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Skin cancer is a serious disease that affects people all over the world. Melanoma

is an aggressive form of skin cancer, and early detection can significantly reduce

human mortality. In the United States, approximately 97,610 new cases of

melanoma will be diagnosed in 2023. However, challenges such as lesion

irregularities, low-contrast lesions, intraclass color similarity, redundant

features, and imbalanced datasets make improved recognition accuracy using

computerized techniques extremely difficult. This work presented a new

framework for skin lesion recognition using data augmentation, deep learning,

and explainable artificial intelligence. In the proposed framework, data

augmentation is performed at the initial step to increase the dataset size, and

then two pretrained deep learningmodels are employed. Bothmodels have been

fine-tuned and trained using deep transfer learning. Both models (Xception and

ShuffleNet) utilize the global average pooling layer for deep feature extraction.

The analysis of this step shows that some important information is missing;

therefore, we performed the fusion. After the fusion process, the computational

time was increased; therefore, we developed an improved Butterfly Optimization

Algorithm. Using this algorithm, only the best features are selected and classified

using machine learning classifiers. In addition, a GradCAM-based visualization is

performed to analyze the important region in the image. Two publicly available

datasets—ISIC2018 and HAM10000—have been utilized and obtained improved

accuracy of 99.3% and 91.5%, respectively. Comparing the proposed framework

accuracy with state-of-the-art methods reveals improved and less

computational time.
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1 Introduction

Many people all over the world have been affected by skin cancer. It

occurs when the body’s melanocyte cells grow abnormally and causes

damage to the skin’s surrounding tissues (1). The most common types

are melanoma, squamous cell carcinoma (SCC), and basal cell

carcinoma (BCC). Melanoma can spread quickly from one organ to

another (2). Melanoma and non-melanoma are the two most common

types of skin cancer, as illustrated in Figure 1 (3). BCC and SCC are the

most common non-melanoma skin cancers (4).

Melanoma has a higher mortality rate than other types of skin

cancer. It is the most dangerous type of cancer that must be detected

early and is caused primarily by ultraviolet radiation (5). According

to the American Cancer Society, there will be over 1 million new

cases of melanoma in 2020, with approximately 6,000 deaths (6).

Similarly, according to the 19th Skin Cancer Conference, skin

melanoma is the most common cancerous growth in both men

and women. In 2018, it was discovered that 300,000 new cases were

reported (7). The estimated number of deaths in the United States

has recently increased compared to reported cases, as shown in

Table 1 for reference (8).

According to theWHO, sun exposure kills 60,000 people yearly:

melanoma killed 48,000 people, and skin cancer killed 12,000

people (9). If melanoma is not detected early, it can spread to the

liver, bones, lungs, and brain, making skin cancer patients’ lives

difficult and painful (10). As a result, early detection of melanoma is

critical for diagnosing skin cancer. As a result, for several decades,

the biopsy procedure has been used to examine skin cancers in

earlier treatments. It is the most basic approach, and the results are

far more consistent. In contrast, the seven-point checklist (11) and

the asymmetry, border, color, diameter (ABCD) rule (12) are better

than the earlier one. However, these methods require the expertise

of a dermatologist to detect cancer. In the last decade,

dermatologists have used microscopic and dermoscopy images to

diagnose skin cancer (13). Dermatologists examine the images using

visual examination. However, dermatologists’ visual inspection and

testing of skin lesions take a long time (14). As a result, this

procedure necessitates expertise and attention and is time-

consuming (15).

As computer vision technology has advanced, the segmentation

of medical images has become increasingly important for CAD (16).
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Dermatologists’ physical screening has become more complex; thus,

they use a CAD system to diagnose skin cancer (17). Dermatologists

have used these methods to make more timely and effective skin

cancer screening decisions (18). CAD methods are much faster and

more accurate than human techniques (19, 20). On the other hand,

blood vessels, oils, hair, bubbles, and other noise in skin lesion

images can make segmentation difficult (21). A CAD system

includes several key steps, including contrast enhancement of

low-contrast lesions, lesion segmentation, feature extraction,

feature selection from the original features, and classification

using machine learning (ML) algorithms. Several techniques for

contrast enhancement have been developed in the literature,

including hybrid filters, color transformations, and haze reduction

with a dark channel (22). This step’s improved performance

improved the accuracy of lesion segmentation, which has an

impact on useful feature extraction (23). Several lesion

segmentation techniques, such as thresholding, saliency and

region growing, and clustering, have been developed in the

literature. In traditional techniques, the segmented images are

used for feature extraction; however, the problem of irrelevant

features is solved by computer vision researchers using feature

selection techniques (24). Using feature selection techniques, the

best features are chosen from the original extracted features,

resulting in a reduction in computational time (25, 26).

As a result, to perform effectively in skin lesion segmentation

tasks, deep learning (DL) algorithms play an important role in

achieving a high accuracy level (27). Convolutional neural networks

(CNNs) are commonly used in medical image processing for

melanoma detection. Researchers have suggested several deep

learning–based models. Several methods produce impressive

results when it comes to skin lesion segmentation (28). Fully

CNNs (FCNs), CNNs (CNNs), deep CNNs (DCNNs), fully

convolutional residual networks (FCRNs), and U-Net are some of

the techniques that can be used to segment skin lesions. Skin lesion

images can be classified to aid in detecting skin cancer. Images of

skin lesions could be used to detect any type of skin cancer. Figure 2

depicts the distinction between benign and malignant tumors.

Supervised classification is used in computer vision to map data

into various classes and categories. A labeled dataset is required.

Traditional classification approaches such as decision tree (DT),

artificial neural network (ANN), support vector machine (SVM),
FIGURE 1

Types of skin cancer such as melanoma or non-melanoma (3).
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and a variety of additional classifiers have been implemented to

classify skin lesion images (30). DL methods have recently produced

cutting-edge results in skin lesion analysis to the point where

images are now being used to diagnose skin diseases (31).
1.1 Problem statement

Since the last few years, a significant amount of research has

been conducted in this domain using deep learning methods.

Despite this, numerous challenges exist in this domain, such as

the contrast problem of infected lesions, variation in the shape of

lesions, and color similarity of different skin lesion classes. Based on

these challenges, there is room for improvement in lesion detection

and multiclass classification accuracy. The proposed research

addresses the following issues: low-contrast and noisy skin lesions

are extracted as the incorrect region of interest, lowering the final

step’s accuracy. The change in shape, texture, and color of skin

lesions from different skin classes increases the accuracy of

misclassification. Unbalanced datasets train the incorrect model

and provide higher accuracy for the higher weight class. The similar

appearance of skin lesion types, such as benign and akiec, creates a

high risk of misclassification, and feature extraction from a single

source is insufficient for improving the accuracy of

multiclass problems.
1.2 Major contributions and manuscript
organization

The major contributions of this work are as follows:
Fron
• Performed a data augmentation based on modified

mathematical formulations, fine-tuned two pretrained
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deep models, and extracted features from the global

average pooling layer.

• The extracted features were serially fused and selected using

Improved BAT Optimization Algorithm (IBOA), a new

and improved optimization algorithm. A cost function

based on minimization is developed that can select the

best features. In addition, an entropy was added to handle

uncertainty.

• For the visualization of important parts of the image, an

explainable artificial intelligence (AI) approach, such as

GradCAM, is used.

• An ablation study was conducted, and the results were

compared to recent techniques.
The manuscript is organized where Section 2 describes the

related work based on skin lesion classification. Section 3 describes

the proposed methodology, followed by Section 4, which elaborates

and discusses the datasets, experimental setup, results, and

comparisons with existing methods. Finally, the conclusion is

given in Section 5.
2 Related work

Image segmentation (32) separates the infected skin (33) from

healthy skin, effectively determining skin diseases. The Res-Unet

approach combines the U-Net and the Res-Net designs for

dynamically segmenting lesion borders. The author employed an

algorithm based on morphological operations for hair removal,

substantially improving the segmentation performance (34).

Razmjooy et al. (35) used the Quantum Invasive Weed

Optimization Technique to create an optimal neural network

(NN) for separating the skin lesion region. Sreelatha et al. (36)

published a melanoma segmentation approach that is dependent on
FIGURE 2

Sample dermoscopic images: (A) benign skin lesion and (B) malignant skin lesions (29).
TABLE 1 Comparisons of melanoma cases reported and estimated deaths.

Years Reported Cases Estimated Deaths

2020 100350 6850

2021 106110 7180

2022 99780 7650
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the Gradient and Feature Adaptive Contour model for diagnosing

the earliest stage of melanoma with 98.64% accuracy. To reduce

noise and speed up execution, the suggested image segmentation

approach employed preprocessing and noise-elimination methods.

Yacin Sikkandar et al. (37) employed the inception model for

feature extraction and provided a grab-cut segmentation

technique to segment the preprocessed images.

The ability to extract features and train based on automated

feedback is the most significant advantage of CNN-based

techniques. Deep learning models such as VGG, AlexNet, ResNet,

and Xception have made significant progress in recent years (38).

Because of their effectiveness, these models have also been used in

CAD systems in various research studies. Saba et al. (39) have

provided a technique for automatically diagnosing skin lesions by

utilizing a DCNN in their work. Their method consists of three

primary processes, which are the improvement of contrast, the

extraction of lesion boundaries using the CNN, and the collection of

features using the Inception V3 model. The accuracy of the

experiments on the ISBI-2016, ISBI-2017, and PH2 datasets was

95.1%, 94.8%, and 98.4%, respectively. Utilizing the HAM10000

dataset, the authors (40) built a classification model using 10

distinct pretrained CNNs and SVMs to extract the features. The

model achieved an accuracy of 90.34%. In another paper, the

researcher (41) presented the Nasnet-large deep model feature

extraction utilizing transfer learning (TL). The experiment is

conducted using HAM10000 and ISIC2018, both available to the

public. The accuracy obtained on both datasets is 93.40% and

94.36%, respectively. In this (42) study, the researcher evaluated

an effective automated system for skin cancer classification. An

image recognition model called MobileNet was employed in this

study. It was developed using over 1.2 million images taken as part

of a 2014 ImageNet Challenge. The TL technique is used to fine-

tune it on the HAM10000 dataset. The model attained 83.1%

average accuracy for seven classes in this dataset. The study (43)

used a DCNN model and a DL technique to classify skin lesions

correctly. To calculate the performance of this DCNN model,

certain pretrained models were employed, such as VGG-16,

MobileNet, DenseNet, AlexNet, and ResNet, which were used for
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TL. However, when applied to the HAM10000 dataset, this model

achieved accuracy rates of 93.16% during training and 91.93%

during testing. Villa-Pulgarin et al. (44) developed the DenseNet-

201, Inception-V3, and Inception-ResNet-V2 deep models using

TL. The dataset HAM10000 was used to evaluate these models in

which the DenseNet-201 model performed best on the

International Skin Imaging Collaboration (ISIC) 2019 dataset

with an achieved accuracy of 93%.

The researcher presented the inceptionV3 model in (45), which

used ISIC 2019 and 2020 datasets and achieved an accuracy of

86.90%. Similarly, in (46), researchers developed an effective deep-

learning strategy for classifying various types of skin lesion images.

First, the author used data augmentation to improve the skin cancer

dataset. The image features of skin lesions are then extracted using a

fine-tuned pretrained deep learning model called Xception. Next,

TL is used by freezing the first 36 layers of the model and retraining

the remaining 35 layers of the previously trained model. Finally, the

pretrained model’s final layer was deleted and it was replaced with a

dense layer. This allows us to categorize eight different types of skin

lesions. The system model was evaluated with 95.96% accuracy

using the ISIC 2019 dataset in this paper.
3 Proposed methodology

This work is based on the skin lesion classification method to

solve the existing issues and address the aforementioned

challenging problems. Based on the existing literature review,

there is still much room to improve accuracy. Therefore, Figure 3

illustrates the major steps of this challenging research work.

According to Figure 3, the proposed methodology made use of

two publicly available datasets, HAM10000 and ISIC 2018. Data

augmentation is used in these datasets to increase the training data.

Then, TL is used to train pretrained models such as Xception and

ShuffleNet. The global average polling layer extracts features from

both deep models, which are fused using the Serial-Threshold

fusion approach. The fused feature vector is then subjected to the

BOA feature selection/optimization method to obtain the optimal
FIGURE 3

Flow diagram of the proposed skin lesion classification using two-stream deep learning architecture.
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feature vector. Finally, the optimal feature vector is classified using

various ML algorithms such as SVM and NNs.
3.1 Data augmentation

A large, comprehensive dataset will help a machine learning

model perform better and more accurately. This is due to the large

data required to train a model. As a result, data augmentation has

recently become increasingly important in deep learning to achieve

good performance.

This procedure consists of a 90-degree rotation, a right-to-left

flip (RLF), and an up and down Flip (UDF). These steps are

repeated several times until each class has 6,000 images. As a

result, the updated datasets contain 36,000 images, a significant

increase over the original number of images, which was 10,000 for

each dataset. The mathematical procedures are performed in the

following ways.

a) Consider the image datasets a = {x1,x2,……, xn} (40), where

xn ϵUF is a representative image from the dataset. Let xn have a total

of Dk pixels; the homogeneous pixel matrix coordinates Dk or Xn are

as follows:

Dk =

P1 Q1 1

P2 Q2 1

⋮ ⋮ 1

Pn Qn 1

2
666664

3
777775

(1)

b) An input image with a size of 256 × 256 × 3, which is denoted

as UFa,b,c where a, b, and c denotes rows, columns, and channels,

respectively, to compute UFa,b ϵ Ra×b. The flip-up (UDF) procedure

is computed in the following manner (41):

Firstly, UFt is the transpose of the original image and is taken

out using the equation given below:

UFt = UFb,c (2)

Secondly, UFV represents the vertical image. The vertical flip

procedure is described in the following equation:

UFV = UF(m+1−a)b (3)
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Thirdly, UFH represents the horizontal image. The horizontal

flip procedure is described in the following equation:

UFH = UFa(n+1−b) (4)

Finally, the images from the selected datasets are rotated to 90°

using the following formulation:

Rotate =

COS a −Sin a 0

Sin a COS a 1

0 0 1

2
664

3
775 (5)

The whole augmentation process is combined and shown in

Equation 6.

Data Aug = (UFV ,UFH ,Rotate) (6)
3.2 Skin cancer model training

TL is a type of machine learning in which a model is trained for

one task and then used as the foundation for a different task. TL can be

effective when one domain’s dataset is significantly smaller than the

associated domain (47). Figure 4 depicts a graphical representation of

how TL can be used to solve any problem. The pretrained model,

which included Xception and ShuffleNet, was trained on ImageNet

before being fine-tuned and trained on the target datasets for this work.

Suppose that Sd is a source domain and St is a source task, and

then, they are defined as {(Sd,St)|p = 1,2,3,4, …., ns}. The notation

indicates the target domain Td while the notation Ts indicates the

target source; the whole structure is then expressed as {(Td,Tt)|q =

1,2,3,4, …., nt}. TL uses the following objective function to

determine how much information from the source domain

should be transferred into the target domain.

Ftq(q = 1, 2, 3, 4,… : :, nt) (7)
3.3 Deep feature extraction

The major step is extracting features using deep models,
frontiersin.o
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including Xception and ShuffleNet, after performing data

augmentation and transfer learning on pretrained models. Several

recent studies have provided effective solutions and results

considering numerous challenges in medical imaging when deep

feature extraction is adopted for classification. Regarding the

current problem, various skin lesion image elements, including

color, shape, angle, geometry, and object dimensions, are the focus

of interest.

Furthermore, the deep features, in contrast to handcrafted

features that provide low-level features, are more effective and

provide highly discriminative and superior outcomes. This could

be achieved by employing a standard CNN model consisting of

multiple convolutions, pooling, normalization layers, an FC layer,

and finally, a classification layer (48). Thus, we use deep models

named Xcpetion and ShufflNet to extract the features.

3.3.1 Fine tuning Xception model
The model organizes the convolution layers in a novel way and

separates them depth-wise. The key feature of Xception is its extreme

inception architecture. The feature extraction property of the

network is formed using 36 convolutional layers. Among all, except

for the first and last modules, the 36 convolutional layers are

organized into 14 modules, each of which is surrounded by linear

residual connections (49). In the fine-tuning process, the final three

layers are deleted, and a new fully connected (FC) prediction layer is

added, connected to two further layers: new_softmax and

new_classoutput, respectively. After that, transfer learning is

utilized, and the whole fine-tuned setup is trained on the selected

skin datasets. Target datasets were split into 50:50 instead of 70:30

training: testing. This indicates that 50% of the images in each class

were used for training, while the remaining 50%were used for testing.

The hyperparameters for this network are: total number of epochs is

3, the learning rate is set to 0.0001, and the batch size is 8. In addition,

the learning technique rmsprop optimizer is chosen, and the mini-

batch size is set at 16. After training, features are extracted from a

layer which is referred to as “avg1,” and from the global average pool

layer instead of the FC layer. This way, the feature vector size could be

(× 2048) features, where N represents the number of training

samples. The obtained feature vector from this model is named

FV1. Figure 5 shows the fine-tuning process of the Xception model.
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3.3.2 Fine tuning ShuffleNet model
ShuffleNet is a very efficient architecture based on the Xcpetion and

ResNeXt. ShuffleNet outperforms the state-of-the-art architecture

MobileNet (50) by a large margin, with an absolute 7.8% reduced

ImageNet top-1 error at 40 MFLOPs. In the fine-tuning process, same

as the Xcpetionmodel, the final three layers are deleted, and a new fully

connected (FC) layer named new_node_202 is introduced, which is

connected to two further layers that are softmax (new_node_203) and

classification layer (new_classificationLayer_node) respectively. The

fine-tuned architecture is trained on the selected datasets following

the split ratio, as mentioned in section 4.3.1. After training, features are

extracted from a layer referred to as “node_200,” the global average

pool layer instead of the FC layer. This way, the feature vector size

could be N × 544 features, where N represents the number of training

samples. The obtained feature vector from this model is called FV2

Figure 5 shows the ShuffleNet and Xception models collectively to

depict the fine tune process.
3.4 Feature fusion

Let us say that X and Y are two different feature spaces defined on

the pattern sample space that is d. The two feature vectors for an

arbitrary sample p ϵ d are s ϵ Y and t ϵ Y. u = (st ) defines the serial

combination features of p. If the feature vector has s = k dimensions

and the feature vector has t = n dimensions, then the serial combined

feature will have (k + n) dimensions. A (k + n)-dimensional serial

combined feature space is formed by all obtained feature vectors from

the selected set of patterns. Then, concatenation is done as follows:

Feature fusion = (FV1, FV2) (7)

As a result of Equation 7, the size of obtained feature vector is

(N × 2,592) features, where N represents the training images.

However, the feature vector size is too large to classify the skin

lesion images and requires a huge computation time. Therefore, a

BOA optimizer is employed to obtain an optimal feature vector for

accurate and robust classification in the minimum time to minimize

the size of the fused feature set.
FIGURE 5

A framework of Xception and Shufflenet deep model for feature extraction of the proposed skin lesion classification.
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3.5 Feature selection using Butterfly
Optimization Algorithm

In this work, an algorithm for optimum feature selection called

the Butterfly Optimization Algorithm (BOA) is employed to

enhance the classification accuracy in the later step.

The algorithm works on butterflies’ behavior as they search for

food served. This notion serves as an inspiration for a new nature-

based meta-heuristic algorithm called the BOA (51). The following

are the characteristics of butterflies that are the basis of BOA:
Fron
• It is generally accepted that all species of butterflies produce

a smell that serves to other species of butterflies.

• Each butterfly flits around at random or in the direction of

the best butterfly, the butterfly that gives off the strongest

fragrance.

• The objective function map determines butterfly stimulus

intensity.
The perceived magnitude of the fragrance (F) is specifically

described in the BOA as a function of the stimulus’ physical

intensity:

F = s Kx (8)

where S ϵ [0,∞] denotes the sensory modality; K is the stimulus

intensity s linked to the encoded objective function; and x ϵ [0,1]

denotes the power exponent based on modality, which denotes the

changing degree of fragrance absorption.

The two most important stages of the BOA are the global search

and the local search. The former can encourage the butterflies to

migrate in the direction of the best butterfly, which might be

symbolized as

bt+1j = btj + (d2 � c* − btj )� Fj (9)

where btj is the location of the jth butterfly at time t in the

iteration. In Equation 10, the symbol c stands for the position that is

now in best place. Fj is denoted by for fragrance that the jth butterfly

produces, and d is a random number in the range [0, 1].

The second approach is accomplished using a local search,

which may be symbolized as

bt+1j = btj + (d2 � btj − btm)� Fj (10)

where btj and btm are the ith and mth butterfly locations in the

solution space, respectively.

In addition, the BOAmakes use of a switch probability, denoted

by the symbol p, to switch between a standard global search and an

intense local search.

Given the information presented above, the pseudo-code of

original BOA is represented in Algorithm 1.
Begin

Makes objective function f(b), where b = (b1,

b2, …., bDim), and Dim is the dimension.

Create a starting population P with N
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butterflies, Pi(i=1,2, …., N)

Stimulus intensity ki at is p defined by the f(P)

i

Determine the sensor modalities S, and x is the

power exponent and switch probability p.

While condition don’t false do

for each in the population P of butterfly bf do
Applying Equation (8), determine fragrance F

end for
Find the best butterfly bf

for each in the population P of butterfly bf do
Create a random number d range from 0 to 1

If (d< p)
Equation (9) is used to do global search for

best butterfly

else

Equation (10) is used to do local search for

randomly chose butterfly

end if
end for

The value of the power exponent x is updated

end while

Provide the finest solution and the greatest

value

End Begin
ALGORITHM 1
BOA-based feature section algorithm.

In this proposed work, the number of butterflies for the optimal

solution is 10, and the maximum iteration is 100 to obtain the best

feature vector. After applying this BOA, the feature vector can

reduce the features that are (× 943) for the HAM10000 dataset and

(N × 1,080) for the ISIC 2018 dataset, where N represents the

number of training images. Table 2 reflects a significant reduction

in the feature vectors obtained in Section 4.4 before and after

applying BOA.
3.6 Classification

An optimal feature vector from Section 4.5 is employed to

perform classification. This proposed work evaluates supervised

classification results using 10 classifiers, including Narrow Neural

Network, Wide Neural Network, Bilayered Neural Network,

Trilayered Neural Network, Quadratic SVM, Cubic SVM, Fine

KNN, Ensemble Bagged Tree, and Fine Tree.

The skin dataset is separated into ten equal partitions for all the

experiments, with a cross-validation size of 10-folds. The first fold is
TABLE 2 Comparison of features before and after BOA.

Datasets Before apply BOA After apply BOA

HAM10000 N × 2592 N × 943

ISIC 2018 N × 2592 N × 1080
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used as a testing set when the experimental model is started, while

the rest are utilized for training the model. Similarly, until the model

is finished, all 10 folds repeatedly operate as training and testing

sets. All the classifiers are used on data that are divided into folds.

The classifiers learn the fold criteria and then predict the outcome

based on the testing partition.
4 Results and discussion

The entire experimental analysis results are presented in this

section based on the proposed methodology. Because the primary

goal of this research is to improve accuracy while reducing

computational costs. As a result, the proposed method is tested

using two different sets of data: HAM10000 and ISIC2018. These

datasets are freely available to the public. A total of 10 different

classifiers are used for experimentation, including Neural Network,

Quadratic SVM, Fine Tree, Fine KNN, and Ensemble Bagged Tree.

The evaluation metrics of these classifiers are discussed, including

sensitivity, F1-Score, precision rate, accuracy, FPR, and testing time.

All experiments are written in MATLAB 2021a and run on an Intel

Core i7 7th generation CPU with 8GB of RAM and a 1TB

hard drive.
4.1 HAM10000 dataset

A total of 10k dermoscopy images are included in the HAM10000

dataset “Human Against Machine with 10,000 Training images,” the

most significant datasets accessed through the ISIC repository (52). The

dataset is a collection produced included 1,113 images of melanomas

(mel), 327 images of AK (actinic keratosis), 514 images of basal cell

carcinomas (bcc), 1,099 images of benign keratoses (bkl), 115 images of

dermatofibromas (df), 6,705 images of melanocytic nevi (nv), and 142
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images of vascular (vasc) skin lesions (53). The skin lesion images in the

dataset are split between men and women, with men being 54% and

women being 45% of the images. Classifying these skin classes is not

easy because the dataset is complex, containing multiple skin lesion

images, and there are issues concerning low interclass variation and

high intraclass variation. As a result, there is a strong possibility that a

high misclassification rate will occur. Figure 6 displays a few examples

of the images available.
4.2 ISIC 2018 dataset

The ISIC has published a large-scale dataset of dermoscopy

images called the ISIC 2018 dataset. This dataset comprised more

than 12,500 images. The dataset performs three tasks: lesion

segmentation, attribute identification, and disease classification

(54). This dataset contains almost 10,000 images of seven

different types of classes for the classification task (55). Figure 7

shows a few samples of ISIC 2018 dataset images. The ISIC 2018

challenge includes two major issues: first, certain classes have a

restricted number of images, and second, the imbalanced number of

images in different classes makes it difficult for the classifier to

correct classification.
4.3 Experiments

Four separate experiments are used to compute the proposed

framework’s results on both datasets:
• Fine-tuned Xception deep model features

• Fine-tuned Shufflenet deep model features

• Feature Fusion of both deep models

• BOA-based feature selection
FIGURE 6

Sample images of the HAM-10000 datasets (52).
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4.4 HAM10000 dataset results

Table 3 displays the classification results on the HAM10000

using Xcpetion deep features. Table 3 shows that Cubic SVM

performed admirably, with an accuracy level of 99.1%. While it

also outperforms its competitors on other metrics, its recall rate is

99.18%, its precision rate is 99.22%, its F1-Score is 99.18, and its

FNR is 0.82%. Furthermore, the Cubic SVM classifier has the

longest computation time during the training phase at 1,017.9

seconds (sec). Fine Tree classifiers, on the other hand, have the

shortest computation time of 100 seconds.

Table 4 displays the classification results on HAM10000 using

ShuffleNet deep features. Table 4 clearly shows that the Fine KNN

achieved the highest accuracy of 98.9%. It also outperforms its

competitors on other metrics, such as the recall rate 99.15%,

precision rate 99%, F1-Score 99.06, and FNR 0.85%. Furthermore,

due to the complexity of the dataset, the compute time of the Fine

KNN classifier during the training phase is 920.22 seconds (sec).
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However, the classifier Medium NN takes the least time (116.01

seconds). The Fine Tree classifier, on the other hand, has a shorter

computation time but performs poorly in comparison to its

competitors. As a result, we consider the Medium NN classifier

because it is more accurate than the Fine Tree.

Table 5 shows the classification results on HAM10000 using

deep combinatorial features extracted from the Xception and

ShuffleNet architectures. For testing purposes, the deep features

are serially fused. Quadratic SVM achieved the highest accuracy

level of 99.3% in this test. Compared to its competitors, it also

performs well on other metrics such as the recall rate 99.32%,

precision rate 99.37%, F1-Score 99.34, and FNR 0.68%.

Furthermore, the Quadratic SVM classifier’s computation time

during the training phase is 1,305.5 seconds (sec), which is higher

and ranks second. However, the Fine Tree classifier has the shortest

computation time of 139.4 seconds.

The results of feature selection using the optimization algorithm

BOA are shown in Table 6. On HAM10000, the optimal deep
FIGURE 7

Sample images of the ISIC 2018 dataset (56).
TABLE 3 Results of classification incorporating Xception deep features applied on the HAM10000 dataset.

Classifiers Accuracy
(%)

Recall
(%)

Precision
(%)

F1 Score FPR Time (sec)

Narrow NN 98.9 98.97 98.88 98.17 1.03 469.27

Medium NN 98.9 99.01 99.02 99.01 0.99 261.74

Wide NN 98.9 99.02 99.05 99.03 0.98 334.87

Bilayered NN 98.8 98.92 98.92 98.92 1.08 500.02

Quadratic SVM 99.0 99.1 99.17 99.12 0.88 1009.5

Cubic SVM 99.1 99.18 99.22 99.18 0.82 1017.9

Coarse Gaussian SVM 98.7 98.77 98.44 99 1.23 1931

Fine KNN 99.1 99.15 99.2 99.16 0.85 2002

Ensemble Bagged Tree 98.8 98.9 98.9 98.9 1.1 327.58

Fine Tree 94.9 95.15 95.15 95.18 4.85 100.25
Bold show the significant value.
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TABLE 6 Results of classification incorporating BOA feature selection on the HAM10000 dataset.

Classifiers Accuracy
(%)

Recall
(%)

Precision
(%)

F1 Score FNR Time (sec)

Narrow NN 98.8 98.95 98.95 98.95 1.05 140.77

Medium NN 98.9 99.02 99.04 99.02 0.98 121.21

Wide NN 99.0 99.1 99.11 99.10 0.9 175.26

Bilayered NN 98.8 98.97 98.95 98.95 1.02 230.11

Quadratic SVM 99.2 99.24 99.31 99.27 0.76 607.27

Cubic SVM 99.2 99.27 99.32 99.29 0.73 636.27

Coarse Gaussian SVM 98.8 98.94 99.01 98.97 1.06 997.09

Fine KNN 99.3 99.38 99.4 99.38 0.62 939.93

Ensemble Bagged Tree 98.7 98.87 98.88 98.87 1.13 211.26

Fine Tree 94.5 99.38 99.4 99.38 0.62 54.197
F
rontiers in Oncology
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Bold show the significant value.
TABLE 4 Results of classification incorporating Shufflenet deep features applied on the HAM10000 dataset.

Classifiers Accuracy (%) Recall (%) Precision (%) F1 Score FNR Time (sec)

Narrow NN 96.5 96.82 96.75 96.68 3.18 197.3

Medium NN 97.3 97.55 97.51 97.52 2.45 116.01

Wide NN 97.6 97.78 97.72 97.74 2.22 130.81

Bilayered NN 96.6 96.84 96.81 96.82 3.16 284.3

Quadratic SVM 98.1 98.3 98.34 98.3 1.7 546.39

Cubic SVM 98.5 98.62 98.64 98.62 1.38 585.07

Coarse Gaussian SVM 96.5 96.71 96.77 96.72 3.29 986.83

Fine KNN 98.9 99.15 99 99.06 0.85 920.22

Ensemble Bagged Tree 95.0 95.13 95.34 95.32 4.87 209.95

Fine Tree 69.3 68.62 71.21 69.92 31.38 63.97
Bold show the significant value.
TABLE 5 Results of classification incorporating feature fusion of both deep models on the HAM10000 dataset.

Classifiers Accuracy
(%)

Recall
(%)

Precision
(%)

F1 Score FNR Time (sec)

Narrow NN 99.1 99.17 99.15 99.14 0.83 937.84

Medium NN 99.1 99.18 99.17 99.16 0.82 336.21

Wide NN 99.1 99.15 99.2 99.16 0.85 1,787.2

Bilayered NN 99.0 99.17 99.17 99.17 0.8 380.38

Quadratic SVM 99.3 99.32 99.37 99.34 0.68 1,305.5

Cubic SVM 99.3 99.34 99.4 99.36 0.66 1,391.2

Coarse Gaussian SVM 98.9 98.97 99.04 99 1.03 2,676

Fine KNN 99.2 99.31 99.32 99.3 0.69 2,471.7

Ensemble Bagged Tree 98.8 98.87 98.87 98.87 1.13 398.88

Fine Tree 94.9 95.11 95.2 95.14 4.89 139.4
Bold show the significant value.
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feature vector is tested. Table 6 shows that Fine KNN performed

well in this test, with an accuracy level of 99.3%. Compared to its

competitors, it has a recall rate of 99.38%, a precision rate of 99.4%,

an F1-Score of 99.38, and an FNR of 0.62%. Furthermore, the Fine

KNN classifier’s compute time during the training phase is 939.93

seconds (sec), which is very good given its accuracy level. However,

the Fine Tree classifier has the shortest computation time of 54.197

seconds. The outcome of this test demonstrates the importance of

using BOA, as classification time is significantly reduced when

comparing Table 6 to Tables 3–5. Figure 8 depicts a confusion

matrix representing the Quadratic SVM’s recall rate. Figure 8

depicts the accurately predicted values for each category in a

diagonal format. The accuracy and time charts are shown in

Figures 9, 10, respectively. Both figures show that the feature

fusion method in this work is critical for improving the accuracy

level of all classifiers. In contrast, feature selection significantly

reduces computation time with minor accuracy loss.
4.5 ISIC 2018 dataset results

The classification results on ISIC 2018 using Xcpetion deep

features are shown in Table 7. Table 7 reflects that Cubic SVM

performed well, attaining an accuracy level of 99.5%, while it also

performs well on other metrics compared to its competitors,
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including the recall rate 82.58%, precision rate 88.6%, F1-Score

85.48, and last FNR 17.42%. Furthermore, the compute time of the

Cubic SVM classifier during the training phase is 432.8 seconds

(sec). However, the Fine Tree classifier has the least computation

time, 31.110 seconds.

The classification results on ISIC 2018 using Shufflent deep

features are shown in Table 8. Table 8 reflects that Cubic SVM

achieves an accuracy level of 86.6%, whereas it also performs well on

other metrics when compared with its competitors including the

recall rate 71.71%, precision rate 80.91%, F1-Score 70.62, and FNR

28.29%. Furthermore, the compute time of the Cubic SVM classifier

during the training phase is 163 seconds (sec). However, the Fine

Tree classifier has the least computation time, which is 15.55 seconds.

The classification results on ISIC 2018 using combinatorial deep

features extracted from Xception and ShuffleNet architectures are

given in Table 9. In this test, Table 9 reflects that Cubic SVM

performed well with 91.9% accuracy, whereas it also performs well

on other metrics when compared with its competitors including the

recall rate 83.14%, precision rate 89.27%, F1-Score 86.08, and FNR

16.86. Furthermore, the compute time of the Cubic SVM classifier

during the training phase is 1,051.4 seconds (sec). However, the

Fine Tree classifier has the least computation time, which is

40.328 seconds.

Table 10 presents the results of feature selection using the

optimization algorithm BOA. The resultant optimal deep feature
FIGURE 8

Confusion matrix of recall on Fine KNN using BOA feature selection.
FIGURE 9

Accuracy comparison of all the intermediate steps on the HAM10000 dataset.
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vector is tested on the ISIC 2018 dataset. In this test, Table 10

reflects that Cubic SVM accuracy is 91.5%, whereas it also performs

well on other metrics when compared with its competitors

including the recall rate 82.82%, precision rate 88.84%, F1-Score

88.82, and FNR 17.18. Furthermore, the compute time of the Cubic
Frontiers in Oncology 12
SVM classifier during the training phase is 239.72 seconds (sec).

The Fine Tree classifier has the least computation time, which is

16.319 seconds. The result of this test clearly reflects the eminence

of using BOA that classification time is considerably reduced when

Table 10 is compared with Tables 7–9, respectively. Figure 11 shows
FIGURE 10

Time-based comparison of all the intermediate steps on the HAM10000 dataset.
TABLE 7 Results of classification incorporating Xception deep features applied on the ISIC 2018 dataset.

Classifiers Accuracy
(%)

Recall
(%)

Precision
(%)

F1 Score FNR Time (sec)

Narrow NN 88.3 79.75 81.41 80.56 20.25 234.02

Medium NN 89.5 82.22 82.88 82.54 17.78 100.79

Wide NN 89.5 81.47 83.42 82.42 18.53 145.46

Bilayered NN 88.4 79.65 79.91 79.76 20.53 455.59

Quadratic SVM 91.5 82.58 88.6 85.48 17.42 432.8

Cubic SVM 91.5 82.5 88.51 85.38 17.5 490.1

Coarse Gaussian SVM 89.6 72.65 89.05 79.9 27.35 561.13

Fine KNN 87.8 81.71 79.27 80.46 18.29 175.58

Ensemble Bagged Tree 89.9 77.4 87.95 82.36 22.6 83.58

Fine Tree 83.4 64.55 71.44 67.82 35.45 31.110
Bold show the significant value.
TABLE 8 Results of classification incorporating Shufflenet deep features applied on the ISIC 2018 dataset.

Classifiers Accuracy
(%)

Recall
(%)

Precision
(%)

F1 Score FNR Time (sec)

Narrow NN 79.3 62.31 61.07 61.68 37.69 227.18

Medium NN 82.3 67.44 69.37 68.38 32.56 61.207

Wide NN 83.6 70.68 71.87 71.26 29.32 66

Bilayered NN 79.0 61.01 59.97 60.84 38.99 349.43

Quadratic SVM 86.4 71.91 80.52 75.96 28.09 145.91

Cubic SVM 86.6 71.71 80.91 76.02 28.29 163

Coarse Gaussian SVM 81.6 49.94 65.54 56.68 50.06 232.57

Fine KNN 81.7 71.07 68.78 69.9 28.93 66.811

Ensemble Bagged Tree 79.3 46.87 76.02 57.98 53.13 44.319

Fine Tree 72.6 39.98 49.34 44.16 60.02 15.55
Bold show the significant value.
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TABLE 9 Results of classification incorporating feature fusion of both deep models on the ISIC 2018.

Classifiers Accuracy
(%)

Recall
(%)

Precision
(%)

F1 Score FNR Time (sec)

Narrow NN 89.2 81.6 83.87 82.7 18.84 263.41

Medium NN 90.2 83.22 84.25 83.72 16.78 129.93

Wide NN 90.4 84.54 84.72 84.62 15.46 158.44

Bilayered NN 89.2 80.51 80.91 80.7 19.49 447.38

Quadratic SVM 91.7 83.02 88.81 85.8 16.98 911.21

Cubic SVM 91.9 83.14 89.27 86.08 16.86 1051.4

Coarse Gaussian SVM 89.7 72.87 89.34 80.26 27.13 1228

Fine KNN 88.4 84.18 79.15 81.58 15.82 216.43

Ensemble Bagged Tree 89.7 77.17 87.6 82.04 22.83 98.32

Fine Tree 83.4 63.8 73.57 68.32 36.2 40.328
F
rontiers in Oncology
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Bold show the significant value.
TABLE 10 Results of classification utilizing BOA feature selection on the ISIC 2018 dataset.

Classifiers Accuracy
(%)

Recall
(%)

Precision
(%)

F1 Score FNR Time (sec)

Narrow NN 88.0 79.97 79.52 79.74 20.03 121.25

Medium NN 88.9 81.68 81.6 81.63 18.32 54.922

Wide NN 89.5 82.77 82.58 82.67 17.23 70.606

Bilayered NN 87.9 79.35 80.07 79.70 20.65 214.52

Quadratic SVM 91.4 82.52 88.82 88.55 17.48 215.54

Cubic SVM 91.5 82.82 88.84 88.82 17.18 239.72

Coarse Gaussian SVM 89.6 71.62 89.51 79.57 28.38 273.64

Fine KNN 87.6 82.44 77.31 79.79 17.56 90.202

Ensemble Bagged Tree 89.4 75.85 86.91 81.00 24.15 48.395

Fine Tree 83.4 82.44 76.32 79.32 17.56 16.319
Bold show the significant value.
FIGURE 11

Confusion matrix of recall on Cubic SVM.
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a confusion matrix that represents the recall rate of the Cubic SVM.

The accurate predicted values for each category are represented in

diagonal in within Figure 11.

The accuracy and time charts are illustrated in Figures 12, 13,

respectively. Both figures demonstrate that the feature fusion method

in this work plays a vital role to improve the accuracy level of all the

classifiers, whereas feature selection demonstrates a considerable

reduction in computation time with minor accuracy loss.
4.6 Comparison with existing state-of-the-
art proposed methods

Table 11 shows a listing of the most recent techniques applied to

a similar experimental dataset. Particularly in Table 11, Khan et al.
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(57) conducted their experiment using the HAM10000 dataset,

reaching an accuracy of 96.5%. Bibi et al. (58) successfully achieved

an accuracy of 96.7% for the HAM10000 dataset. Finally, Qureshi

et al. (59) achieved a higher accuracy on the HAM10000 dataset,

92.83%. The researchers of (60–62) presented a deep learning–

based system by utilizing the ISIC 2018 dataset, and they attained an

accuracy of 86.2%, 90%, and 89.5%. In the approach that has been

proposed, the accuracy that has been reached is 99.3% on the

HAM10000 dataset and 91.5% on the ISIC2018 dataset. Table 11

demonstrates that the proposed method achieves higher levels of

accuracy than the techniques that have been used previously.

The selection of the most optimal features is the main strength

of this work. The BOA algorithm’s feature selection gives the best

features with the best outcomes. Therefore, reducing high

computational time and choosing the best optimal features are
FIGURE 12

Accuracy comparison of all the intermediate steps on the ISIC 2018 dataset.
FIGURE 13

Time-based comparison of all the intermediate steps on the ISIC 2018 dataset.
TABLE 11 Comparison of existing proposed methods with our proposed method.

Reference Year Datasets Accuracy

(57) 2021 HAM10000 96.5%

(58) 2022 HAM10000 96.7%

(59) 2022 HAM10000 98.81%

Proposed HAM10000 99.3%

(60) 2020 ISIC 2018 86.2%

(61) 2021 ISIC 2018 90%

(62) 2022 ISIC 2018 89.5%

Proposed ISIC 2018 91.5%
fr
Bold values represents the best accuracy.
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the primary focus of our research work. The most significant

constraint of this study is a large amount of processing time

required because of the increased number of features used in

feature fusion. Figure 14 shows the GradCAM based visualization.

In this figure, the highlighted part with brown color shows the most

important region. If this region features are not correctly extracted,

then it is a chance that the classification error rate will be increased.

Finally, the prediction results of proposed framework are shown

in Figure 15.
Frontiers in Oncology 15
5 Conclusions

Skin cancer has been one of the most crucial diseases in the world

over the years, and it is considered a huge threat to human life.

However, manual diagnosis methods to detect skin lesions are time-

consuming, costly, and prone to errors due to the involvement of a

dermatologist. A novel framework is proposed in this work for skin

lesion classification using deep learning and explainable AI. Data

augmentation was performed initially to improve the learning
FIGURE 14

GradCAM-based visualization shows that the brown color is the most important part.
B C DA

FIGURE 15

Proposed framework labeled results. (A) and (C) showing the original images, whereas the (B) and (D) show the proposed predicted labeled image.
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capability of deep learning models such as Xception and ShuffleNet.

Then, features are extracted from the average pool layer of both deep

models and fused to improve accuracy. The fusion step improved

accuracy but, on the other hand, increased the computational time.

Therefore, a feature selection algorithm is developed named improved

BOA. The experiments were performed on two public datasets named

HAM10000 and ISIC2018 and attained an accuracy of 99.3% and

91.5%, respectively. We compared recent techniques and showed that

the proposed framework improved accuracy. In addition, GradCAM

visualization shows that better results can be obtained if we initialize the

hyperparameters of the deep models using an automated approach.

In the future, Bayesian optimization will be employed and parallel

fusion techniques are proposed. Further, the proposed technique will

be applied to public datasets, including ISIC 2019, PH2, and ISIC 2020.
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