patients with ccRCC, to dealing with the domain shift

problem and the noisy label problem, as well as the imbalance

dataset problem. They developed 4 deep learning networks

separately and further combined different weights for better

prediction. In the validation cohort, the AUC of the single deep

learning model is 0.864, while the AUC of the integrated model

is 0.882.

Zhao, Y. et al. (46) evaluated the efficacy of ResNet using MRI in

discriminating between high and low grade RCCs in a sample of

patients with AJCC grade I and II. 353 Fuhrman-graded RCCs were

divided into training, validation, and test sets in a ratio of 7:2:1. 77

WHO/ISUP-graded RCCs were used as separate test sets. Finally,

the Fuhrman test set achieved 0.88 accuracy, 0.89 sensitivity, and
Frontiers in Oncology 05
0.88 specificity, the WHO/ISUP test set achieved 0.83 accuracy, 0.92

sensitivity, and 0.78 specificity.
5 Deep learning combined with
traditional radiomics

Radiomics, derived from texture analysis technology, is a

technique for diagnostic prediction by extracting features from

image data with high throughput and filtering them to build

models, usually using traditional machine learning methods to

model the filtered features.

With the advent of deep learning techniques, some studies have

used self-constructed or mature CNNs to model the extracted

radiomics features (33, 50). There are many differences between

traditional machine learning-based radiomics and deep learning-

based radiomics. Traditional radiomics relies on manually designed

feature extraction and traditional machine learning algorithms to

analyze medical image data. These features may include shape,

texture, intensity, and so on. Traditional machine learning

algorithms such as Support Vector Machines (SVM) and Random

Forest are used to train models, which are then applied to tasks such

as classification, segmentation, prediction, etc. Deep learning-based

radiomics, on the other hand, utilizes neural network structures for

automatic feature learning and pattern recognition. Deep learning

models can learn high-level abstract features through multiple

layers of neural networks, eliminating the need for manual feature

extraction. This ability for automatic learning allows deep learning-

based radiomics to perform well in handling large-scale and

complex medical image data. Furthermore, the performance of

traditional machine learning methods is often limited by the

quality and selection of features, whereas deep learning-based

radiomics can directly learn the optimal feature representation
TABLE 2 Summary of studies predicting the pathological grading of ccRCC.

Author
Publication
Date

Research
Objectives

Imaging
Type

Patients DL model Predicted Outcome Accuracy

Zhao, Y
(46).

2020

Differentiating low-
grade (grade I-II) from
high-grade (grade III-
IV) in stage I and II

MRI: T2WI
T1C

376
patients
with 430
RCC
lesions

ResNet-50

Model achieved a test accuracy of 0.88, sensitivity of 0.89,
and specificity of 0.88 in the Fuhrman test set and a test
accuracy of 0.83, sensitivity of 0.92, and specificity of 0.78
in the WHO/ISUP test set.

Xu, L
(47).

2022

Differentiating low-
grade (grade I-II) from
high-grade (grade III-
IV)

CECT: UN
CM CP

706 ccRCC

RegNet-400,
RegNet-800,
ResNet-50,
ResNet-101

Single model AUC of 0.864, ensembled model AUC of
0.882.

Lin, F
(48).

2020

Differentiating low-
grade (grade I-II) from
high-grade (grade III-
IV)

CECT: UN
CM CP

410 ccRCC
ResNet-18,
ResNet-34,
ResNet-50

In the external test, the DL model achieved an ACC and
AUC of 77.9% and 0.81, respectively.

Yang, M
(49).

2022

Differentiating low-
grade (grade I-II) from
high-grade (grade III-
IV)

CECT: UN
CM CP

759 ccRCC TransResNet
The integrated model acquires a better performance
(86.5% ACC and an AUC of 0.912).
RCC, renal cell carcinoma; ccRCC, clear cell RCC; DL, deep learning; CNN, convolutional neural networks; CECT, contrast enhanced computed tomography; UN, unenhanced; CM,
corticomedullary; NP, nephrographic; EX, excretory; AUC, area under the curve; MRI, magnetic resonance imaging.
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from raw data through an end-to-end training and optimization

process, resulting in better performance.
6 Deep learning in pathology images,
ultrasound images and other fields

Identifying histological differences in different RCCs under the

microscope is a time-consuming and labor-intensive task for

pathologists. There is also a high rate of variation of inter- and

intra-observer by manual identification of RCCs (51) Kidney

tumors can have different appearance and combination

morphologies, making them difficult to classify. With the advent

of whole section images in digital pathology, automated

histopathology image analysis systems have shown great promise

for diagnosis (52–54). Computerized image analysis has the

advantage of providing a more valid, objective, and consistent

assessment to assist pathologists in their diagnosis. Deep learning-

based models that automatically process digitized histopathology

images and learn to extract cellular patterns associated with the

presence of tumors can assist pathologists by (1) automatically pre-

screening sections to reduce false-negative cases, (2) highlighting

important areas on digitized sections to expedite diagnosis, and (3)

providing objective and accurate diagnoses (See Table 3).

Zhu, M et al. (56) developed a deep learning model that

accurately classifies digitized surgical and biopsy sections into five

relevant categories: ccRCC, pRCC, chRCC, RO, and normal tissue.
Frontiers in Oncology 06
Their test set included 78 surgical resection full sections, 79 biopsy

sections from the same institution, and 917 surgical resection

sections from The Cancer Genome Atlas (TCGA) database. The

mean AUC of the model on internal surgical sections, internal

biopsy sections, and external TCGA sections was 0.98, 0.98, and

0.97, respectively. Abu Haeyeh, Y. et al. (57) trained three multi-

scale CNNs and applied decision fusion to their predictions to

obtain the final classification decision. For four types of kidney

tissues: non-RCC renal parenchyma, non-RCC adipose tissue,

ccRCC and clear cell papillary RCC (ccpRCC). The developed

system showed high classification accuracy and sensitivity at the

slide level for RCC biopsy samples, with an overall classification

accuracy of 93.0%, sensitivity of 91.3%, and specificity of 95.6%.

A recent systematic review and meta-analysis (60) compared

the diagnostic performance of enhanced ultrasound (CEUS) with

CECT in the assessment of benign and malignant renal masses. 16

studies were included in the pooled analysis and the results showed

comparable diagnostic performance with CEUS versus CECT

(sensitivity 0.90 vs. 0.96). There are relatively few deep learning

discrimination systems based on RCC ultrasound images, but

several studies have been applied to assess the severity of

hydronephrosis (61–63), It shows that deep learning techniques

also have strong diagnostic efficacy for ultrasound images of the

kidney. Zhu, D et al. (58) developed a deep learning model for

CEUS images, called multimodal ultrasound fusion network (MUF-

Net), and a total of 9794 images were cropped from CEUS videos

for automatic classification of benign and malignant solid renal
TABLE 3 Summary of other applications of deep learning in renal tumor.

Author
Publication
Date

Research
Objectives

Imaging Type Patients
DL
model

Predicted Outcome Accuracy

Tabibu, S
(55).

2019

renal tumor
pathology
tissue
differentiation

pathological slide
images

1027 ccRCC, 303
pRCC, and 254
chRCC, 477 normal
tissues

ResNet-
18,
ResNet-34

Models distinguish ccRCC and chRCC from
normal tissue with a classification accuracy of
93.39% and 87.34%, respectively. Model trained to
distinguish ccRCC, chRCC and pRCC achieves a
classification accuracy of 94.07%.

Zhu, M
(56)

2021

renal tumor
pathology
tissue
differentiation

pathological slide
images

456 malignant slide
images (cRCC,
pRCC, chRCC), 30
normal images slides
(RO, and normal)

ResNet-
18,
ResNet-
34,
ResNet-
50,
ResNet-
101

The average AUC of our classifier on the internal
resection slides, internal biopsy slides, and external
TCGA slides is 0.98, 0.98 and 0.97, respectively.

Abu
Haeyeh,
Y (57).

2022

renal tumor
pathology
tissue
differentiation

pathological slide
images

25 ccRCC, 15
ccpRCC, 7 renal
parenchyma, and 5
fat tissues

ResNet-50

Model achieves an overall classification accuracy of
93.0%, a sensitivity of 91.3%, and a specificity of
95.6%, in distinguishing ccRCC from ccpRCC or
non-RCC tissues.

Zhu, D
(58).

2022

benign &
malignant
tumor
differentiation

CEUS images
81 benign and 100
malignant

MUF-Net
MUF-Net achieved accuracy of 80.0%, sensitivity of
80.4%, specificity of 79.1%, and AUC of 0.877,
respectively.

Schulz, S
(59).

2021
prognosis
prediction

pathological slide
images, CT/MRI
scans, and genomic
data from whole-
exome sequencing

248ccRCC ResNet
Model achieves an average C-index of 0.7791 and
an average accuracy of 83.43%
RCC, renal cell carcinoma; ccRCC, clear cell RCC; pRCC, papillary RCC; chRCC, chromophobe RCC; ccpRCC, clear cell papillary RCC; RO, renal oncocytoma; DL, deep learning; CNN,
convolutional neural networks; CEUS, contrast-enhanced ultrasound.
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tumors. The performance of the model was compared with different

experience levels radiologists. Accuracy was 70.6%, 75.7%, and

80.0% for the junior radiologist group, senior radiologist group,

and MUF-Net, respectively, with AUC of 0.740, 0.794, and

0.877, respectively.
7 Deep learning in prognosis
prediction

Utilizing deep learning techniques for predicting the prognosis

of renal cancer can provide clinical doctors with more accurate

patient risk assessment and treatment decision support, avoiding

over-treatment or delayed treatment. Furthermore, the automated

feature learning and prediction capabilities of deep learning models

have the potential to enhance the efficiency and speed of prognosis

assessment, offering practical solutions for large-scale prognosis

evaluation of renal cancer patients.

Currently, there are limited studies on deep learning-based

prognosis prediction for renal tumors. Schulz, S et al. (59) were

the first to train a model on multi-scale data, incorporating

histopathological images, CT/MRI scans, and genomic data from

whole-exome sequencing of 248 patients. They developed and

evaluated a multimodal deep learning model (MMDLM) for

predicting the prognosis of clear cell renal cell carcinoma

(ccRCC). The model achieved promising results, with an average

C-index of 0.7791 and an average accuracy of 83.43%. However, the

study also has certain limitations, such as missing imaging data for

some patients and a relatively small dataset.
8 Discussion

In recent years, deep learning techniques have made significant

progress in a wide range of computer vision tasks as well as

biomedical imaging analysis applications. Deep learning

techniques have been integrated into the medical industry for

several years and have shown significant value in the diagnosis,

identification, and staging of RCC, but there are still many areas of

research that have yet to be broken through by deep learning

techniques . The fo l lowing are some poss ib le future

research directions.
8.1 Research for predicting
patient prognosis

Prognostic analysis of tumor patients is an important

application of deep learning research, but the current deep

learning research in the field of RCC mostly stays at the level of

diagnosis and identification. There is limited research on predicting

the prognosis of RCC patients. Studies on the efficacy of

immunotherapy and targeted therapy for RCC patients are

still lacking.
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8.2 Combined with molecular biology data

Radiomics combined with genomics has formed radiogenomics,

where the presence of high expression of specific genes in patients

can be discerned by identifying their preoperative images, such as

PET/MRI-based identification of VEGF genes (64), CT-based

identification of PBRM1, BAP1, and VHL gene mutation levels

(65–68), and also combined proteomics studies (69). Such studies

not only extend the boundaries of deep learning prediction models,

but also add a plausible biological explanation of deep learning at

the molecular level to deepen our understanding of how deep

learning works. Subsequent studies could update the machine

learning models in the above studies to deep learning models to

significantly improve prediction accuracy.
8.3 Evaluate other imaging indicators
of RCC

Deep learning technology combined with clinical diagnosis and

treatment still has many areas in urgent need, especially the

evaluation of some clinicopathological fine indicators. Similarly in

the field of rectal cancer, in addition to the traditional benign-

malignant differentiation and TNM staging rating, indicators such

as circumferential resection margin(CRM) status (70) and tumor

budding (71) have also become hot spots, and their role in guiding

patient prognosis remains indispensable. In the field of RCC

radiomics research, there are similar studies that have not yet

been transplanted to deep learning models, such as Juxtatumoral

perinephric fat invasion (72), inferior vena cava tumor thrombosis

and vessel wall invasion (73), and evaluation of perirenal fat

adhesions (74). Methodologically, these studies are no longer

difficult to perform, only that no studies have been published yet.
8.4 Combined with cutting-edge
imaging technology

An emerging area in RCC imaging is the use of

pharmacokinetics from dynamic contrast-enhanced MRI. By

dynamically tracking the distribution and clearance of MRI

contrast agents, pharmacokinetic analysis can provide important

information about tumor blood flow, vascular permeability, and

extracellular space, which is extremely valuable for the diagnosis

and differential diagnosis of renal cell carcinoma. For instance, the

study by Wang et al. (75) has demonstrated the potential of

pharmacokinetic parameters in differentiating subtypes of RCC

and determining the malignancy of tumors. Deep learning

techniques, especially CNN have been applied to analyze DCE-

MRI data, to automatically extract and learn these pharmacokinetic

parameters, thereby further improving the diagnostic accuracy of

renal cell carcinoma. However, this field still faces some challenges,

such as how to accurately extract pharmacokinetic parameters from

various dynamic sequences, and how to address the issue of time
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and spatial resolution in dynamic enhancement data. Future

research needs to address these issues and further explore the

application of deep learning in the pharmacokinetic analysis of

DCE-MRI in RCC.

Deep learning techniques have a wide range of promising

applications in various clinical disciplines, but many challenges

remain before the relevant results can be translated into

clinical applications.
8.5 Mostly single-center studies

Most of the studies conducted so far are from the same medical

center and have not been fully validated in independent cohorts,

which leads to biased results and reduces the generalizability of the

studies. We still need more multicenter, randomized controlled

trials to enhance testing. Multidisciplinary and extensive

cooperation to actively promote the maturation, standardization,

and clinical development of deep learning research.
8.6 Insufficient number of patients

As a field combined with medical big data, enough data is a

prerequisite for establishing models and a guarantee for

maintaining stable system performance. Current studies in

hotspot areas are mostly around 100-200 cases, there are still

some risks of overfitting, and it is urgent to establish a platform

for sharing large data of multi-center images.
8.7 Lack of prospective studies

The current studies in various hot areas are mostly

retrospective, lacking large samples of randomized multicenter

prospective tests, and there is still a large gap with the actual

clinical application.
8.8 Lack of unified standard

The process of deep learning image acquisition lacks a unified

standard or evaluation system, and the comparability of various

studies of the same type is poor due to many reasons such as

imaging equipment parameters, image construction, imaging

physician habits and patient compliance.
8.9 Lack of repeatability

Image segmentation is an essential step in the deep learning

model building process, and the repeatability of manual, semi-

automatic, and automatic methods vary and has its own advantages

and disadvantages, so how to improve the outlining accuracy with

high repeatability is the current problem to be optimized. Both

overfitting and underfitting of data can affect the repeatability of the
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model and optimization of algorithm is still the breakthrough of

innovation in this field.
8.10 Higher requirements for
multidisciplinary communication

Since the training of deep learning models requires high-

throughput data processing, traditional statistical methods and

analysis tools used in clinical research are no longer competent,

which puts higher demands on the interdisciplinary ability and

communication level of radiologists, surgeons, and computer

engineers. There is still a need to figure out how doctors can

better interface with engineers.
8.11 Self-supervised learning techniques
have received limited research attention

Self-supervised learning can partially address the issue of data

scarcity, especially in segmentation tasks. In traditional supervised

learning, a large amount of labeled data is required for model

training, which is costly and time-consuming to obtain. In contrast,

self-supervised learning techniques leverage unlabeled data by

designing tasks that generate labels automatically or utilizing

unsupervised tasks. This allows models to learn meaningful

features and semantic information from the unlabeled data. The

advantage of self-supervised learning lies in its ability to enhance

model performance, reduce reliance on many labeled data, and

accelerate the training process by fully leveraging unlabeled data. It

provides a valuable solution for coping with data scarcity.
8.12 Difficulties in deep learning
model explainability

Deep learning models have achieved impressive results in the

medical field, but their explainability remains a challenge. Deep

learning models typically consist of multiple layers of neural

networks, with many parameters and complex nonlinear mapping

relationships. This complexity leads to opaque decision-making

processes, making it difficult to explain the basis for their

predictions. This lack of explainability can raise issues of trust

and acceptance in medical practice. To address this problem,

researchers have proposed various strategies, and one important

approach is using Grad-CAM (Gradient-weighted Class Activation

Mapping) (76). Grad-CAM is a gradient-based interpretability

method that associates the model’s prediction results with specific

local regions in the input image. Grad-CAM determines which

regions in the image are crucial for a specific prediction result by

computing the gradient of the predicted class with respect to the last

convolutional layer. It then visualizes these key regions on the image

to help doctors or researchers understand the basis of the model’s

decisions. Such visualizations provide an intuitive display of the

areas the model pays attention to during the prediction process,

offering some explanatory power for the model’s decisions. In
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addition to Grad-CAM, there are other methods and techniques

used to enhance the interpretability of deep learning models, such

as LIME (Local Interpretable Model-agnostic Explanations), SHAP

(SHapley Additive exPlanations) (77), and more. These methods

attempt to analyze the model’s prediction results from different

perspectives, providing explanatory insights and increasing the

trustworthiness and acceptability of the model in medical practice.
9 Conclusion

In this paper, we conducted a comprehensive review of the latest

advancements and challenges in the use of deep learning techniques for

the imaging diagnosis of renal cell carcinoma. Through the analysis of

various deep learning models in the application of renal cell carcinoma

imaging diagnosis, we found that these technologies have enormous

potential, significantly improving the accuracy and efficiency of

diagnosis. However, these methods also have some limitations, such

as the availability and quality of data, the interpretability of the models,

and challenges in clinical applications. Despite these challenges, we

believe that with the further development and improvement of deep

learning techniques, their applications in the imaging diagnosis of renal

cell carcinoma will become increasingly widespread. We look forward

to more research in the future to overcome existing challenges and

further promote the development of this field.
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