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of radiotherapy: impact of
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minimum radiation dose
for tumor control

Achyudhan R. Kutuva1,2, Jimmy J. Caudell3, Kosj Yamoah3,
Heiko Enderling1,3 and Mohammad U. Zahid1*

1Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research
Institute, Tampa, FL, United States, 2Department of Microbiology and Cell Science, University of
Florida, Gainesville, FL, United States, 3Department of Radiation Oncology, H. Lee Moffitt Cancer
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Introduction: Radiation therapy (RT) is one of the most common anticancer

therapies. Yet, current radiation oncology practice does not adapt RT dose for

individual patients, despite wide interpatient variability in radiosensitivity and

accompanying treatment response. We have previously shown that mechanistic

mathematical modeling of tumor volume dynamics can simulate volumetric

response to RT for individual patients and estimation personalized RT dose for

optimal tumor volume reduction. However, understanding the implications of

the choice of the underlying RT response model is critical when calculating

personalized RT dose.

Methods: In this study, we evaluate the mathematical implications and biological

effects of 2 models of RT response on dose personalization: (1) cytotoxicity to

cancer cells that lead to direct tumor volume reduction (DVR) and (2) radiation

responses to the tumor microenvironment that lead to tumor carrying capacity

reduction (CCR) and subsequent tumor shrinkage. Tumor growth was simulated

as logistic growth with pre-treatment dynamics being described in the

proliferation saturation index (PSI). The effect of RT was simulated according to

each respective model for a standard schedule of fractionated RT with 2 Gy

weekday fractions. Parameter sweeps were evaluated for the intrinsic tumor

growth rate and the radiosensitivity parameter for both models to observe the

qualitative impact of each model parameter. We then calculated the minimum

RT dose required for locoregional tumor control (LRC) across all combinations of

the full range of radiosensitvity and proliferation saturation values.

Results: Both models estimate that patients with higher radiosensitivity will

require a lower RT dose to achieve LRC. However, the two models make

opposite estimates on the impact of PSI on the minimum RT dose for LRC: the

DVR model estimates that tumors with higher PSI values will require a higher RT

dose to achieve LRC, while the CCR model estimates that higher PSI values will

require a lower RT dose to achieve LRC.
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Discussion: Ultimately, these results show the importance of understanding

which model best describes tumor growth and treatment response in a

particular setting, before using any such model to make estimates for

personalized treatment recommendations.
KEYWORDS

radiotherapy, mathematical modeling, oncology, personalized oncology,
model comparison
1 Introduction

More than 50% of all cancer patients will receive radiation therapy

(RT) during the course of their cancer treatment, either given with

curative intent as a single agent, concurrently with systemic therapies,

or (neo-)adjuvant to other therapeutic approaches, or in the palliative

setting (1). Even modest improvements in treatment outcomes and

quality of life for cancer patients undergoing RT would yield benefits

for a large patient cohort. However, current radiation oncology

practice does not personalize or adapt RT dose for individual

patients, despite variance in individual patient radiosensitivity. Thus,

many patients are potentially receiving either too much or too little RT

dose. Recent efforts include more strategic integration of basic science

approaches into radiobiology and radiation oncology to help better

understand the mechanisms of radiation response dynamics and to

help predict how to best personalize radiation to individual patients.

Genomic signatures (2–5), imaging metrics (6–8), and burgeoning

machine learning and artificial intelligence approaches are being

retrospectively and prospectively evaluated as novel biomarkers for

radiation response (9–11).

Simple mathematical approaches have a long history in

radiobiology and radiation oncology. The linear-quadratic (LQ)

model that describes the clonogenic survival of a cell population to

increasing acute doses of radiation has been extensively used to

identify cell-intrinsic radiosensitivities (12–14). Prominent

developments of the LQ model include the concept of biologically

effective dose (BED), tumor control probability (TCP), and normal

tissue complication probability (NTCP) (15–19). Many conceptual

studies have attempted to explain the biological underpinnings of

linear-quadratic response dynamics. However, the non-linear

tumor growth and treatment response dynamics require

deployment of population dynamics models.

Mathematical oncology may hold the key to mechanistic

understanding of the complex adaptive dynamic tumor system

and its response to radiotherapy (20–24), with demonstrated

feasibility of translation into prospective clinical trials. Using

TCP and NTCP concepts combined with a logistic differential

equation that describes the recovery of normal tissues from

sublethal radiation-induced damage, Scott et al. pioneered the

concept of temporally feathered radiation therapy (TFRT) that

prioritizes and de-prioritizes organ-at-risk doses at different times
02
during treatment. TFRT was subsequently shown to lead to

increased doses to the radiation target, or reduced cumulative

doses to organs at risk (25). Leder et al. combined experimental

and differential equation models to identify novel radiation

schedules to significantly improve radiation efficacy by taking

advantage of the dynamic instability of radioresistance (26), which

was recently demonstrated to be feasible and safe to administer to

glioblastoma patients (27). Our group has introduced the concept

of a patient specific ‘carrying capacity’ in a logistic growth model,

called the proliferation saturation index (PSI) as a putative

biomarker for radiosensitivity in head and neck cancer as

well as non-small cell lung cancer (28–31) that is currently

being evaluated as trigger for personalized radiation dose

fractionation (NCT03656133).

One of the advantages of using mechanistic mathematical

models to simulate radiation responses is that if an appropriate

model is calibrated, validated, and predictive power demonstrated,

then it may be used to simulate potential alternative treatments (32,

33). However, it is critical to examine the effects of the underlying

models on these alternative treatment recommendations. While two

models with different mechanstic mathematical formulations may

be trained to fit longitudinal dynamics and predict individual

responses equally well, they could have different implications for

alternative radiation dose fractionations.

Poleszczuk et al. previously analyzed that clinical predictions

are strongly dependent on the specific growth law assumed, and

that the applicable growth law should be known to be utilized in

clinical practice (29). The objective of this paper is to examine the

impact of the underlying tumor volume dynamics models on the

estimated optimal RT dose (Figure 1). In a previous study (34), our

group used a pre-specified model of tumor volume response to RT

to estimate the minimum RT dose required for locoregional control

of head and neck tumors. Herein, we compare two different

mathematical models of response to RT: (1) cytotoxicity to cancer

cells that lead to direct tumor volume reduction (DVR) and (2)

radiation damage to the tumor microenvironment that lead to

tumor carrying capacity reduction (CCR) and subsequent tumor

shrinkage. Both of these models have been shown capable of fitting

longitudinal tumor volume data from head and neck cancer patients

(31, 35). The comparison is focused on evaluating the impacts of

both of these models on RT dose personalization.
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2 Methods

2.1 Tumor growth model

Tumor growth models are plentiful, ranging from incredibly

simple exponential growth to highly different growth dynamics as

the tumor volume changes, either relative to itself or its (static or

dynamic) microenvironment (36). While classical investigations

sought a universal tumor growth model (37–39), the search of

tumor growth laws is still very much ongoing (40). The seminal

study by Benzekry et al. demonstrated that the Gompertz growth

model best captured pre-clinical in vivo breast and lung cancer

growth dynamics but fell short of adequate forecasts beyond one

subsequent measurement (41). More recently, Kather and his team

provided the first such model comparison analysis in clinical data of

1,472 patients undergoing chemotherapy or cancer immunotherapy

for solid tumors (42). Again, the Gompertz model provided the best

balance between goodness-of-fit and number of parameters, but

once more early treatment response was only moderately correlated

with final treatment responses.
Frontiers in Oncology 03
We have previously shown that logistic growth dynamics

provide excellent fits to clinical data of head and neck and non-

small cell lung cancer during fractionated radiotherapy, and

demonstrated predictive power of final tumor volumes with

sufficient patient-specific data (30, 35). Logistic growth is

described by the differential equation:

dV
dt

= lV 1 −
V
K

� �

where V is tumor volume (cc), l is the intrinsic tumor growth rate

(day-1), and K is the carrying capacity of the tumor (cc), which is the

maximum size tumor that the local tissue can support (28). In

logistic growth, the tumor volume grows initially exponentially but

growth monotonically decelerates as the volume approaches the

defined carrying capacity, visually indicated by the horizontal

asymptote (Figure 2A). In describing the distinct types of growth

dynamics that this model can capture, our group has previously

defined the proliferation saturation index (PSI) a measure of the

effective tumor growth rate in the absence of RT (28). PSI is defined

by the expression:
BA

FIGURE 2

Tumor dynamics models. (A) Simulated example of tumor growth modeled as logistic growth. The blue curve shows tumor volume, V, over time and
the orange line the tumor carrying capacity, K (B) Simulated examples of response to RT, which is modeled by either direct tumor volume reduction
(DVR, left) or tumor carrying capacity reduction (CCR, right). Timing of RT fractions, simulated as a standard fractionated RT course with weekday
fractions, is shown by the arrows above each plot.
FIGURE 1

Study Overview and Hypothesis. The primary objective of this study is to assess how the selection of the underlying mathematical model of tumor
volume dynamics affects estimates for optimal RT dose. This is premised on the idea that even when the same observations of tumor volume
changes (both due to off-treatment growth and regression due to treatment effect) are used as inputs for differing models of response to RT there
may be different estimates of the optimal RT dose.
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PSI   ≡
V0

K0

where V0 and K 0 are the initial tumor volume and tumor carrying

capacity before treatment, respectively. K0 can be prospectively

calculated using the following expression:

K0 =
V0VDx(e

lDt − 1)

VDxelDt − 1

where V0 is the current tumor volume before radiation (usually

obtained at radiation simulation), VDx is the tumor volume measure

at diagnosis, and Dt is the time between the two volume

measurements (usually a few weeks).5 PSI is defined between 0

and 1. As PSI approaches 0 tumor growth approaches exponential

growth, which indicates a tumor microenvironment capable of

sustaining a much larger tumor than what currently exists. In

contrast, as PSI approaches 1, tumor growth approaches its

carrying capacity, which corresponds to high tumor proliferation

saturation in the constraints of the tumor microenvironment

limiting further proliferation of the tumor.
2.2 Modeling response to radiotherapy

We simulate the effect of RT with 2 different models (1): Direct

Tumor Volume Reduction (DVR) and (2) Tumor Carrying

Capacity Reduction (CCR).

2.2.1 Direct tumor volume reduction model
In the DVR model (Figure 2B), we simulate the effect of an RT

fraction as an instantaneous reduction in proliferating tumor

volume due to cancer cell death:

V+ =  V− 1 − g   1 −
V−

K

� �� �

where V+ is the tumor volume after the RT fraction; V- is the tumor

volume before the RT fraction; g is the cancer cell death rate; and K

is the tumor carrying capacity. The parameter g is derived from the

linear-quadratic model (12, 43):

g = 1 − e−(ad   +   bd
2)

where d [Gy] is the RT dose per fraction, and a [Gy-1] and b [Gy-2]

are the LQ radiation sensitivity parameters, respectively. In this

study, we set the ratio a
b = 10 Gy, as seen in many cancer types that

are treated with fractionated RT, including head and neck cancer

(44). Of note, here we model the effect of radiation on tumor

volume and not individual cells in a clonogenic assay. Therefore, the

absolute value of a may not be directly comparable to the

preclinical radiobiology literature.
2.2.2 Tumor carrying capacity reduction model
In the CCR model (Figure 2B), we model the effect of RT as an

instantaneous reduction in the tumor carrying capacity:

K+ = K−   (1 − d )
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where K+ is the tumor carrying capacity after each RT fraction; K– is

the tumor carrying capacity before the RT fraction; and d is the

proportion that the carrying capacity is reduced with each RT

fraction, ranging from 0 to 1. Modeling the effect of RT as a

reduction in the tumor carrying capacity is motivated by

observations of how RT alters components of the tumor

microenvironment, such tumor vasculature (45) or the release of

tumor-specific antigens and damage-associated molecular patterns

(DAMPs) that stimulate antitumor immunity (46), that may reduce

the tumor carrying capacity. As of yet, the actual dose dependency

of radiation-induced carrying capacity reduction is unknown. Thus,

we limit this study to the effect of the total dose given in 2 Gy

fractions, without consideration of alternative dose fractionations.
2.3 Simulating tumor volume
dynamics during RT

All simulations were done using custom scripts developed in Java

and subsequent analyses were done in Python. The code for both is

available at the following Github repository: https://github.com/

akutuva21/SPARK-Project. All simulations of RT were performed

using a common schedule for fractionated RT, where d = 2 Gy

fractions are delivered daily Monday-Friday with no RT delivered on

Saturday and Sunday. All simulations of RT were performed using

schedules and doses routinely used in treating head and neck cancer

patients. Between-fraction tumor volume changes were simulated with

the logistic growth model using a 1-hour time resolution.

2.4 Parameter sweep analysis

To understand the impact of the model parameters on tumor

volume dynamics, we conducted parameter sweeps of both the

radiosensitivity parameters (a for the DVR model and d for the

CCR model) and the intrinsic tumor growth rate, l. For the

radiosensitivity parameter sweeps, we set l = 0.1 day-1 and PSI =

0.9 for all simulations. These parameters are arbitrarily chosen to

investigate qualitative response dynamics. Dynamics for different

growth rate and PSI parameters are comparable and intuitively

derivable from the below results. For the DVR model, we tested a
∈ (0, 0.20) Gy-1, with a step size of 0.01 Gy-1. For the CCR model,

we tested d ∈ (0, 0.20), with a step of size of 0.01.

For the intrinsic growth rate (l) sweeps, we tested l ∈ (0, 0.10)

day-1 for both models. For the other parameters, we set a PSI = 0.7 for

both models for rich model dynamics, and a = 0.1 Gy-1 for the DVR

model and d = 0.1 for the CCR model. These sweeps were done using

simulations of standard 6 weeks of RT with standard weekday

fractionation. Parameter ranges were informed by previous studies

fitting these models to longitudinal tumor volume data from head and

neck cancer patients that received fractionated RT (31, 34, 35).

However, herein we focus on qualitatively demonstrating response

dynamics without emphasis on actual values for a specific cancer type.

2.5 Estimating minimum RT dose for
locoregional tumor control

In head and neck cancer, mid-treatment volumetric

responses correlate with outcome (31, 47). Patients with
frontiersin.org
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greater than 32.2% tumor volume reduction after 4 weeks of RT

were 100% locoregionally controlled (LRC) at a mean follow-up

time of 20 months. We have previously used this tumor volume

reduction threshold to estimate patient-specific RT doses to

achieve locoregional control (LRC) using the CCR model (34).

While it is conceivable that a greater tumor volume reduction

would not jeopardize tumor control, higher RT doses are

cor re l a t ed wi th h igher norma l t i s sue compl i ca t ion

probability (NTCP).

Here, we will use the 32.2% tumor volume reduction threshold

to estimate the minimum cumulative RT dose required to achieve

locoregional control (LRC) in both DVR and CCR models. We

simulate RT up to 8 weeks (allowing consideration of modest dose

escalation) using the same fractionation schedule and dose/

fraction described above and then finding the minimum

cumulative dose (Dmin) where the tumor volume shrinks below

the volume reduction threshold. These simulations were done

over the following parameter ranges: PSI ∈ (0.6,1.0), a ∈ (0.06,

0.14) Gy-1 for the DVR model, and d ∈ (0.01, 0.09) for the

CCR model.
3 Results

3.1 Parameter sweep analysis

Intuitively, when the radiosensitivity parameters (a for the

DVR model, d for the CCR model) increase, the reduction in

tumor volume increased for both models of RT response

(Figure 3). However, the effect of the intrinsic growth rate, l, on
tumor volume reduction were opposite in the two models. In the

DVR model, as l decreases the net tumor volume reduction

increases (Figure 4A). This is because with lower l values there is

less repopulation between RT fractions. In the CCR model,
Frontiers in Oncology 05
however, higher l values result in higher net tumor volume

reduction (Figure 4B). This counterintuitive result comes from

the fact that in the CCR model tumor volume only decreases

when V > K, which makes dV
dt < 0 and results in l becoming the

rate at which the tumor volume approaches the current carrying

capacity from above. Of interest, this contrasts with the response

dynamics during the first week of RT (Figure 3B, inset). During

early radiation fractions, the carrying capacity remains greater than

the tumor volume, which results in dV
dt > 0 and continued tumor

growth, albeit slower with each fraction as V approaches K. Thus,

initially, higher l values yield higher transient tumor volumes,

followed by steeper volume reduction.
3.2 Minimum cumulative dose estimation

In the DVR model, higher radiosensitivity (a) leads to lower

estimated Dmin for LRC, while higher PSI values lead to higher

estimated Dmin (Figures 5A, B). Similarly, in the CCR model higher

radiosensitivity (d) leads to lower estimatedDmin for LRC. However,

increasing PSI in the CCR model leads to lower estimated Dmin for

LRC (Figures 5E, F). This is, again, due to tumor reduction being

achieved only when the carrying capacity drops below the current

tumor volume, and consequently dV
dt < 0. The closer the tumor

volume is to its carrying capacity (i.e., higher PSI), the faster

radiation can reduce the carrying capacity below the current

value. The implications of these analyses can be more clearly seen

by looking at Dmin for LRC as a function of PSI and the

radiosensitivity parameters (Figures 5C, D, G, H). Dmin(PSI), Dmin

(a), and Dmin(d) were fit to exponential functions with the form

 Dmin = a · ebx + c , where x is PSI, a, or d depending on the

respective context (fitted coefficient values in SI Tables 1–4). In

the DVR model, higher PSI always yields a higher estimate for Dmin

regardless of the value of a (Figure 5C). The opposite is true in the
BA

FIGURE 3

Effect of radiation sensitivity parameter in DVR and CCR models. (A) Tumor volume trajectories simulated using the DVR model with values of a ∈
(0,0.2) Gy-1, where larger a values lead to greater decrease in tumor volume. (B) Tumor volume trajectories simulated using the CCR model with
values of d ∈ (0,0.2), where larger d values lead to greater decrease in tumor volume. For both models, l = 0.1 day-1 and PSI = 0.9, and the value of
the respective radiation sensitivity parameters are indicated by the color bar. All simulations have an arbitrary initial tumor volume with a fractionated
RT regimen, where treatment is applied every weekday for a total of five weeks of treatment.
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CCR model, where higher PSI always yields a lower estimate for

Dmin, regardless of the value of d (Figure 5G). Additionally, for both
the DVR and CCR model, higher values of the radiosensitivity

parameter yield lower estimates for Dmin (Figures 5D, H). Overall,
Frontiers in Oncology 06
in the DVR model the highest estimated Dmin values are found at

high PSI values and low a values, while in the CCR model the

highest estimated Dmin values are found at low d values and low

PSI values.
B C D

E F G H

A

FIGURE 5

Minimum cumulative dose (Dmin) for LRC estimates for DVR and CCR models. (A, E) Sample volume trajectories for representative parameter pairs
across the parameter range, where the bold symbols indicate the location on the heatmap in (B, F). Green curves are the tumor volume plotted as
function of cumulative dose, which increases linearly with treatment time; horizontal dashed line indicates the 32.2% volume reduction cutoff used
to calculate Dmin; vertical red dashed line indicates the calculated Dmin with the specific value of Dmin indicated on the x-axis. Patient-specific
parameters for each simulation are indicated on the corresponding plots. For all simulations, l = 0.07 day-1. (B, F) Heatmaps of Dmin over the
clinically relevant range for the radiosensitivity parameter (a or d) and PSI. All simulations have an arbitrary initial tumor volume with a fractionated RT
regimen, where treatment is applied every weekday for a total of five weeks of treatment. Black curves indicate “iso-dose” levels with the number of
RT fractions required for the indicated dose. White areas indicate parameter regions where sufficient volume reduction was not achieved in the 8
weeks of simulated RT. (C, G) Plots of the radiosensitivity parameters (a or d) against Dmin for PSI = 0.7, 0.8, 0.9. Colored dots are data points
sampled from the heatmaps in (B, F); the corresponding solid lines are exponential fits to the data (fitted coefficients in SI). (D, H) Plots of PSI against
Dmin for 3 different values of the radiosensitivity parameters. Colored dots are data points sampled from the heatmaps in (B, F); the corresponding
solid lines are exponential fits to the data (fitted coefficients in SI Tables 1–4).
BA

FIGURE 4

Effect of intrinsic tumor growth rate, l, in DVR and CCR models. (A) Tumor volume trajectories simulated using the DVR model with a = 0.1 Gy-1

and l ∈ (0,0.1) day-1. Lower l values lead to greater net reduction in tumor volume at the end of the treatment course. (B) Tumor volume
trajectories simulated using the CCR model with d = 0.1 and l ∈ (0,0.1) day-1. Higher l values lead to greater net reduction in tumor volume at the
end of the treatment course. The inset shows the initial phase of simulated RT, where the tumor volume remains above the carrying capacity and
lower l still results in lower tumor volumes. For all simulations PSI = 0.7, and the values of l are indicated by the color bar. All simulations have an
arbitrary initial tumor volume with a fractionated RT regimen, where treatment is applied every weekday for a total of five weeks of treatment.
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4 Discussion

In this study we have shown that different mathematical models

of RT response yield different clinical implications. Thus, the choice

of RT response model is critical when estimating RT doses that best

shrink tumor volumes based on intrinsic model parameters.

Although the two models studied herein both estimate that

patients with higher radiosensitivity will require a lower RT dose

to achieve LRC, they make opposite estimates on the impact of pre-

treatment tumor growth dynamics biomarker, PSI. Fast-growing

tumors have lower PSI values and slow-growing tumors have higher

PSI values. The DVR model, which assumes that the effect of RT

comes from the direct radiation-induced death of tumor cells,

estimates that tumors with higher PSI values, i.e. lower pre-

treatment proliferation, will require a higher RT dose to achieve

LRC. However, the CCR model, which assumes that the effect of RT

comes from a reduction in the tumor carrying capacity of the local

tissue, estimates that higher PSI values will require a lower RT dose

to achieve LRC. It is therefore of utmost importance to know which

mathematical model best describes the radiobiology that underlies

the observable radiation response dynamics. It is encouraging,

however, that both radiosensitivity and PSI could be measured or

estimated in the clinic: PSI can be calculated by using two

temporally separated tumor volume measurements before the

start of treatment (28) and radiosensitivity via genomic measures

such as the radiosensitivity index (48). Estimates of radiosensitivity

may increase in accuracy by using serial measurements of the tumor

volume during RT to dynamically update estimates of tumor

radiation response (35).

The opposing estimates of the effect of PSI on the required

minimum RT dose for LRC stem from the fact that tumor cell death

is modulated by PSI in the DVR model as the model assumes that

only proliferative cells are killed by RT. This means that as PSI

increases, higher and higher doses will be required to achieve the

same reduction in tumor volume. On the other hand, in the CCR

model tumor volume reduction only occurs once the carrying

capacity is less than the tumor volume. This means that tumors

with higher PSI values require less RT dose for the carrying capacity

to drop below the tumor volume, as the initial values forV and K are

already relatively close to each other. This result suggests that by

determining which model more accurately describes on-treatment

tumor volume dynamics in a particular scenario it may be possible

to determine which effect of RT is more dominant.

Herein, we focused on two particular models of radiation

response mechanisms in the logistic growth model and PSI

framework that have been previously presented – and studied

which of the two mechanisms has the predominant effect tumor

volume dynamics (28, 35). While it is conceivable that both

mechanisms – direct cancer cell kill and modulation of the tumor

microenvironment via carrying capacity reduction – contribute to

the clinically observed tumor responses, the current framework

unable to combine both models without significant adjustments to

the underlying mathematics. Combining both models (SI Methods)

leads to scenarios where V/K > 1 resulting in numerical artifacts of

unrealistic spikes and large oscillations in tumor volume (SI

Figure 1) for the majority of tested model parameters (SI
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Figure 2). It may be possible to prevent this issue by simulating

DVR and CCR on different timescales, but the required

mathematics are beyond the scope of this study and left for

future analysis.

Furthermore, we have constrained the models to only simulate

changes in tumor volume immediately before and during an RT

treatment course. There are documented delayed and cumulative

effects of RT that manifest in the months following radiation (49–

51). The discussed models, however, are specifically trained to

simulate on treatment tumor response dynamics. For tumor

decay following radiation, for example due to activated immune

responses or clearance of necrotic debris, more complex models will

be required that do not contribute to the implications of the herein

discussed results. Additionally, the chosen models require

measurable tumor volume. Any dynamics below the limit of

detection where stochastic effects may dominate need to be

simulated with different mathematical approaches (52, 53).

Ultimately, it is critical to understand if a model appropriately

describes tumor growth and treatment response for specific cancer

subtypes, or individual patients, before using any such model to

make estimates for personalized treatment recommendations. It

may eventually be possible to select appropriate patient-specific or

tumor site-specific models, but this will require further study. One

route for studying which models of response to RT are best fit for

different contexts will be increased acquisition of both direct and

indirect measurements of tumor burden during the course of RT.

This may be enabled by emerging techniques such as RT with MRI-

guided linear accelerators (MR-LinAc) (54, 55) and liquid biopsies

to measure circulating tumor DNA (ctDNA) and cell-free DNA

(cfDNA) (56–58). In the absence of sufficient evidence for cancer-

specific or patient-specific model selection, however, the more

prudent approach may be to consider model ensembles for

making prediction or treatment recommendations. Ensemble

modeling is commonly utilized in weather forecasting, transport

modeling, ecology, or financial forecasting to account for model

biases, measurement uncertainties, and forecast uncertainty (59–

63). In the context of modeling tumor response to RT, if using an

ensemble of models, one might only recommend a change from

standard treatment or dosing when a sufficient number of models in

the ensemble agree on the direction or magnitude of the estimated

treatment personalization.
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