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Bacterial lipopolysaccharide-
related genes are involved in the
invasion and recurrence of
prostate cancer and are related
to immune escape based on
bioinformatics analysis
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Background: The composition of the tumor microbial microenvironment

participates in the whole process of tumor disease. However, due to the

limitations of the current technical level, the depth and breadth of the impact

of microorganisms on tumors have not been fully recognized, especially in

prostate cancer (PCa). Therefore, the purpose of this study is to explore the role

and mechanism of the prostate microbiome in PCa based on bacterial

lipopolysaccharide (LPS)-related genes by means of bioinformatics.

Methods: The Comparative Toxicogenomics Database (CTD) was used to find

bacterial LPS- related genes. PCa expression profile data and clinical data were

acquired from TCGA, GTEx, and GEO. The differentially expressed LPS-related

hub genes (LRHG) were obtained by Venn diagram, and gene set enrichment

analysis (GSEA) was used to investigate the putative molecular mechanism of

LRHG. The immune infiltration score of malignancies was investigated using

single-sample gene set enrichment analysis (ssGSEA). Using univariate and

multivariate Cox regression analysis, a prognostic risk score model and

nomogram were developed.

Results: 6 LRHG were screened. LRHG were involved in functional phenotypes

such as tumor invasion, fat metabolism, sex hormone response, DNA repair,

apoptosis, and immunoregulation. And it can regulate the immune

microenvironment in the tumor by influencing the antigen presentation of

immune cells in the tumor. And a prognostic risk score and the nomogram,

which were based on LRHG, showed that the low-risk score has a protective

effect on patients.
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Conclusion: Microorganisms in the PCa microenvironment may use complex

mechanism and networks to regulate the occurrence and development of PCa.

Bacterial lipopolysaccharide-related genes can help build a reliable prognostic

model and predict progression-free survival in patients with prostate cancer.
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Introduction

One of the most frequent malignant tumors in males is still

prostate cancer (PCa) (1). According to statistics, there will be about

1.4 million new cases and 375,000 deaths worldwide in 2020 (2).

Although it is believed that the occurrence and development of PCa

are affected by race, family history, age, genetic susceptibility, and

microenvironment, its pathogenesis is still unclear (3, 4). Although

mortality has recently declined in some European countries, the

long-term survival rate for metastatic PCa is less than 30% (5). The

median overall survival (OS) time can currently only be slightly

increased by treating metastatic anti-castration against PCa (6, 7). It

is well known that PCa exhibits genomic heterogeneity. Since most

prostate cancers are multifocal and different driving mutations can

be active in different tumor foci, different tumor lesions in the same

patient are genetically different and rarely share any somatic gene

mutations, including common cancer driving genes (8). This high

degree of genomic heterogeneity makes it difficult to theoretically

explain the effects of different clinical statuses on tumor progression

and treatment success (9).

As people pay more and more attention to the relationship

between microbiota and tumors in the human microenvironment,

in-depth analysis of the mutual regulation mechanism between

microbiota and tumor has important clinical value and significance

for the prevention and treatment of tumors (10). Recently, a large-

scale study has found microbial characteristics in several types of

tumors, such as gastric cancer, and lung adenocarcinoma, and

shown that these microbial characteristics are unique to each type

of tumor (11). In addition, earlier small-scale studies have reported

different microbiome characteristics in breast, oral, prostate, and

ovarian cancers (12–15). In particular, a previous study found that

there were differences in microbial characteristics among different

patients due to different grades and stages of PCa (16). This appears

to be the same as the previously reported heterogeneity. These

studies are sufficient to support the hypothesis that tumor tissues,

including PCa, are likely to contain their unique microbial

characteristics, and these microorganisms are likely to be involved

in the occurrence and development of tumors.

However, the molecular mechanism of the prostate microbiome in

PCa is still unclear. It is reported that although there are slight

differences between individuals, 70% of the bacteria significantly

detected in PCa samples are gram-negative (16). Lipopolysaccharide

(LPS), which is also the main component of gram-negative bacteria’s
02
cell wall, is the primary pathogenic component. LPS can elicit a strong

immune response, change the morphology, metabolism, and gene

expression of nearly all eukaryotic cells, promote uncontrolled

expression of host cytokines, and result in severe infection (17, 18).

In many studies, LPS has been shown to induce the occurrence and

progression of disease by inducing the regulation of the host gene

expression profile (19, 20). Here, these genes that are directly or

indirectly stimulated by LPS and change their expression level are

called lipopolysaccharide-related genes.

According to studies on tumors, LPS has been shown to activate

TLR4 in cancer cells, which then activates NF-kB, JNK, and MAPK

signals, enhancing the cancer cells’ propensity for invasion and

migration (16, 21). Furthermore, LPS and LPS-induced

inflammatory cytokines can increase the expression of adhesion

molecules on cancer cells and endothelial cells, which in turn

promotes the spread of cancer cells outside of their normal tissue.

What’s more intriguing is that not all LPS are the same, according to

some studies (22). For instance, LPS from E. coli typically has more

inflammatory effects compared to LPS from Bacteroides species,

which may help us better understand the heterogeneity of PCa.

Bacteroides species produce an antagonistic form of LPS that

silences pro-inflammatory signals (23, 24). Therefore, the

molecular mechanism of PCa microflora is expected to be a

breakthrough in the existing dilemmas of prevention and treatment.

This study examines potential molecular mechanisms of the

prostate microbiome in PCa disease using genes associated with

LPS. Additionally, a new prognostic model was created using the

chosen LPS-related hub gene (LRHG).
Methods

Acquisition and preprocessing of public
data

The The Cancer Genome At las (TCGA, ht tps : / /

portal.gdc.cancer.gov/) and Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov) databases were used to obtain the

transcriptome analysis data and corresponding clinical data for PCa,

paracancerous, and normal tissues, respectively. Genotype Tissue

Expression Project (GTEx) database (https://www.gtexportal.org)

data were used to match normal prostate tissue transcriptome data

with TCGA data. The data were standardized and subjected to a de-
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batch effect before matching. The GEO dataset includes GSE68555 (64

tumors, 63 adjacent normals, and 22 normals) and GSE21032 (140

tumors). GSE68555 was used to screen LRHG and perform functional

analysis. A prognostic risk score model and nomogram were developed

using TCGA and GTEx data, and GSE21032 was used to validate the

prognostic risk model. Each sample’s Entrez gene ID needed to be

converted, using the annotation platform, into the corresponding gene

symbol. The average value was applied when more than one probe

targeted the same Entrez gene ID. The Comparative Toxicogenomics

Database (CTD, http://ctdbase.org/) was utilized to find genes

associated with LPS.
Principal component analysis and LRHG
acquisition

The R software was used to analyze the transcriptome data of

GSE68555 (64 tumors, 63 adjacent normal, and 22 normals) using

principal component analysis (PCA). After the expression was

normalized by the z-score, the reduced dimension matrix was

obtained by using the prcomp function to reduce dimensionality.

Finally, visualization was accomplished using the ggplot2 package.

The differentially expressed genes (DEGs) between tumor and

normal (TvsN), adjacent normal and normal (TvsN), and tumor

and adjacent normal (TvsAN) were found using the Limma R

package, in turn. Statistical significance was defined as | logFC | > 1

and adjusted P < 0.05 (25). The Sangerbox online tool was then used

to visualize the Venn diagram (26). The LPS-related differentially

expressed genes (LDEGs) were divided into three groups. The

distinct LDEGs of TvsN and ANvsN, which each overlap TvsAN,

were used as the LRHG.
Single gene enrichment analysis

GSEA software (v4.2.3) was used to conduct a gene enrichment

analysis in order to discover more about the possible molecular

basis of LRHG. Enrichment analysis used the expression level of

LRHG as a phenotypic tag and Pearson correlation as the sorting

algorithm (27).
GeneMANIA

Using the GeneMANIA website (http://genemania.org),

functionally similar genes in the LRHG were predicted, and PPI

networks were constructed within them. Furthermore, it could

forecast how central genes and functionally related genes

will interact.
Analysis of weighted gene co-expression
network

The WGCNA R package was used in WGCNA to explore the

relationship between clinical features and expression modules (28).
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First, the correlation between all paired genes was examined using

Pearson to create the adjacency matrix. The soft threshold

parameter was then set to 5 to make the co-expression network

satisfy the scale-free distribution, and the dynamic tree-cutting

algorithm (module size = 30) was then used to group the genes

with comparable expression patterns into a single module.
Analyzing immune cell infiltration and
determining how it relates to LRHG

The assessment of immune cell infiltration was calculated based

on the level of expression of immune cell-specific marker genes in

the data set. 28 different types of immune cells’ marker genes were

gathered from previously published articles (29). Single-sample

gene set enrichment analysis (ssGSEA) was used to examine these

adaptive immune cell-specific marker genes. The relationship

between LRHG and the landscape of immune cell infiltration was

examined using the Pearson algorithm. Using the ggplot2 R

program, violin diagrams and matrix correlation heat maps

are shown.
Development and verification of
prognostic risk score model

In order to create prognostic risk score models, TCGA cohort

samples were categorized (30). To determine the relationship

between LRHG and patients’ progression-free survival (PFS),

build a Cox proportional hazard regression model, and calculate

the relative contribution of LRHG to patients’ PFS. Risk score =

[expression level of gene 1 × coefficient] + [expression level of gene

2 × coefficient] +… + [expression level of gene n × coefficient] was

the formula we developed to predict the characteristics of genes.

According to the median risk score, all samples were split into two

groups: the low-risk score group and the high-risk score group.

Using the survival receiver operating characteristic (ROC) R

package, the time-dependent ROC curve was created in order to

assess the risk score model’s correctness and examine the

performance of survival prediction (31, 32). The GSE21032

dataset is used to confirm the model’s capacity for prediction.
Clinical and immune cell infiltration and
prognostic risk score correlation

The validity of prognostic risk scores based on clinical and

immune characteristics was assessed using a univariate Cox

regression analysis. The differences in prognostic risk scores

among clinical and immune characteristics, such as age, N-stage,

T-stage, gleason score, and biochemical recurrence, were assessed

using a t-test or one-way ANOVA. The correlation between the

prognostic risk score and immune cells was analyzed by the Pearson

algorithm. P < 0.05 indicates that it was statistically significant.
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Drug sensitivity

In light of the significant role that androgen deprivation therapy

(ADT) plays in the treatment of PCa, we used the pRRophetic R

package to estimate the IC50 of bicalutamide and docetaxel and to

investigate the relationship between prognostic risk score and ADT

response (33, 34).
Construction of the nomogram

P < 0.05 was used as the screening cutoff to examine whether the

prognostic risk score and associated clinical parameters could be

employed as predictors of PFS in patients with PCa using Cox

regression analysis. Both the calibration curve and the decision

curve analysis (DCA) were drawn to forecast performance. The

rms R package was used to generate a nomogram, calibration curve,

and DCA.
Statistical analysis

R 4.1.3 was used for the statistical analysis in this study.

Statistics were deemed significant at P < 0.05.
Results

Identification of LRHG connected to LPS
that are differently expressed

The general workflow of this study is displayed in Figure 1. We

performed PCa analysis on the GSE68555 dataset. The findings
Frontiers in Oncology 04
revealed that the compositions of the adjacent normal (AN), which

was in between the tumor’s (T) and normal’s (N) compositions,

were both comparable and distinct (Figure 2A). The gene

differences between T and N, AN and N, and T and AN were

analyzed using adjusted P<0.05 and | logFC | > 1, and then

overlapped with lipopolysaccharide-related genes, yielding 131

(TvsN), 69 (ANvsN), and 10 (TvsAN) LDEGs, respectively

(Figures 2B–G). Then the LDEGs of TvsN and ANvsN were

overlapped with TvsAN LDEGs, respectively, and 6 differentially

expressed LRHG genes were obtained, namely CD38, TPM2,MT1X,

CRISP3, MYL9, and MYLK (Figure 2H). Additional research on

LRHG expression in T, AN, and N.When compared to T and N, the

expression level of CD38 in AN was considerably greater (P < 0.05).

TPM2, MT1X, MYL9, and MYLK expression levels were

considerably lower in T than in AN and N, while CRISP3 was on

the contrary (P <0.05). (Figures 2I–N). On the basis of this, we

proposed that these LRHG may control tumor invasion, with CD38

playing a key role in AN.
Analysis of enrichment for differentially
expressed LRHG

Hallmark and Kyoto encyclopedia of genes and genomes (KEGG)

function enrichment were carried out in T and AN, respectively, to

investigate the associated LRHG functions. The functional phenotypes

associated with LRHG in T were primarily focused in tumor invasion,

lipid metabolism, sex hormone response, DNA repair, and apoptosis,

according to Hallmark enrichment analysis. Particularly, MYC

TARGETS V1/V2, WNT BETA CATENIN SIGNALING, E2F

TARGETS, and ANDROGEN RESPONSE were involved in the

transition from androgen reliance to androgen non-dependency

(Figure 3A). The functional phenotypes associated with LRHG were
FIGURE 1

The flowchart of data collection and analyses.
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concentrated in a number of metabolic pathways, including FATTY

ACID METABOLISM and ARACHIDONIC ACID METABOLISM,

according to KEGG enrichment analyses (Figure 3B). The functional

phenotypes associated with LRHG in AN were primarily focused in

cancer, invasion, sex hormone response, and DNA repair, according to

HALLMARK enrichment analysis (Figure 3C). The functional

phenotypes linked to LRHG were concentrated on numerous amino

acid metabolic pathways and transfer-related pathways, according to

KEGG enrichment analysis (Figure 3D). In addition, all five of the

other LRHG, with the exception ofMT1X, were linked to the epithelial

mesenchymal transition (EMT) phenotype. TPM2,MYL9, andMYLK

are substantially linked with the EMT phenotype in both T and AN,
Frontiers in Oncology 05
while CD38 and CRISP3 were the functional phenotypes most

concentrated in AN or T, respectively (Figures 3E–J).
Prediction of coexpression network of
LRHG on GeneMANIA

GeneMANIA was used to predict the co-expression network

and function of LRHG, and 20 additional co-expression genes were

obtained (Supplement Figure 1). Their functions were concentrated

on actin cytoskeleton, myosin complex, muscle contraction,

contractile fiber and actomyosin. These functions were closely
A B D

E F G

I

H

J K

L M N

C

FIGURE 2

To identify differentially expressed LRHG based on GSE68555 dataset. (A) Principal component analysis of GSE68555; (B) DEGs volcano map
between tumor and normal; (C) DEGs volcano map between the adjacent normal and normal; (D) DEGs volcanic map between tumor and adjacent
normal; (E–G). Venn diagram, TvsN DEGs in red, ANvsN DEGs in blue, TvsAN DEGs in green, and LPS-related genes obtained from CTD in yellow;
(H) TvsN, ANvsN and TvsAN LDEGs Venn diagrams; (I–N). The expression of CD38, TPM2, MT1X, CRISP3, MYL9 and MYLK in prostate cancer,
adjacent normal and normal, * P < 0.05; * * P < 0.01; *** P < 0.001. -: no relevant data.
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related to the above tumor invasion and EMT phenotype. The

function of the LRHG in tumor invasion and metastasis

was verified.
LRHG and tumor aggressive phenotype

We investigated the expression of LRHG in invasive PCa (T3-4)

and non-invasive PCa (T1-2) to further investigate the connection
Frontiers in Oncology 06
between LRHG and tumor invasion. Only CD38,MT1X, and CRISP3

showed differences in expression levels between non-invasive and

invasive tumors in T. And CD38 and MT1X expression levels in

invasive tumors were significantly lower than in non-invasive tumors,

whereas CRISP3 was the opposite (Figures 4A–F). Then, WGCNA

was constructed from T expression data to verify the relationship

between LRHG and tumor invasion, and the soft threshold b = 5

(scale-free R ^ 2 = 0.86) was selected (Figures 4G, H). A total of 30

modules were screened, and the cyan module showed a statistically
A B

D

E F G

IH J

C

FIGURE 3

LDEGs functional analyses. (A, B) HALLMARK and KEGG enrichment analysis of LRHG in tumor. (C, D). HALLMARK and KEGG enrichment analysis of
LRHG in adjacent normal; (E–J). The enrichment results of LRHG in EMT function.
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significant correlation with non-invasive PCa (P < 0.05) (Figures 4I–

K). CD38 and MT1X genes were found in the cyan module.
Evaluation of LRHG and immune
microenvironment

By investigating the GSE68555 data set, the infiltration landscape

of 28 different immune cell types in PCa was examined (Figure 5A).

Activated CD4+ T cells, activated CD8+ T cells, central memory CD8+

T cells, eosinophils, and natural killer T cells did not differ substantially
Frontiers in Oncology 07
between T and AN (P > 0.05) according to the analysis of variance

approach, but they did differ significantly from N (P < 0.05). CD56dim

natural killer cells, central memory CD4+ T cells, natural killer cells,

plasmacytoid dendritic cells, and regulatory T cells did not substantially

differ between AN and N (P > 0.05), although AN and N did

significantly differ from T (P<0.05). Mast cell differences between T

and N were not significant (P > 0.05), whereas those between T and N

and AN were (P<0.05). (Figure 5B). The relationship between LRHG

and the degree of immune cell subset infiltration was next examined

(Figure 5C). Central memory CD4+ T cell were significantly correlated

with LRHG (6/6), including a positive correlation with CRISP3 and a
A B

D E F

G I

H

J K

C

FIGURE 4

LRHG and tumor invasion phenotype. (A–F). Expression of CD38, TPM2, MT1X, CRISP3, MYL9, and MYLK in non-invasive (T1-2) and invasive (T3-4)
tissues; (G, H). Scale-free fitting Index and average Connectivity Analysis of different soft threshold Power (b); (I). The clustering tree diagram of the
recognition module. Each module is given a separate color as a logo, including 30 different modules; (J) The heat map of module-characteristic
relationship and cyan module were significantly correlated with prostate cancer invasion; (K) The scatter diagram of the correlation between the
number of gene module members and gene significance in the cyan module. * P < 0.05; * * P < 0.01; *** P < 0.001. -: no relevant data.
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negative correlation with others (P < 0.05) (Figure 5D). Immature B

cell, mast cell, and plasmacytoid dendritic cell were significantly

associated with LRHG (4/6) (P < 0.05) (Figures 5E–G).
Develop prognostic risk characteristics

The TCGA cohort was used to verify the LRHG expression level

prior to model construction. The findings demonstrated that the TCGA

cohort’s distribution trend for LRHG expression in T, AN, and N was

consistent with that of the GSE68555 cohort (Figures 6A, B). Then, for
Frontiers in Oncology 08
476 PCa patients with data on PFS, a Cox risk proportional regression

model was created (Figure 6C): The risk score was calculated as follows:

[expression level of CD38 × 0.774989] + [expression level of TPM2 ×

0.882436] + [expression level ofMT1X × 0.880267] + [expression level of

CRISP3 × 0.929862] + [expression level of MYL9 × 1.373418] +

[expression level of MYLK × 0.692560]. According to the median risk

score, patients with PCa were equally divided into two groups: the low-

risk score group and the high-risk score group. The number of PCa

progressions in the high-risk group was significantly higher than that in

the low-risk score group, and the heat map showed differential

expression of LRHG between the two groups (Figure 6D). The overall
A

B

D

E F G

C

FIGURE 5

Evaluation of LRHG and immune microenvironment. (A) Heatmap of the landscape of 28 immune cell subpopulations infiltration in prostate;
(B) Comparison of immune cell composition in Tumor, adjacent normal and nomal; (C) Heat map of the relationship between LRHG and 28 immune
cells; (D-G). The correlations between LRHG and Central memory CD4 T cell, Immature B cell, Mast cell, Plasmacytoid dendritic cell, respectively.
* P < 0.05; * * P < 0.01; *** P < 0.001. -: no relevant data.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1141191
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Che et al. 10.3389/fonc.2023.1141191
PFS in the low-risk group was significantly longer than that in the high-

risk group, according to the survival curve (P<0.05) (Figure 6E). The

model’s dependability was further demonstrated by the time-dependent

ROC curve, which had AUC values for the 1-, 3-, and 5-year periods of

0.73, 0.69, and 0.66, respectively (Figure 6F). The prognostic risk model’s
Frontiers in Oncology 09
universality was examined using the GSE21032 cohort. The overall PFS

of the low-risk group was much longer than that of the high-risk group,

which is consistent with the TCGA cohort (P<0.05). (Figures 6G,H). The

time-dependent ROC’s 1-, 3-, and 5-year AUC values were 0.83, 0.78,

and 0.78, respectively (Figure 6I).
A B

D E F

G IH

C

FIGURE 6

Construction of prognostic risk model. (A) expression level of LRHG in TCGA cohort in T, AN and N; (B) Expression of LRHG in TCGA cohort in non-
invasive prostate cancer and invasive prostate cancer; (C) Forest map of multivariate Cox model of LRHG in risk score; (D) Expression of LRHG in
TCGA cohort in low risk and high-risk population; (E) TCGA low-risk and high-risk population progression-free survival curve; (F) Time-dependent
ROC curve of TCGA cohort; (G) Expression of LRHG in GSE21032 cohort in low risk and high risk population; (H) Progression-free survival curve of
low-risk and high-risk population in GSE21032 cohort; (I) Time-dependent ROC curve of GSE21032 cohort. * P < 0.05; * * P < 0.01; *** P < 0.001. -:
no relevant data.
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Clinical/immune cell infiltration and risk
score

The relationship between the prognostic risk score and clinical

and immune characteristics was then further evaluated using the

TCGA cohort. 355 patients were included after the samples were

cleaned of any missing clinical characteristic data. According to the

findings, patients with advanced age, invasive PCa without lymph

node metastasis, no biochemical recurrence, low central memory

CD4+ T cell infiltration, high immature B cell infiltration, high mast

cell invasion, and low plasmacytoid dendritic cell invasion all

significantly benefited from having a low-risk score (Figure 7A).

It was discovered that, with the exception of biochemical

recurrence, there were significant differences in the prognostic

risk scores among the various clinical feature subgroups (P<0.05)

(Figures 7B–F). Additionally, there was a substantial negative
Frontiers in Oncology 10
correlation between the four different kinds of immune cells and

the prognostic risk score (P<0.05) (Figures 7G–J).
Drug sensitivity

We also examined the relationship between prognostic risk

scores and popular therapeutic medications (bicalutamide and

docetaxel) because GSEA enrichment analysis suggested that

these LRHG may contribute to the development of androgen-

dependent PCa into an androgen-independent condition. The

findings revealed that docetaxel had a lower IC50 in the high-risk

group and bicalutamide had a lower IC50 in the low-risk group

(Supplementary Figures 2A, B). The AR mRNA showed similar

results, with PCa being significantly more expressed in the low-risk

group than the high-risk group (Supplementary Figure 2C). As a
A B

D E F
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C

FIGURE 7

Correlation between prognostic risk score and clinical/immune characteristics. (A) Univariate Cox regression analysis of prognostic risk score and
clinical feature subgroup/four kinds of immune cells; (B–F). Differences in prognostic risk scores among clinical feature subgroups; (G–J).
Correlation between four kinds of immune cells and prognostic risk score. * P < 0.05; * * P < 0.01; *** P < 0.001. -: no relevant data.
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result, it seems possible that the prognostic risk score could be

helpful in determining how to use medications.
Establishment of nomogram

The TCGA cohort’s clinical and immune characteristics, as well

as the relationship between PFS and the prognostic risk score, had

to be assessed (Table 1). The PFS was finally predicted using a

nomogram that combined biochemical recurrence, Gleason score,

and risk score (Figure 8A). The nomogram can successfully predict

PFS in PCa patients, according to 1-, 3-, and 5-year correction

curves (Figure 8B). The DCA over 1-, 3-, and 5-year reveals that the

model offers greater benefits than the Gleason score. When the

values of 1-, 3-, and 5-year were 0-0.13, 0-0.3, and 0-0.5,

respectively, the benefit of threshold probability was significantly

greater than that of biochemical recurrence (Figure 8C).

Additionally, the K-M Survival Curve demonstrated that low-

signature individuals had significantly longer PFS times than

high-signature individuals (Figure 8D). The 1-, 3-, and 5-year

AUC values for the time-dependent ROC were 0.88, 0.85, and

0.84, respectively, showing that it was more predictive than the

single prognostic risk score model (Figure 8E).
Discussion

The variety of microorganisms in tumors and the depth of their

effects have not yet been fully understood due to technological

limitations, but they are involved in every stage of a tumor’s

development, including its occurrence, development, metastasis,

and immune response, particularly PCa. Consequently, it might be

one of the best ways to use bioinformatics to investigate and forecast

the role of the prostate microbiome in PCa. In this study, we used

the LPS-related genes obtained by CTD as the basis for our analysis

and used the GEO data set to identify LRHG differential genes
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related to LPS. We can then investigate the molecular mechanisms

of the prostate microbiome involved in PCa by combining

bioinformatics analysis such as functional enrichment of LRHG,

immune infiltration correlation, and co-expression network

construction, and the prognostic risk model and nomogram were

created. Their significance in PCa progression was then confirmed

in the verification and test cohorts obtained from TCGA, GTEx,

and GEO.

For this study, the LRHG genes CD38, TPM2, MT1X, CRISP3,

MYL9, and MYLK were obtained. CD38 participates in the typical

activities of cell surface receptors, such as signal transduction of

activation and proliferation events and atypical cell adhesion. In the

event of bacterial LPS stimulation, it plays a defensive role and

regulates the immune system against bacterial infection. The

biological functions of TPM2, MT1X, and CRISP3 stimulated by

LPS are not clear. The current evidence is that an increase in their

expression level was observed in the transcriptional group of

peripheral blood immune cells. Both MYL9 and MYLK encode

myosin light chain protein, which can increase the permeability of

epithelial cells and promote the progression of inflammation in the

inflammation produced by bacterial LPS.

In previous studies on tumors, LRHG has been shown to be

closely related to tumors. Recent research, in particular, suggests

that CD38 may represent a novel immunosuppressive target for

PCa. Immune progenitor cells express CD38, a ribosyl cyclase

family extracellular enzyme, on their surface. Its receptors,

ligands, and enzymes contribute to the growth and dissemination

of malignancies by regulating immune response response,

metabolism, calcium-mediated signal transduction, cell adhesion,

and migration (35, 36). The enzyme activity of CD38 is to catalyze

the conversion of NAD+ to ADPR, cADPR, NAM, and other

metabolites. This activity is very important for maintaining the

dynamic balance of NAD, nicotinamide, and other substances in

the body (37). It is also worth noting that, unlike most tumors,

CD38 has been detected to be down-regulated in PCa, especially in

advanced castration-resistant prostate cancer (CRPC), which may
TABLE 1 Univariate and multivariate Cox regression analysis of risk score and other clinicopathological factors for PFS in TCGA cohort.

character
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age 1.03 1.00-1.07 0.039* 1.04 1.00-1.08 0.058

N stage 1.85 1.13-3.03 0.014* 0.98 0.58-1.65 0.925

T stage 3.61 2.03-6.42 <0.001*** 1.3 0.63-2.67 0.481

Gleason score 2.21 1.77-2.75 <0.001*** 1.58 1.18-2.12 0.002**

Biochemical recurrence 8.00 5.18-12.36 <0.001*** 4.37 2.68-7.12 <0.001***

Risk Score 2.72 1.82-4.06 <0.001*** 1.68 1.06-2.67 0.026*

Central memory CD4 T cell 1.07 0.43-2.65 0.884 – – –

Immature B cell 1.7 0.64-4.52 0.288 – – –

Mast cell 0.77 0.32-1.90 0.576 – – –

Plasmacytoid dendritic cell 2.51 1.00-6.3 0.051 – – –
fron
* P < 0.05; ** P < 0.01; *** P < 0.001. -: no relevant data.
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be due to methylation silencing (38, 39). Additionally, some studies

have revealed that invasive PCa and unfavorable results are

frequently linked to decreased CD38 expression (40). Although

the other five LRHG in PCa have not received the same amount of

research as CD38, it is known that they may also contribute to the

development and spread of PCa. One of Tm1’s variants, TPM2, is

involved in the synthesis of cytoskeletal tropomyosin. Tm1, a tumor

suppressor, is said to be able to stop the growth of tumors and

change the phenotype of transformed cells (41).MT1X is a member

of the metallothionein (MT) family, which controls metal ion

homeostasis to influence tumor growth, progression, metastasis,

and drug resistance (42). CRISP3 belongs to a large family of

cysteine-rich secretory proteins and is essential for the

development of invasive PCa in vivo from carcinoma in situ as
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well as for AR-independent transcriptional processes (43, 44). Both

MYL9 andMYLK belong to myosin light chain proteins, which can

promote the growth and metastasis of PCa and participate in the

immune infiltration of PCa (45, 46). This is confirmed by the results

of the GSEA analysis. These LRHG are significantly associated with

invasion, fat metabolism, sex hormone response, DNA repair, and

apoptosis in tumors. It may also play a role in the transformation of

androgen-dependent PCa into androgen-independent PCa. At the

same time, we also explored the co-expression network where

LRHG is located, and its functions are mainly focused on actin

cytoskeleton, myosin complex, muscle contraction, contractile fiber,

and actomyosin, which are closely related to tumor invasion and the

EMT phenotype. In particular, CD38 and MT1X are more likely to

be the key genes in this co-expression network.
A B
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FIGURE 8

Predictive value of prognostic risk score combined with clinical/immune characteristics for PFS in patients with TCGA cohort. (A) Nomogram for
predicting PFS of patients in TCGA cohort; (B) The calibration diagram of the nomogram. The X axis is the survival rate predicted by the nomogram,
and the Y axis is the actual survival rate; (C) Analysis of decision curve of nomogram; (D) Survival curve of low-signature and high-signature; (E)
Time-dependent ROC curve.
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Immune cell research and clinical use have given hope for a

number of cancers, but PCa patients have not yet benefited from it.

One of the key causes is that PCa has a clear immunosuppressive

microenvironment (47). Consequently, we also looked into the

connection between LRHG and the pattern of immune

infiltration in PCa. Our results show a significant relationship

between LRHG and the degree of immune cell infiltration in the

tumor. Tumors can evade the immune system by promoting the

depletion of mast cells, immature B cells, central memory CD4+T

cells, and plasma cell-like dendritic cells. As upstream and

intermediary cells in the immune response, central memory

CD4+T cells are a subtype of central memory T cells (Tcm) (48).

Tcm is in charge of long-term memorization of the tumor antigen

in the tumor microenvironment following immune system

recognition of the tumor antigen (49). A large number of effector

memory T cells (Tem) that target the tumor continue to be

produced in response to the stimulation of the tumor antigen and

then differentiate into a large number of effector T cells that kill

cancer cells (50). By presenting tumor antigens, mast cells and

plasmacytoid dendritic cells can encourage the differentiation of B

and T lymphocytes (51–53).

At present, antibody-based immunotherapeutic drugs mainly target

immune checkpoints, such as CTLA-4, PD-1, and LAG-3 (54, 55).

Cancer cells turn off the immune system’s immune response to cancer by

hijacking these checkpoint proteins. However, in this study, the cause of

immunosuppression in the prostate cancer microenvironment may be

due to the depletion of antigen-presenting cells. As a result, drugs

targeting T-cell immune checkpoints for prostate cancer often fail to

achieve the desired results (56). It is reasonable to believe that cellular

immunotherapy, which controls the immune osmotic mode of tumors

by affecting antigen presenting cells, is more likely to benefit PCa patients

than traditional immunotherapy. Cellular immunotherapy using

antigen-presenting cells (sipuleucel-T) has been shown to prolong the

survival time of CRPC patients (57).

In light of this, we posit that a complex web of mechanisms may

be used by microorganisms in the PCa microenvironment to

contribute to the emergence and development of PCa. The overall

impact of this intricate network of mechanisms determines how

PCa develops. Based on these LRHG, we developed a risk score

model to assess the effects of gene co-expression thoroughly. Our

hypothesis was then confirmed using univariate and multivariate

Cox regression analysis to predict PFS of PCa. The survival curve

revealed that individuals with high-risk scores had a considerably

poorer outcome for PCa and shorter PFS, and shorter PFS was seen

in these patients. A low-risk score has a protective effect on patients

in the study of the clinical and immune characteristics of PCa,

especially those who are older, have invasive PCa, no lymph node

metastasis, no biochemical recurrence, low central memory CD4+ T

cell infiltration, high immature B cell infiltration, high mast cell

infiltration, and low plasmacytoid dendritic cell infiltration.

The results of the preliminary analysis of the androgen response

showed that the AR mRNA expression was higher in the low-risk

group. This implies that PCa patients may respond differently to
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androgen therapy depending on their risk scores. This might also be

true. Low-risk PCa patients showed a lower estimated IC50 for

bicalutamide, whereas high-risk PCa patients showed a lower

estimated IC50 for docetaxel. This further suggests that PCa

patients’ drug selection is influenced by their risk score.

Additionally, the risk score and the screened clinical and

immunological parameters were combined to construct a

nomogram. The nomogram has a better predictive value than a

different risk score model, according to a survival analysis. The

calibration curve and ROC curve also demonstrate the nomogram’s

high accuracy. According to DCA, the nomogram was preferable to

the Gleason score for patients. The development of the model initially

demonstrates the potential for PCa patients, particularly those with

non-metastatic castration-resistant prostate cancer (nmCRPC), to

greatly benefit from research based on PCa microorganisms.

The limitations of this study must be acknowledged, even

though these findings point in a new direction for a deeper

investigation of the molecular mechanisms underlying PCa. First

of all, current animal and cell experiments cannot accurately

simulate the microbial microenvironment in the tumor due to

technical limitations in our ability to fully detect the composition

and structural characteristics of PCa microorganisms. Second, the

underlying mechanism governing the PCa process is still unknown

for the co-expression network of these LRHG and other related

genes. More research into their biological functions must be done

through carefully thought-out experiments. Last but not least, this

study is primarily based on genes associated with LPS that the CTD

identified after reviewing expression data from public databases. As

a result, the study’s findings have some limitations because it is clear

that PCa may also be caused by other pathogenic elements of the

PCa microbiome. This suggests that additional molecular

mechanisms require study.

There are still opportunities and challenges in the diagnosis and

treatment of prostate cancer (58–60). Although the microbiome is

still in its infancy in the study of prostate cancer based on various

factors, this does not prevent it from becoming an attractive and

promising research direction. In the future, with the in-depth study

of the microbiome in prostate cancer, it may be accompanied by the

use of microorganisms as a diagnostic tool for prostate cancer,

microbial-based prevention, and immunotherapy (61). All these are

worthy of our expectations and efforts.
Conclusion

In conclusion, our study shows that a complex network of

mechanisms involving microbes contributes significantly to the

emergence and development of PCa. The overall impact of this

intricate network of mechanisms may have an impact on PCa

development. This could aid in our understanding of the PCa’s

underlying molecular mechanisms. However, at the present

technical level, it is challenging to carry out a thorough and in-

depth study through experiments. Finally, this study shows that
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bacterial LPS-related genes can help establish reliable prognostic

models and predict PFS in patients with prostate cancer. In

addition, the study raises the possibility that cellular

immunotherapy may improve the prognosis of patients with PCa.
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SUPPLEMENTARY FIGURE 1

Prediction of coexpression network of LRHG on GeneMANIA.

SUPPLEMENTARY FIGURE 2

Correlation between risk score and sensitivity of bicalutamide and docetaxel
based on TCGA cohort (n=476). (A) Bicalutamide drug sensitivity; (B)
Docetaxel drug sensitivity; (C) AR mRNA expression. * P < 0.05; * * P <

0.01; *** P < 0.001.
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