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Copper is an essential micronutrient for human body and plays a vital role in

various biological processes including cellular respiration and free radical

detoxification. Generally, copper metabolism in the body is in a stable state, and

there are specific mechanisms to regulate copper metabolism and maintain

copper homeostasis. Dysregulation of copper metabolism may have a great

connection with various types of diseases, such as Wilson disease causing

copper overload and Menkes disease causing copper deficiency. Cancer

presents high mortality rates in the world due to the unlimited proliferation

potential, apoptosis escape and immune escape properties to induce organ

failure. Copper is thought to have a great connection with cancer, such as

elevated levels in cancer tissue and serum. Copper also affects tumor

progression by affecting angiogenesis, metastasis and other processes. Notably,

cuproptosis is a novel formof cell death thatmay provide novel targeting strategies

for developing cancer therapy. Copper chelators and copper ionophores are two

copper coordinating compounds for the treatment of cancer. This review will

explore the relationship between copper metabolism and cancers, and clarify

copper metabolism and cuproptosis for cancer targeted therapy.
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1 Introduction

Copper (Cu) is an essential micronutrient for the human body. Copper has four

oxidation states: metallic copper, Cu+, Cu2 + and Cu3+. As a transition metal, copper plays a

key role in many biological processes, such as cellular respiration (1), free radical

detoxification (2–5), cellular iron metabolism (6), angiogenesis (7), and neurotransmitter

synthesis (8). However, excess intracellular copper ions can be toxic to cells (9). The

transfer of electrons will occur in the transfer of copper ions with different valence states,

resulting in the formation of reactive oxygen species (ROS).ROS can injury biological

organic molecules such as proteins, nucleic acids and lipids, and also interfere with the
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synthesis of iron sulfur clusters to injury countless essential

enzymes in cells. In addition, copper overload is seen in Wilson

disease (WD), which is a manifestation of dysregulation of

organismal copper homeostasis (10). Deficiency of copper ions

results in the reduction of multiple enzyme activities, which is

also thought to underlie the pathologies of Menkes disease (MD)

(11). Therefore, no matter whether copper ions are excessive or

deficient, it may be harmful to human body. Copper homeostasis is

essential in organisms and dysregulation of copper metabolism

leads to the occurrence of some diseases.

Copper is closely related to cancer. It is well known that copper

is also involved in tumor formation and progression. Copper levels

are elevated in a variety of malignancies, and high levels of copper

ions affect tumor proliferation, angiogenesis, as well as metastasis

(12–14). In recent years, a novel form of cell death induced by

intracellular copper, discovered by Tsvetkov and co-workers (15),

which is distinct from oxidative stress-related cell death, is a type of

copper-dependent cell death, termed cuproptosis. This review will

explore the relationship between copper metabolism, cuproptosis

and cancers, providing references for cancer targeted therapy.
2 Copper metabolism and cancer

2.1 Copper metabolism

In mammals, copper is required for cellular metabolism, but its

excess is toxic to cells. Therefore, copper concentration in cells is

tightly regulated (16). There are many components involved in

cellular copper homeostasis maintenance, including (1)

transporters mediating copper absorption, such as copper

transporter receptor 1 (Ctr1) (also called SCL1A1), copper

transporter receptor 2 (Ctr2), divalent metal transporter 1

(DMT1); (2) enzymes guiding copper ion efflux, such as copper-

transporting ATPase 1 (ATP7A) and copper-transporting ATPase 2

(ATP7B); (3) biomolecules that sequester and store copper, such as

metallothionein (MT), glutathione (GSH); (4) copper chaperones,

such as copper chaperone for superoxide dismutase (CCS),

antioxidant protein 1 (Atox1), cytochrome c oxidase copper

chaperone 17 (Cox17), which direct copper to copper dependent

enzymes and transport copper to organelles that requiring

copper (16).

A major contributor involved in copper uptake in mammals is

Ctr1 (17). It is now generally accepted that Ctr1 transports Cu+ in a

high affinity manner (18, 19), however in mammalian enterocytes

the copper ion is in the form of divalent copper (Cu2+), which can

be directly transported by divalent metal transporter 1 (DMT1) but

cannot be directly utilized by cells (20). Thus enterocytes produced

intracellular reductases such as steap2/3/4 to reduce cell surface Cu2

+ to Cu+ and then Cu+ can be transported by Ctr1 (21) (Figure 1).

Copper ions are transported to specific locations after entering

the cell via utilization or detoxification pathways, and excess copper

will be sequestered by copper storage proteins such as MT and GSH

(22). The intracellular trafficking of copper is mediated by copper

chaperones, such as CCS, Atox1, Cox17. These copper chaperones
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assist copper in reaching vital destinations without inflicting

damage or becoming trapped in adventitious binding sites (23) In

the cytoplasm, CCS mediates Cu+ loading and activation of

superoxide dismutase 1 (SOD1) (24). The chaperone Cox17

mainly functions to transfer copper to Sco1, Sco2, Cox11 (25),

and Sco1/2 plays an important role for cytochrome c oxidase (Cox)

formation (26). The role of Atox1 is to bind Cu+ and deliver it to

P1B type ATPases (27), which includes ATP7A and ATP7B with

important roles in the systemic distribution of copper ions.

Excessive copper ion accumulation in cells may generate ROS,

causing oxidative damage to cells. Thus, the excess Cu+ will be

bound by MT or GSH, maintaining the concentration of

intracellular Cu ions within a suitable range (16). The copper ion

export in mammals is dependent on large multi transmembrane

proteins ATP7A and ATP7B (16). There are multiple routes for

copper ions transport out of the cell. For example, copper ions in

intestinal epithelial cells enter the blood directly via ATP7A, and

ATP7B in hepatocytes pumps copper ions into the bile

(16) (Figure 1).
2.2 Copper deficiency and copper overload

Copper metabolism is meticulously controlled in living

organisms to maintain the level of copper in a reasonable range.

Defects in molecules involved in copper metabolism will resultin

disturbed copper homeostasis and related diseases. WD andMD are

two typical copper disorders resulting from dysregulation of copper

metabolism (28).

MD is a copper deficiency disease caused by mutations in

ATP7A (28). The main function of ATP7A is to transport copper

from enterocytes to the blood, where it plays a vital role in intestinal

absorption of copper and renal copper reabsorption (29). Defective

ATP7A impedes intestinal copper absorption, ultimately leading to

severe systemic copper deficiency, as well as deficiency of

cuproenzymes in tissues, such as brain. The symptoms exhibited

by MD patients include neuropathy, hypopigmentation, seizures,

and hypothermia (30, 31). In addition, copper deficiency can lead to

impaired energy levels, increased oxidative damage, and changes in

immune cell structure and function in living organisms (32).Studies

have suggested that copper deficiency may result in a higher

frequency of infections as well as a higher risk of cardiovascular

disease (33, 34).

WD is a copper overload disease caused by mutations in ATP7B

(28). The main functions of ATP7B is to transport copper to the

trans Golgi to facilitate assembly and secretion of cuproenzymes

(29). In addition to hepatocytes, ATP7B also acts as a copper ion

exporter, excreting it into bile. Because of gene mutations, ATP7B

dysfunction leads to copper ion accumulation in the liver. When the

capacity of the liver for storage is exceeded, copper spills into the

circulation and subsequently enters and deposits into other tissues

(e.g. eye and brain), causing oxidative stress that damages the tissues

(28). The typical pathological features of WD are neurological

abnormalities and acute liver failure (35, 36).
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2.3 Cancer and copper metabolism

Cancer has long been a research hotspot in the life sciences as

well as in medicine. The incidence and mortality rates of cancer

have been rising rapidly over the past few decades. It has now

become the disease responsible for the largest number of deaths in

the population worldwide (37). Among these, lung cancer is the

most common and associated with the highest mortality in the

population. The second highest incidence was for female breast

cancer, followed by prostate and colorectal cancer. The top four

cancers in order of mortality were lung, colorectal, stomach and

liver cancer (37). Copper ion metabolism is also involved in the

progression of these cancers (38).

In fact, copper in the human body has a great association with

cancer, and there are a large number of medical studies showing

that the serum copper levels in cancer patients, as well as in tumor

tissues, can be higher or lower (mostly high) compared with normal

individuals (Tables 1, 2). When tumor is removed, serum copper

return to comparable levels with healthy individuals (13). In several

serummedical detections of breast cancer patients, it was found that

copper levels were significantly elevated in the serum of breast

cancer patients compared with the healthy population (51).

Similarly, elevated levels of copper have been reported in the

serum of patients with oral cancer (47), gallbladder cancer (46),

liver cancer (49), pancreatic cancer (57), and prostate cancer (61).

Serum copper levels were found to be decreased in the serum of

patients with certain cancers, such as colorectal cancer (56) and

endometrial cancer (68). In colorectal and breast cancer, increased

serum copper levels correlated with cancer staging and progression
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(69). And serum elevated copper levels are also associated with

hematological malignancies either in relapse or in disease

progression (70). Because of the variation of serum copper levels

in cancer, it may be used as an indicator to diagnose certain tumors.

The Cu/Zn ratio has been widely recognized as an indicator for the

auxiliary diagnosis of tumors, and we summarized most up-to-date

evidence of Cu/Zn ratio in the diagnosis of cancers (71, 72).

An increasing number of existing studies have demonstrated

that copper is critical for the development of cancer not only as a

component to maintain cell function, but also as a central hub in

cell signaling pathways involving cell proliferation, angiogenesis,

and metastasis (73). Cu+ is redox active and is able to promote the

production of ROS and thereby activate tumor signaling, leading to

tumor proliferation (69). In part, studies of the relationship between

co-binding proteins (or chaperones) and cell proliferation identified

that Atox1, a copper dependent transcription factor, promoted the

expression of genes encoding cell replication (74). In recent studies,

copper has also been found to have a specific role in the mitotic

signaling pathway of tumorigenesis. Studies using drosophila and

mouse models found that copper uptake via Ctr1 activates the

mitogen activated protease kinase (MAPK) (75). Among molecules

of this pathway, MEK1 is a copper binding protein that, when

bound to copper ions, is able to push the MEK1-ERK interaction to

promote the phosphorylation of ERK1 and ERK2, ultimately

leading to carcinogenesis and promoting tumor growth (76, 77).

Copper is able to induce a number of proangiogenic responses

(78), and increases proangiogenic gene expression by stabilizing

nuclear hypoxia inducible factor-1 (HIF-1) (79). Copper also

activates some angiogenic factors such as basic fibroblast growth
FIGURE 1

A diagram of cellular copper transport and metabolism. Extracellularly, copper exists as Cu2+. The cellular reductases protein family Steap proteins
(mainly Steap 2/3/4) reduce Cu2+ to Cu+, which is transported into the cell via Ctr1, and a fraction of Cu+ is targeted to cytosolic SOD1 by the
copper chaperone CCS to scavenge free radicals. A fraction of Cu+ is delivered by the copper chaperone Cox17 to the mitochondrial Cox to
generate ATP. A portion of Cu+ is delivered to ATP7A/B of the trans Golgi network by the copper chaperone Atox1, which promotes cuproproteins
(CuPrs) assembly and secretion. The remaining excess Cu+ is sequestered by metallothionein (MT). There are copper sensors in the nucleus that
respond to changes in copper concentration through regulating MT1 and MT2 gene transcriptions. In enterocytes, ATP7A migrates to the plasma
membrane to pump Cu+ into the blood. In hepatocytes, ATP7B pumps Cu+ into the bile.
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factor (bFGF), tumor necrosis factor alpha (TNF-a), IL-1, IL-6 and
IL-8 (80). In addition, copper stimulates the proliferation and

metastasis of vascular endothelial cells (81). It directly binds to

the angiogenic growth factor angiopoietin, enhancing its affinity for

endothelial cells (82).
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Copper is implicated in epithelial to mesenchymal transition

(EMT), which is necessary for cancer metastasis (83). Increasing

studies have shown that copper enhances the invasive and

metastatic abilities of cancer cells through the activation of

metabolic and proliferative enzymes (84, 85). For example, copper
TABLE 2 Copper level variation in the serum of different cancers.

Cancer
types

Copper
levels

Mechanism References

Oral cancer Elevated Increase of oxidation process; Changes of ceruloplasmin activity (47, 48)

Gallbladder
cancer

Elevated Malignant cell necrosis leads to copper release into the serum (46)

Liver cancer Elevated Inflammatory processes activate Ceruloplasmin; Hepatocytes are damaged to release copper (49, 50)

Breast
cancer

Elevated Cu is a cell growth promoting factor for rapid tumor cell growth; Necrosis that arises in tumor tissue occurs through the
release of copper into the circulation; Copper causes mutations by damaging DNA through the generation of reactive
oxygen species

(51–54)

Esophageal
cancer

Elevated Not mentioned (55)

Colorectal
cancer

Decreased Unclear (56)

Pancreatic
cancer

Elevated Not mentioned (57)

Bladder
cancer

Elevated Copper accumulation has potential toxic effects; Copper is required for angiogenesis and tumor growth factor (58, 59)

Renal cancer Elevated Not mentioned (60)

Prostatic
cancer

Elevated Copper binds metallothionein with higher affinity, substituting zinc for metallothionein binding (61)

Thyroid
cancer

Elevated High concentrations of Cu can damage DNA through toxic hydroxyl radicals; Copper as a cofactor in angiogenesis (45, 62, 63)

Cervical
carcinoma

Elevated Copper damages DNA by generating reactive oxygen species; Copper as a tumor angiogenesis factor (64, 65)

Lung cancer Elevated Ceruloplasmin may be re-catalyzed on the surface of tumor cells or in the peripheral blood in patients with cancer,
thereby inhibiting its catabolism

(66, 67)

Endometrial
cancer

Decreased Not mentioned (68)
TABLE 1 Copper level variation in cancer tissues among different cancers.

Cancer
types

Copper
levels

Mechanism References

Breast
cancer

Elevated Cu as an effective factor of angiogenesis (39, 40)

Colorectal
cancer

Elevated Excess Cu damages DNA directly or through ROS. (41)

Esophageal
cancer

Elevated Not mentioned (42)

Ovarian
cancer

Elevated Alteration of the relationship between trace elements and decreased catabolism; Increased tumor synthesis of
neurofibromin

(43)

Gastric
cancer

Elevated Alteration of the relationship between trace elements and decreased catabolism; Increased tumor synthesis of
neurofibromin;High concentrations of Cu damage DNA through toxic hydroxyl radicals

(44, 45)

Gallbladder
cancer

Elevated Copper may be involved in the initial biological insult (46)
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is indispensable for the activity of lysine oxidase (LOX) and lysine

oxidase like (LOXL) proteins, which catalyze the cross-linking of

collagen and elastin in the extracellular matrix (ECM), and create

preconditions for tumor development and metastasis (86). It was

found that a copper dependent redox protein named memo affected

metastasis of breast cancer cells by increasing intracellular ROS

levels (87). Recently, the copper chaperone Atox1 has also been

shown to be essential in breast cancer cell migration (88, 89).

Copper is redox active and easily interconverts between Cu+ and

Cu2+. Many important enzymes utilize this property of copper to

exert their functions in redox reactions in living organisms (69).

Because copper is capable of generating excess ROS, copper

transporters and chaperones have evolved to regulate copper

uptake, efflux, and distribution within cells (33). Dysregulation of

copper metabolism may lead to oxidative stress, such as decreased

SOD1 activity and increased superoxide anion in different animal

models (90, 91). Copper deficiency may also increase oxidative stress

in mitochondria by inhibiting cytochrome c oxidase activity (92).

And the dysregulation of copper metabolism may cause cancer, as

copper deficiency may have effects on the oxidative system (33).

Copper is a cofactor of SOD1, and the main function of SOD is to

scavenge free radicals to prevent cells from oxidative stress injury,

especially playing a crucial role in scavenging ROS generated from

mitochondria (93, 94). SOD protein has three isoenzymes in humans.

In particular, Cu/Zn SOD (SOD1) is a SOD with a bimetallic

enzymatic function, which requires copper to catalyze the reaction

and zinc to increase catalytic efficiency and enzyme stability (95–98).

Copper deficiency leads to reduced SOD1 activity, and reduced SOD1

activity contributes to carcinogenesis (99). Copper deficiency also

alters the activity of other enzymes involved in oxidative stress as well

as ROS scavengers (e.g. catalase, metallothionein) (33). Alterations in

these proteins may cause deregulation of oxidative stress,

overproduction of ROS as well as deregulation of oxidative stress in

the body may impair DNA repair machinery which is also an

important mechanism in cancer development (100).

Ceruloplasmin is involved in copper metabolism, which is the

main carrier of copper in the human body, and about 90% of copper

in plasma is found in ceruloplasmin. In addition, ceruloplasmin is a

multi-copper oxidase that plays an important role in iron

homeostasis (101). When Fe2+ exported from ferroportin, the sole

iron exporter, ceruloplasmin promotes cellular iron export by

oxidizing iron ion from Fe2+ to Fe3+ (102). Although ceruloplasmin

synthesis and secretion are not affected by copper levels, copper

deficiency may result in decreased ceruloplasmin stability and activity

(103). Ceruloplasmin is also closely linked to cancer, and studies have

indicated that significant ceruloplasmin gene expression occurs in

many tumors and that the overall incidence of cancer is positively

correlated with serum ceruloplasmin levels and may be able to serve

as a prognostic marker in some cancers (104–107).
3 Copper and targeted therapy
in cancer

Among current treatments for cancer, targeted therapy is

considered to be highly promising because its intervention can be
Frontiers in Oncology 05
selectively performed on molecules and pathways involved in the

growth and developmental progression of tumors (108).

Considering copper as a nutrient for cancer growth, angiogenesis,

and metastasis, it may be an attractive target in cancer therapy

(109). Copper metal binding compounds have great potential in

cancer therapy. When copper binding compounds are mentioned,

copper chelators and copper ionophores come to mind.Currently,

copper chelators and copper ionophores have great potential value

in cancer targeted therapy.

Copper chelators are able to bind to copper and reduce its

bioavailability, thereby inhibiting angiogenesis and hindering

cancer growth and metastasis (110). So far, some copper

chelation methods have been used in clinical trials and provided

some new strategies for the treatment of cancer (111, 112). Copper

chelators with anticancer activity are tetrathiomolybdate (TTM), D-

penicillamine (D-Pen) and others. There are studies demonstrating

TTM exerts significant efficacy in the treatment of squamous cell

carcinoma (113), lung (114), breast (115) and prostate cancer (116).

It is important to note, however, that copper chelators are simply

anticancer and are not sufficient by themselves to kill malignant

cells, therefore, it needs to be combined with other drugs to achieve

a therapeutic effect that is promising for cancer (117).

Copper ionophore in contrast to copper chelators,is able to

increase intracellular copper bioavailability. There are various

modes of action of copper ionophores, such as DNA interaction,

proteasome inhibition as well as ROS generation (69). Typical

copper ionophores are chloroquinol and disulfiram (DSF), and

they can release coordinately available copper in the intracellular

reducing environment, increasing the bioavailability of copper

inside cells (118). Chloroquinol and DSF are able to cause

intracellular production of ROS and inhibit the activity of

proteasomes in cancer cells, which enables apoptosis (119).

Chloroquinol and disulfiram have also been shown to reduce

tumor growth in models of prostate and breast cancer (120–122).

Copper chelators are able to inhibit cuproptosis, whereas copper

ionophores induce cuproptosis. Cuproptosis, already introduced in

a previous text, is a copper dependent cytotoxicity with a unique

mechanism leading to cell death (123). However, the field of copper

metal binding compounds to treat cancer is still in an early stage of

development, and although clinical trials have been conducted and

are able to give some strategies to treat cancer, they still need to be

explored further to overcome their disadvantages. The lack of

selectivity for targeting cancer cells is one of the challenges in

this field.

In addition, inhibiting the expression of copper transporters

may provide some reference for cancer therapy. We searched

through the gepia database and analyzed for survival curves

between the expression levels of the copper ion transporter

SLC31A1 and cancer patient survival. We found that the

expression level of copper importer in cancer tissue may have a

close relationship with patient survival. Analysis of the survival

curves between the expression levels of SLC31A1 and cancer patient

survival showed that lower SLC31A1 expression significantly

increased overall survival compared with individuals with higher

SLC31A1 expression in Adrenocortical carcinoma (ACC), Breast

invasive carcinoma (BRCA), Brain Lower Grade Glioma (LGG),
frontiersin.org
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Mesothelioma (MESO), Skin Cutaneous Melanoma (SKCM)

(Figure 2). The inverse association between SLC31A1 expression

and patient survival suggests that excessive copper ion uptake may

promote cancer progression and increase patient mortality. This

correlation may provide a potential mechanism for developing

novel cancer therapies through inhibition SLC31A1 expression or

removal of large amounts of copper ions in tumor tissues.
4 Cuproptosis

Recently, a novel mode of cell death was discovered by Tsvetkov

et al. (15). It is a copper-dependent, regulated, distinct from other

known cell death regulatory mechanisms, and this copper-

dependent manner of death has been termed “cuproptosis”.

Heavy metal overload such as iron will cause deleterious effect on

cells. An example is ferroptosis, an iron-dependent form of cell

death caused by unrestricted lipid peroxidation (124). Cuproptosis

results from mitochondrial stress. Copper can directly bind to ester

acylated components of the tricarboxylic acid cycle, with

subsequent aggregation of copper bound lipidated mitochondrial
Frontiers in Oncology 06
enzymes and loss of iron sulfur protein clusters, finally leading to

the occurrence of cuproptosis (15).

The exact regulatory mechanism of copper induced cell death

still needs further elucidation, although various pathways have been

proposed, including induction of apoptosis, induction of reactive

oxygen species, inhibition of the ubiquitin proteasome system.

Currently in the study of Tsvetkov et al. (15), it was

demonstrated that the mechanism of cuproptosis involves a

copper ionophore named “elesclomol”, which can bind Cu2+ in

the extracellular environment and transport Cu2+ into the cells.

Intracellularly, several critical genes are involved in this process.

FDX1 gene encodes a reductase ferredoxin 1 reducing Cu2+ to Cu+.

DLAT gene encodes an enzyme called dihydrolipoyl transacetylase

that is a part of pyruvate dehydrogenase involved in the

tricarboxylic acid cycle and is a protein target for lipidation.

FDX1 is a key regulator of cuproptosis and an upstream regulator

of protein lipoylation. On the one hand, FDX1 promotes lipoylation

of pyruvate dehydrogenase, and Cu2+ directly binds to lipoylated

proteins (mainly DLAT), followed by aberrant oligomerization of

DLAT, resulting in tricarboxylic acid cycle (TCA) inhibition, and

on the other hand, FDX1 reduces Cu2+ to Cu+, leading to inhibition
A B

C D

FIGURE 2

Survival curves for overall survival of high versus low expressing SLC31A1. (A) ACC, adrenocortical carcinoma; (B) BRCA, breast invasive carcinoma;
(C) LGG, brain lower grade glioma; (D) MESO, mesothelioma. The overall survival rate of low expression of SLC31A1was significantly higher than that
of high expression of SLC31A1. SLC31A1, solute carrier family 31 member 1 (copper ion transporter); HR, hazard rate. (http://gepia.cancer-pku.cn/
index.html; Accessed 10 October 2022).
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of iron sulfur protein clusters synthesis, disruption of iron sulfur

protein clusters stability, and ultimately leads to proteotoxic stress

and cell death (Figure 3).

Cancer cells can evade the regulated cell death pathway, which

is also one of the important hallmarks of cancer. Currently, one of

the major challenges in cancer therapies is the escape of cancer cells

from cell death pathways. The discovery of cuproptosis will provide

a novel target to overcome the resistance of cancer cells for cell

death. Existing evidence indicates that the Cu2+ carrier, elesclomol,

can kill specific drug-resistant cancer cells (125). In recent studies

on lower grade gliomas (LGG), arguing that copper death may serve

as a potential therapeutic target for LGG (126). Researches have

shown that cuproptosis related genes may play a great role in the

diagnosis and prognosis of some types of cancer. In the research of

pancreatic adenocarcinoma (PAAD) by Huang et al., the

cuproptosis-related gene index (CRGI) was developed through

machine algorithm, and its immunological characteristics were

studied by exploring its impact on the expression of immune

checkpoints, prospective immunotherapeutic response, etc. A new

CRGI was identified and verified, and the cuproptosis-related gene

was found to be a reliable diagnostic biomarker in PAAD (127). Sha

et al., in a study of triple-negative breast cancer (TNBC), identified

two clusters of cuproptosis related genes (CRG) with features of

immune cell infiltration and demonstrated that the CRG signature

may be used to assess tumor immune cell infiltration, clinical

features, and prognostic status. Their study has shown the

potential effect of CRG on the tumor microenvironment (TME),

clinicopathological characteristics, and prognosis of TNBC which

are potential tools for predicting patient outcomes (128). In the

study of clear cell renal cell carcinoma (ccRCC), Wang et al. found

that ccRCC samples had significantly lower FDX1 expression levels

than normal tissue samples and lower FDX1 gene expression levels

were strongly associated with higher cancer grades and more
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advanced tumor-node-metastasis stages. The results of

multivariate and univariate analyses indicated that ccRCC

patients with low FDX1 expression had shorter overall survival

(OS) than those with high FDX1 expression. The study illustrates

that in ccRCC, reduced FDX1 expression is associated with disease

progression, poor prognosis and dysregulated immune cell

infiltration which illustrates that the cuproptosis related gene may

serve as a potential prognostic predictor for ccRCC patients and

may provide new insights into cancer treatment (129, 130). Zhu

et al. performed a comprehensive analysis of cuproptosis related

molecular patterns in 1274 colorectal cancer specimens based on 16

cuproptosis regulators and revealed a novel cuproptosis related

molecular pattern associated with TME phenotypes, and the

formation of a cuproptosis score will further enhance the

understanding of TME characteristics and instruct a more

personalized immunotherapy schedule in colorectal cancer (131).

Lv et al. explored the association of cuproptosis related genes with

skin cutaneous melanoma (SKCM) prognosis by accessing and

analyzing a public database, and found that 11 out 12 genes were

upregulated in melanoma tissues and three genes (LIPT1, PDHA1,

and SLC31A1) were of predictive value for melanoma prognosis.

Further exploration found that LIPT1 expression was increased in

melanoma biopsies and was an independent favorable prognostic

indicator for melanoma patients (132). Zhang et al. integrated a set

of bioinformatics tools to analyze the expression and prognostic

significance of FDX1, a key regulator of cuproptosis. The

cuproptosis related risk score (CRRS) was derived by correlation

analysis. The metabolic features, mutation signatures, and immune

profile of CRRS-classified hepatocellular carcinoma (HCC) patients

were investigated, and the role of CRRS in treatment guidance was

analyzed. FDX1 was found to be significantly downregulated in

HCC and its high expression was associated with longer survival

time. HCC patients in the high CRRS group had significantly worse

OS and enriched in tumor related pathways. Mutational analysis

revealed that several tumor suppressors such as tumor protein P53

(TP53) and Breast cancer susceptibility gene 1 (BRCA1) -associated

protein 1 (BAP1) were mutated at a higher frequency in high CRRS

HCC patients, illustrating that cuproptosis related signatures are

helpful in predicting prognosis and guiding the treatment of HCC

patients (133). There are also scientists building a liver cancer

prognosis model based on cuproptosis related mRNAs and

lncRNAs, which can effectively predict the potential survival of

liver cancer patients as well as evaluate the infiltration of immune

cells, tumor mutation burden, and sensitivity to antitumor drugs in

liver cancer (134). Li et al. systematically evaluated cuproptosis

patterns in bladder cancer (BLCA) patients based on 46 cuproptosis

related genes and correlated these cuproptosis patterns with TME

phenotypes and immunotherapy effects. For the evaluation of

individual patients, a cuproptosis risk score (CRS) for prognosis

and a cuproptosis signature for precise TME phenotypes and

immunotherapy efficacy prediction were constructed. Finally, it

was demonstrated that CRS and cuproptosis signature have

potential roles in predicting prognosis and immunotherapy

efficacy in BLCA (135). A pan-cancer analysis revealed that

transcription and protein expression of FDX1 was significantly

reduced in most cancer types, and furthermore, FDX1 expression
FIGURE 3

A diagram of the simple mechanism of cuproptosis. Elesclomol
imports Cu2+ into the cell, and then reduced to Cu+ by FDX1. Cu+

binds to lipoylated components of the mitochondrial TCA cycle,
promoting lipoylated protein aggregation followed by a decrease in
iron-sulfur cluster proteins, thereby inducing proteotoxic stress,
leading to cell death. ES, elesclomol; FDX1, ferredoxin 1; DLAT,
dihydrolipoyl transacetylase; TCA, tricarboxylic acid cycle.
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levels were closely correlated with immune cell infiltration, immune

checkpoint genes, and immune regulatory genes to some extent.

Due to its important role in tumorigenesis and tumor immunity,

FDX1 can serve as a potential therapeutic target and prognostic

marker in various malignancies (136–138). Altogether, putting the

discovery of cuproptosis may provide a new strategy for cancer

prognosis as well as treatment.
5 Conclusion and perspective

Copper plays an irreplaceable role as a micronutrient in the human

body, and both deficiency or overload of copper in the body can

negatively affect the human body, therefore, the mechanism of copper

metabolism in cells keeps copper at a stable level to achieve copper

homeostasis. Copper metabolism is also closely associated with cancer

development, and copper is able to affect cancer cell proliferation and

metastasis. Intracellular copper has a great connection with cancer,

therefore, targeting copper in cancer therapy may play a great role.

Currently, using copper complexes for cancer treatment, copper

chelators with copper ionophores are two good choices, but the

efficacy of copper chelators alone is not significant, and copper

ionophores are still in the development stage, which also lack

selectivity for targeting cancer cells. Therefore, improving selectivity

against cancer cells is a worthy goal of investigation in the future. In a

recent study on cell death, a novel concept cuproptosis, which is a

copper dependent cell death induced by copper, was proposed, and the

exact regulatorymechanism of this novel regulated cell death still needs

to be continued to be explored. The proposal of cuproptosis presents a

new avenue for the treatment of cancer.

It has a link between copper metabolism and cuproptosis. The

dysregulation of copper metabolism in the body, such as copper

overload may lead to cuproptosis. In addition, cuproptosis also offer

a novel strategy for targeted cancer therapy. Copper metabolism

and cuproptosis is worthy of further exploration and application to

conquer cancer in clinic.
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Glossary

ROS reactive oxygen species

WD Wilson disease

MD Menkes disease

Ctr1 copper transporter receptor 1

Ctr2 copper transporter receptor 2

DMT1 divalent metal transporter 1

ATP7A copper-transporting ATPase 1

ATP7B copper-transporting ATPase 2

MT metallothionein

GSH glutathione

CCS copper chaperone for superoxide dismutase

Atox1 antioxidant protein 1

Cox cytochrome c oxidase

Cox17 cytochrome c oxidase copper chaperone 17

SOD1 superoxide dismutase 1

CuPrs cuproproteins

MAPK mitogen activated protease kinase

HIF-1 hypoxia inducible factor-1

bFGF basic fibroblast growth factor

TNF-a tumor necrosis factor alpha

EMT epithelial to mesenchymal transition

LOX lysine oxidase

ECM extracellular matrix

TTM tetrathiomolybdate

D-Pen D-penicillamine

DSF disulfiram

ACC adrenocortical carcinoma

BRCA breast invasive carcinoma

LGG lower grade glioma

MESO mesothelioma

SKCM skin cutaneous melanoma

ES elesclomol

FDX1 ferredoxin 1

DLAT dihydrolipoyl transacetylase

TCA tricarboxylic acid cycle

PAAD pancreatic adenocarcinoma

TNBC triple-negative breast cancer

HCC hepatocellular carcinoma
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ccRCC clear cell renal cell carcinoma

BLCA bladder cancer

TME tumor microenvironment

TP53 tumor protein P53

BRCA1 breast cancer susceptibility gene 1

OS overall survival

CRG cuproptosis related genes

CRS cuproptosis risk score

CRRS cuproptosis related risk score

CRGI cuproptosis-related gene index.
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