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The immune function of normal T cells partially depends on the maneuvering of

lipid metabolism through various stages and subsets. Interestingly, T-cell

malignancies also reprogram their lipid metabolism to fulfill bioenergetic

demand for rapid division. The rewiring of lipid metabolism in T-cell

malignancies not only provides survival benefits but also contributes to their

stemness, invasion, metastasis, and angiogenesis. Owing to distinctive lipid

metabolic programming in T-cell cancer, quantitative, qualitative, and spatial

enrichment of specific lipid molecules occur. The formation of lipid rafts rich in

cholesterol confers physical strength and sustains survival signals. The

accumulation of lipids through de novo synthesis and uptake of free lipids

contribute to the bioenergetic reserve required for robust demand during

migration and metastasis. Lipid storage in cells leads to the formation of

specialized structures known as lipid droplets. The inimitable changes in fatty

acid synthesis (FAS) and fatty acid oxidation (FAO) are in dynamic balance in T-

cell malignancies. FAO fuels the molecular pumps causing chemoresistance,

while FAS offers structural and signaling lipids for rapid division. Lipid metabolism

in T-cell cancer provides molecules having immunosuppressive abilities.

Moreover, the distinctive composition of membrane lipids has implications for

immune evasion by malignant cells of T-cell origin. Lipid droplets and lipid rafts

are contributors to maintaining hallmarks of cancer in malignancies of T cells. In

preclinical settings, molecular targeting of lipid metabolism in T-cell cancer

potentiates the antitumor immunity and chemotherapeutic response. Thus, the

direct and adjunct benefit of lipid metabolic targeting is expected to improve the

clinical management of T-cell malignancies.
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Introduction

Lipid makes essential components in cells, providing structural

moieties and energy reserve. Apart from these, lipids and their

derivatives serve as signaling molecules and regulate the functional

and behavioral phenotypes of cells (1). The alterations in lipid

metabolism serve as instrumental gear in the onset of malignancies

and in maintaining the “hallmarks of cancer” (1, 2). The rewired

lipid metabolism has been reported in various cancer forms

including those of hematological malignancies (3). Among

hematological malignancies, the cancer of T cells has the

uniqueness of being derived from the prime cell in the immune

system. The metabolic intricacy especially in lipid metabolism plays

an underlying role in maintaining the phenotypic characteristics in

subsets of T cells (4, 5). The inter-regulated pattern of lipid

metabolism is also involved in directing the amplitude,

magnitude, and temporality of T-cell response (6). Accumulation,

storage, and oxidation arms of lipid metabolism are differentially

operated during phases of functional and phenotypic activations of

T cells (7).

Lipid metabolic reprogramming plays an instrumental role in

the transformation and maintenance of T-cell malignancies (8, 9).

The various fragments of lipid metabolism are modulated in cancer

cells derived from T lymphocytes (10, 11). The high membrane

requirement of rapidly dividing cells demands de novo biosynthesis

of fatty acids and other lipid molecules. The synthesis of fatty acids

by the activity of fatty acid synthase (FASN) is upregulated in

malignant cells of T-cell origin (12). The elevated expression and

activity of FASN in T-cell malignancies are linked with many other

hallmarks of cancer (13). The uptake through fatty acid translocase

(FAT), also known as CD36, also contributes to the cellular pool of

lipids in various types of cancers (14). The sequestration of freely

available lipid molecules serves as compensating means during

insufficiency or pharmacological inhibition of FASN (15, 16). The

uptaken lipid molecules or fatty acids generated through the activity

of FASN are utilized to generate structural components or bioactive

molecules. The excess lipid content is stored in lipid droplets (also

known as adiposomes), initiated in the membrane of the

endoplasmic reticulum (17). These droplets serve as lipid reserves

required during robust energy response. Moreover, lipid droplet

abundance is linked with cancer cell aggressive behavior even in

malignancies of T cells (18). The upregulated biosynthesis of

cholesterol and other lipids like sphingolipids in T-cell cancer

have an advantageous impact through modulating membrane

strength, dynamics, and spatiometric composition (19, 20).

The oxidation of lipids provides small biosynthetic precursors.

Acetyl CoA is one of the major molecular entities generated after

the complete oxidation of long-chain fatty acids (21, 22). Moreover,

the acetyl CoA generated through fatty acid oxidation (FAO) links

other metabolic pathways by fueling the tricarboxylic acid (TCA)

cycle (22, 23).

The spatiometric abundance of lipid moieties holds the surface

expression of protein favoring cell survival in hematological

malignancies (24, 25). The benefits of restructured metabolism of

lipids confer resistance to the action of chemotherapeutic drugs (26)
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and antitumor immunity and aid in cancer cell evasion from

immune-mediated destruction (11, 27). The indispensability of

lipid metabolism in the cellular physiology of T-cell cancer makes

them targetable for therapeutic intervention. Various approaches

have shown promising success both in preclinical and clinical

settings (28, 29). Lipogenic, as well as oxidative metabolism of

lipids, has been targeted in T-cell cancer (22, 30). As the metabolic

pathways are intervened and compensate for each other,

combinatorial and dual targeting has provided enhanced success

(31). Understanding various dimensions of lipid metabolism in the

life of T cells, their subsets, and their rewiring in malignant T cells is

expected to open avenues for therapeutic targeting of molecular

players within.
Metabolism in T cells: the
lipid perspective

T cells drive acquired immunity against infections and other

immunological threats, but their outage can also play a role in the

development of cancer and autoimmune diseases. T-cell activity

and lineage decision are influenced by metabolic adaptability in

response to the immune system and microenvironmental stimuli

(32). There is a shift in the metabolic pattern of T cells to meet the

dynamic requirements at different phases of development,

activation, clonal expansion, and memory acquisition that

significantly differs in various functional subsets of T cells (33).

Engagement of T-cell receptors with antigens in supramolecular

activation complex (SMAC) triggers an energy- and biosynthesis

precursor-demanding process of blastogenesis (growth in cell size)

and subsequent robust cell division (34). To fulfill these demands,

antigen-encountered T cells reconfigure their metabolism and

preferably use aerobic glycolysis as a major source of energy

(ATP synthesis) (6).

In the field of immune metabolism, a lingering question that

remains unanswered is whether T-cell differentiation is promoted

by ambient metabolic resource accessibility or whether the

metabolic requirements are set by intrinsic cellular systems,

determined by the environment (6). However, experimental

evidence suggests some lines of bilateral regulation (6, 33).
T-cell activation and lipid metabolism

During the proliferation of T cells, the intermediatory

metabolites generated from pathways aligned with glycolysis (PPP

and TCA cycle) include ribose-5-phosphate and citrate (35). These

serve as forerunning precursors for the synthesis of biological

macromolecules, the formation of membranes, and organellar

biogenesis (6, 36). In addition to components of SMAC,

microenvironmental cues as a function of cytokines are major

determinants of functional activations of T cells (37).

Nevertheless, T-cell fate is substantially influenced by access to

metabolic and nutrient resources (33, 38).
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During the naïve and resting phase of T cells, oxidative

phosphorylation (OXPHOS) and FAO are major bioenergetic

sources. Such cellular phenotype metabolically shifts during

activation signal engagement in SMAC leading to the

proliferation of T cells (35, 39). PI3K and mTOR activation are

major signaling mediators of T-cell activation. mTOR serves as a

junctional point for the proliferation of cells as well as for

modulating metabolic outline. Through activation of c-myc and

HIF-1a, the T-cell activation signals upregulate the expression of

glucose transporters and enzymes of glycolysis (40, 41). This

ensures the accelerated aerobic glycolysis in T cells while

transitioning from naïve to effector cell phenotype. Aerobic

glycolysis in cancer cells, known as the “Warburg effect”, is also

considered a metabolic hallmark (42, 43). Aerobic glycolysis is the

product of genetic changes in cancer cells leading to dysregulated

metabolic programming (43). However, aerobic glycolysis in T cells

is attributed to a concerted regulation of cellular physiology.

Metabolome analysis of activated T cells endorses that the

biosynthesis of fatty acids also goes along with biosynthetic

pathways of amino acids and nucleic acids (42). Nevertheless,

augmented fatty acid (FA) biosynthesis and FAO downregulation

indicate the fundamental role of lipid metabolism in T-cell

activation and function (44). mTOR-mediated stimulation of

transcription factor sterol regulatory element-binding proteins

(SREBPs) upregulates the expression of enzymes for FA

biosynthesis (45, 46). FASN is one of the major enzymes under

the regulation of transcription factor SREBPs. Among many others,

acetyl-CoA carboxylase (ACC1), and hydroxy-methylglutaryl-CoA

reductase (HMGCR) are key enzymes in FA synthesis. SREBP-

driven cholesterol production is the gateway for T-cell blastogenesis

during functional activation (47). Liver X receptor (LXR), a

cholesterol regulatory element, is also demonstrated to be vital in

activation-induced T-cell proliferation (48).
Lipid metabolism in T-cell subsets

T-cell subsets have distinct lipid metabolic operations during

their functional phases. Through various specific inhibitions of lipid

metabolic steps, the differences in naïve, resting, and functional

stages were demonstrated. The inhibition of FA synthesis through

knockout or inhibition of specific enzymes was not found to largely

affect the naïve and resting T cells and their ability to differentiate

(49, 50). However, a significant decline in CD8 T cells was observed

in the ACC1 deletion experiment (49). Apart from de novo

synthesis, CD4 T cells sequester exogenous FA through the

upregulation of their transporters (51). The exogenously available

FA are suggested to upregulate their transporters (including CD36)

and mediators in storage (such FA binding proteins (FABPs))

through activation of peroxisome proliferator-activated receptor-

gamma (PPARg) (14). Among many others, GPR43 and GLP84 are

suggested as additional promising receptors of FA in CD4 cells (52)

However, FA synthesis obviates the dominance of aerobic glycolysis

in metabolic reprogramming in T cells during activation (5, 35, 52).

The exclusive necessity of FA synthesis for CD8 T cells at the same

time as collateral supplementation through the uptake of FA in CD4
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T cells indicates the cell type-specific differential role of lipid

metabolism (35).

Among the various subsets of CD4 T cells, Th1 and Th2 are

predominant. Th17 and Treg cells qualitatively and quantitatively

regulate helper T cells as well as other immune cells’ responses (53).

The variance in immunometabolism of lipids in these subsets of T

cells has been recently reported (6). Most of the helper T-cell

subsets (Th1, Th2, and Th17) operate FA synthesis/sequestration

and largely depend on aerobic glycolysis for their energy demand

(54), while Treg cells have a preference for FA oxidation (6, 53). Th1

cells have the keen requisite for the type and availability of

exogenous FA as compared to Th2 cells (55). The prevalence of

long-chain FA (LCFA) can promote Th1 subset functions, while

polyunsaturated FA (PUFA) can inhibit the production of this

subset-specific cytokine production (56). As the differentiation and

function of Th1 and Th2 subsets are inter-regulated, the role of lipid

metabolism can be sought to have a central role in the fate of the

immune response. It will be noteworthy to mention that this subset

phenotype activation is not irreversible and have a distinct level of

plasticity. Among Th cell subsets, Th17 most profoundly operates

de novo biosynthesis of FA (57). The inflammatory upregulation

through IL1 and IL23 upregulates the FA synthetic machinery in

Th17 (58). A decrease in Th17 cell proportion through

pharmacological inhibition of FA synthesis indicates the fate-

determining role of lipid metabolism (57), nevertheless indicating

the role of the availability and metabolism of lipids in plasticity

among T-cell subsets. Depletion of ACC1 in T cells favors the

upregulation of Foxp3, a Treg-specific transcription factor, even in

Th17 differentiating conditions (10). Moreover, PPAR ligands have

also been shown to modulate the induction of Treg cells (10).

Unlike other T cells, the Treg cells have the functioning of OXPHOS

and FAO (59). The cytosolic FA is channelized to FAO in

mitochondria by carnitine palmitoyl transferase (CPT) 1A

(CPT1A) (60). The suppressive function of Treg cells is fueled by

FAO, the generation of anaplerotic moieties for the TCA cycle, and

the subsequent driving of OXPHOS (10).
Memory T cell and lipid metabolism

After the effector phase of cell life, T cells follow the course of

memory cells. During the transition of effector cells to memory

cells, functional switches are for the second time put into action.

However, the second transition is reversed in the manner (shading

of effector function). The hyperglycolytic phenotype of effector T

cells is halted, and OXPHOS takes over T memory (Tm) cells (35).

The lipid metabolism shifts from the synthesis of FA to their

oxidation. Inhibition of glycolysis and/or FA synthesis in

activated T cells promotes the formation of Tm cells, while the

inhibition of these pathways before the activation signal for T cells

prevents their functional differentiation. The switching off of the

mTOR signal and activation of AMPK-mediated signaling mediate

this transition of cell phases along with metabolic shift (61, 62). The

abundant mitochondrial activity required to meet FAO and

OXPHOS leads to an increase in mitochondrial biomass in Tm

cells. This provides a survival/persistence advantage to the Tm cells
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(35). ACC1 inhibition in activated T cells also favors the formation

of Tm cells (63). ACC1 is also involved in the fate-determining step

during the differentiation of T cells in subsets after the antigenic

encounter (64). It indicates that among many lipid metabolism

enzymes, transporters, and regulators, ACC1 has a varied role

during different phases of T-cell life (63, 64).

Metabolic events and key molecular players involved in

phenotypic activation and effector functions of various subsets of

T cells are listed in Table 1. Lipid metabolism has an indispensable

role in stimulation, activation, differentiation, function, and

memory formation in T cells (38, 42, 54, 63).
Lipid metabolism in T-cell malignancy

Malignancies of T cells have substantial rewiring of metabolism

spanning to glycolysis, glutamine addiction, and reprogrammed

lipid metabolism (65–67). The unique alteration in lipid

metabolism ranging from their de novo biosynthesis, uptake of

free lipid moieties, and accumulation of lipids in specialized

structures (lipid droplets) is commonly observed in paths altered

in cancer cells (17, 68). The alterations in catabolic pathways are

also observed in malignancies (16). These alterations in lipid

metabolic pathways act in a concerted fashion and aid in the

phenotypic characteristics of malignant cells (17, 68). Changes in

lipid metabolic setup in cancer cells are generally sought as

uncontrolled; however, these modulations are well structured

through an array of molecular regulators (35, 69). Strenuous

adjustments in lipid metabolism have numerous gains in

accelerated survival, modulation of survival and death signaling,
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and resistance to chemotherapy and immunotherapy (26, 70, 71).

The contribution of qualitative and quantitative changes in cellular

lipid content especially those of membrane aid in the progression of

a variety of cancers.
Cancer lipid metabolism

For rapidly dividing cells, metabolic alterations are essential to

be acquired to meet the prerequisite for cell growth and cell

division. The alterations in metabolism are also common in

pathways that involve lipids (6, 42, 43). Together with other

biological macromolecules, lipids contribute to the structural as

well as energetics and cellular signaling of cells undergoing

proliferative phases (32). Metabolic alterations are tightly

regulated physiological events in normal cells, while they are

brought about by dysregulated setup owing to genetic variations

in cancer cells (72–75). Several studies demonstrated that malignant

cells harness lipid metabolism to support their rapid proliferation

and uphold invasion and metastasis (3, 4, 65). The benefits of lipid

metabolism in cancer are depicted in Figure 1.

The upregulation of de novo synthesis of FA in cancer cells is

reported by many experimental investigations (76, 77). Targeting

the enzymes of FA synthesis has an inhibitory effect on cancer cells,

indicating their critical role in cancer cell survival (77). The survival

signaling through PI3K/AKT axis favors the upregulated expression

of enzymes involved in FA synthesis (1). Moreover, the activation of

ATP-citrate lyase (ACLY) is also endorsed by PI3K/AKT signaling

(78). The ACLY is the enzyme responsible for the lysis of citrate and

the production of Acetyl CoA, the two-carbon precursor for FA
TABLE 1 Lipid metabolism in functional subsets of T cells.

T-cell
subset Major metabolic events Key molecular players

Naïve T
cell

Majorly rely on OXPHOS and FAO Enzymes of OXPHOS and FAO

Ag-
stimulated
T cells

Aerobic glycolysis, FA synthesis, uptake, and accumulation mTOR, PI3K, c-myc, HIF, GLUTs, FASN, SREBP, and PPARg

CD8+

cytotoxic T
cells

Mainly rely on FA and lipid synthesis FASN, ACC1, HMGCR, and SREBP

CD4+

helper T
cells

FA and lipid synthesis and FA uptake FASN, SREBPs, CD36, FABPs, GPR43, GLP84, and LXR

Th1 Relatively high FA uptake dominates over FA synthesis CD36, FABPs, FASN, and LCFA favor Th1 activation

Th2 Relatively low FA uptake, however, dominates over FA synthesis CD36, FABPs, FASN, and PUFA favor Th2 activation

Th17 Profound FA synthesis and aerobic glycolysis FASN, ACC1, PDHK, LXR, and 2-HG favor Th17 activation

Regulatory
T cells
(Treg)

Exogenous FA uptake dominates over FA synthesis, OXPHOS, and
FAO

Foxp3, FABP5, CPT1, downregulation of ACC1, SREBPs, and SCAP

Memory T
(Tm) cells

OXPHOS and FAO, FA uptake, and downregulation of FA synthesis
Enzymes of OXPHOS and FAO, FABP4/5, AMPK, and downregulation of
ACC1
OXPHOS, oxidative phosphorylation; FAO, fatty acid oxidation; FA, fatty acid.
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synthesis (1, 78). The pool of cellular Acetyl CoA is acetate

generated from glucose, glutamine, and other carbon sources

(79). The cytosolic acetate is ligated with CoA by acetyl-CoA

synthetase (77, 80). Subsequently, the conversion of acetyl CoA

into malonyl CoA is favored by the activity of ACC1/2. The

transcriptional upregulation of ACC1/2, ACSS, and ACLY is

carried out by SREBPs (81–83). Many cancers have SREBP

upregulation favoring the lipogenesis enzymes expression in

malignant cells (83). The upregulation of ACC1/2, ACSS, and

ACLY has been observed in many cancer types (84) Interestingly,

ACLY is also involved in nuclear dynamics by providing acetyl CoA

for histone acetylation after their nuclear translocation (85). The

FASN catalyzes the condensation of small precursor moieties into

16-carbon long fatty acid palmitate (86, 87). The fatty acid

molecules synthesized by FASN activity provide a significant

fraction of cellular lipid content (87). The FA further undergoes

conversions including elongation and desaturation. The palmitate

serves as the precursor for cellular non-essential FA content and is

converted by FA desaturases (FADS), stearoyl-CoA desaturases

(SCD), and FA elongation (65, 88, 89). SUMOylation of FASN

can prevent its degradation (88). Moreover, the upregulation of

HDAC3 maintains the deacetylated form of FASN in hepatic cancer

cells (34, 72, 87). Otherwise, acetylation of FASN by KAT8 (lysine

acetyl transferase 8) makes it susceptible to ubiquitin ligation and

degradation (90). Proteasomal degradation of FASN is also

prevented by a mutation in ubiquitin ligase speckle-type POZ

protein in prostate cancer cells (87, 91).
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Consecutively, the condensation of acetyl CoA generates 3-

hydroxy-3-methylglutaryl–CoA (HMG-CoA) (92). The enzyme

HMGCR catalyzes the conversion of HMG-CoA into mevalonate,

a rate-limiting step in cholesterol synthesis (93). The upregulated

expression of HMGCR is observed in several cancer cell types. The

transcriptional regulator of many lipogenic enzymes, SREBP, also

elevates the expression of HMGCR (92, 93). The subsequent

production of isoprenoid farnesyl pyrophosphate (FPP) serves as

a precursor for cholesterol. The squalene generated from FPP is

then converted into cholesterol by the enzyme squalene

monooxygenase (SM) (94). This enzyme is also under the

transcriptional regulation of SREBP and is sought to be a

metabolic target for the therapy of cancer (46). The inhibition of

either HMGCR or SM has shown promise in anticancer therapy by

restrictive cholesterol synthesis (19). The inhibition of HMGCR was

also reported to adjunct the activity of immune-checkpoint

inhibition therapy by anti-PD1 antibodies (43). These pieces of

evidence collectively indicate the crucial role of cholesterol synthesis

in not only providing resources for cell growth and division but also

aiding in escape from cell death and antitumor immune response.

Various mechanisms are reported to be upregulated for lipid

uptake in cancer cells (87). Majorly, the uptake of free FA is carried

out by CD36 (fatty acid translocase) or fatty acid transport proteins

(FATPs) (45, 87). Low-density lipoprotein (LDL) known as LDL

receptor is found to be upregulated in various cancer types and

assist in lipid uptake through endocytosis (21). Moreover, the

upregulation of FABPs also favors the uptake of FA and their
FIGURE 1

Lipid metabolism and cancer. Lipid metabolism contributes to cancer cell physiology and aggressiveness through modulation of cell survival and
death. Altered lipid metabolism also affects angiogenesis and metastasis. Distinctive metabolic setup of lipid aids in resistance to chemotherapy and
antitumor immune response. All these benefits are in addition to energy storage and structural contribution for rapidly dividing cells.
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transport (87) and has been reported to have high expression in

different cancer cells (50, 87). The balance of FA synthesis and

uptake is keenly regulated, as it modulates the relative abundance of

saturated and unsaturated FA. The degree of saturation and their

relative abundance in turn alter the susceptibility toward reactive

oxygen species (ROS)-mediated peroxidation of lipids. FAs are

converted to triglycerides and then stored in the form of lipid

droplets (LDs) (4). The bilateral traffic of lipids in and out of an LD

is dependent on the abundance of lipids, availability of oxygen, and

activity of enzymes including DGAT and PLIN (95). Many of these

lipid droplets are found upregulated in cancer cells (3).

Apart from building blocks, accumulated lipids provide

precursors for signaling and regulator molecules (96) through the

activity of various lipases (phospholipases for phospholipids of

membrane) (84, 96) Arachidonic acids, lysophosphatidic acid,

and diacylglycerol are a few among many such bioactive

molecules generated from the breakdown of lipids and regulate

cellular fate (97). Many of these activate the PI3K and RAS signaling

axes and favor neoplastic transformations (98). They also favor

cancer cell survival, metastasis, drug resistance, and stemness of

cancer cells (3, 32). The transport of FA from the cytosol to the

inner core of mitochondria is accomplished by CPT1 and CPT2,

respectively found in the outer and inner membranes (99) (100).
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The total lipid pool of cancer cells is contributed by de novo

biosynthesis and uptake of lipids from cellular exteriors and is

stored mainly in the form of lipid droplets (Figure 2). Lipid

metabolism is integrated with the metabolism of other nutrient

sources not only through sharing but also through replenishing

intermediates conditionally (101).
Alterations in lipid metabolism in
T-cell cancer

The modulation of lipid metabolism in T cell-derived

malignancies extends to the biosynthesis of lipids through the

upregulation of FASN and cholesterol-producing machinery. The

upregulation of transcriptional regulators, their mechanistic role,

and connections with other metabolic arms favor T-cell cancer in

their progression. Accumulation and storage of lipids in droplets

and subsequent oxidation of lipids in T-cell cancer have been shown

to aid in the progression of cancer cells. Dynamic and intervened

connection of lipid metabolism with other metabolic pathways and

tumor cell survival is linked in hematological malignancies.

Alterations in components of lipid metabolism in T-cell

malignancies are illustrated in Figure 3.
FIGURE 2

Setup of lipid metabolism in malignant cells. Lipid metabolic pathways have diverse wings of de novo biosynthesis, elevated uptake, and storage in
lipid droplets. The stored lipid serves as energy reserve during robust demand as well as confers protection from induction of cell death.
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Lipid biosynthesis in T-cell cancer

Malignancies of T-cell origin, too, have a high demand for

biosynthetic material, and hence, heightened synthetic machinery

for precursor molecules is upregulated. Few key enzymes catalyzing

the steps of biosynthetic pathways for lipids are found to be

upregulated in lymphoma cells including those of T-cell origin.

The high cell proliferative ability of lymphoma cells correlates with

upregulated expression of FASN (16, 102). Upregulation of FASN

in extra-nodal nasal NK/T-cell lymphoma cells was found to

correlate with their survival adaptation (103). The upregulation of

FASN in T-cell acute lymphoblastic leukemia (T-ALL) patient-

derived cancer cells correlates with poor prognosis and drug

susceptibility (104). With a murine model of T-cell lymphoma,

FASN has been demonstrated to be a targetable enzyme that

weakens the chemoresistant amplitude (13, 105). The expression

of ACSS2 was also suggested to support the survival of T-cell

lymphoma by maintaining the osmotic tolerance of transformed

cells (106). Moreover, the SREBP1 level in transplantable T-cell

lymphoma was suggested to provide an advantage in cell survival

(106). The inhibition of SREBP in cutaneous T-cell lymphoma
Frontiers in Oncology 07
(CTCL) reduced the FASN expression partially (31). It suggests that

FASN has an additional regulatory arrangement, at least in T-

cell malignancies.

In anaplastic large-cell lymphoma, nucleophosmin-anaplastic

lymphoma kinase phosphorylates the ACLY (107). The

phosphorylation statuses of Y682 tyrosine residue of ACLY serve

as a control switch for the synthesis of lipid and FAO. Moreover, the

ACLY activity was also demonstrated to adjust oncogenesis in

anaplastic large-cell lymphoma (107).

The cholesterol synthesis pathway is also found to be modulated

in many lymphoma cell types. The proliferative capacity of T-cell

lymphoma cells correlates with their HMGR activity and potential

to synthesize cholesterol and its esterification (108). Interestingly,

the accumulation of intermediary metabolite of the cholesterol

synthesis pathway, i.e., squalene, was reported in Jurkat cells

(109). Moreover, oncogenic stimulus mediated by wnt signaling

triggers the generation of T-cell lymphoma through the

upregulation of cholesterol synthesis (110). The syntheses of fatty

acid and lipid molecules in cells of T-cell cancer not only offer

superior survival and proliferative ability but also play a critical role

in oncogenic transformation (Figure 3).
FIGURE 3

Snapshot of lipid metabolic alterations and their molecular players in T-cell malignancies. Rewiring in various dimensions of lipid metabolisms is
reported in clinical and preclinical studies with T-cell malignancies. Patient-derived cells (AML, ATL, CML, CTL, ETP-ALL, and T-LBL) or cell lines
(Jurkat, EL-4, DL, HUT-78, K562, and MOLM-13) of T-cell cancers exhibit modulation in lipid metabolic players as well as their regulators.
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Lipid sequestration in
T-cell malignancies

Uptake of lipid moieties from exterior their exterior is shown to

affect the cancer cell physiology and assist in upholding stemness in

a variety of malignancies. Moreover, the import of FA into cytosol

has a critical impact on the malignant transformation of cells (87,

111). Research investigations have shown that lipid uptake is

upregulated in lymphoma cells (96). However, most of these

research investigations focused to investigate lipid uptake utilizing

cancer cells or patient-derived samples of B-cell origin (102).

Increased expression of FAT on lymphoma cells is indicated to be

a good prognostic marker (16). LDLR also correlates with adverse

outcomes in leukemia cells (112).

T-cell malignancies have been reported to modulate angiogenesis

through high IL-17 expression (67). Moreover, IL-17 can mediate the

expression of FABP, which coordinates with CD36 in the uptake of

FA (113). IL-17 triggers the STAT3 signaling for transcriptional

upregulation of FABP (113, 114). STAT3 favors the expression of

CD36 in lymphoma cells (114). Nevertheless, mutational activation

of STAT3 is a frequent genotype in malignant cells of T-cell origin

(66). The enhanced expression or activities of regulators of

transporters involved in fat uptake strongly indicates a high
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potential for lipid uptake in T-cell cancer. However, this notion

warrants experimental validation (Figure 4).

T-cell cancer and lipid droplets

T-cell malignancies are also observed to have a significant

amount of lipid droplets (115). The quantitative and qualitative

nature of lipid droplets depends on the form of cells as well as the

exogenous source of lipids (18). Leukemic cells show an elevated

level of lipid droplets when they were cultured in a medium

containing an excessive amount of fatty acid or expose to a fat-

rich diet (18, 116). Interestingly, leukemic cells were reported to

force neighboring fat cells to provide precursors (free fatty acid) for

their lipid droplet biosynthesis (117). Regulation of mediators of

lipid droplet formation also plays an important role in the survival

of cancer cells (118). KLF2 is one such negative regulator of FABP

(119). In leukemia T cells, KLF2 is found to weaken the survival of

cancer cells (120). KLF2 affects the proliferative ability of cancer

cells by modulating the FABP5/PPARg axis (118). Moreover, the

therapeutic intervention targeting survival pathways of T-cell acute

lymphoblastic leukemia also affects lipid droplet frequency (121).

Collectively, these hints indicate the intriguing role of lipid droplets

in the physiology of cancer cells in T-cell malignancies.
FIGURE 4

Regulators and benefits of lipogenesis in lymphoma/leukemia. Lipid synthesis and accumulation are regulated by survival signals in leukemia and
lymphoma cells. Elevated lipid levels have advantages for cancer cells.
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Fatty acid oxidation in T-cell cancer

Fatty acid oxidation is shown to support the survival in stress

conditions for tumor cells including those of blood cell origin (23,

30). The alteration in fat metabolism and dynamic balance between

the synthesis and oxidation of fat molecules during dynamic settings

is crucial for functionally differentiating as well as transforming

malignant cells (30, 122). Wong et al. (2017) have reviewed the

linkage of FAO with cancer formation in lymphocytes (123). In

lymphoma cells, rewired fat metabolism was confirmed

indispensable through targeted inhibition experiments. The

inhibition of CPT1a caused cell growth arrest and induction of

apoptosis along with mitochondrial damage in leukemia cells (70).

Moreover, the leukemia cells were chemosensitized by a CPT1a

inhibitor (124). Nevertheless, another FAO enzyme hydroxyacyl-

CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase

(HADH) is a prognostic marker in hematological malignancies

(125). Abnormal expression of HADH correlates with oncogenic

transformation in various cell types including lymphoma (126).

Targeting of HADH enzymes causes the arrest of cells in the G0

phase and chemo-sensitization toward doxorubicin (122). FAO

breaks the stored fat and provides small carbon molecules to

sustain the metabolic pathways in nutrient-starved conditions

along with small lipid signaling molecules favoring aggressive

cellular phenotype (77, 125). FAO is also suggested to provide

acetyl CoA for the acetylation. One of the acetylation regulators is

SIRT1 (87). Expression of SIRT1 in leukemia cell lines correlates

with the degree of FAO (127). SIRT1 mediates the restructuring of

lipid metabolism and elevates FAO levels in chemoresistant

leukemia cells (127). Moreover, SIRT1 drives lymphomagenesis

and maintains leukemia stem cell potential by modulating lipid

metabolism (128). Induction of cell death after inhibition of SIRT1

(129) suggests the obligatory role of upholding FAO in T-cell

leukemia cells. In chemoresistant leukemic cells, the necessity of

FAO surpasses the requirement of cancer stem cells (130). The

obligatory requirement of FAO in transformation, aggressive

phenotype evolution, drug resistance, and functional regulation of

enzymes along with fueling the synthesis precursors indicates its

central role in T-cell malignancies.
Concerted role of lipid metabolism in
T-cell malignancy

The modulations of lipid metabolism in malignancies of T cells

have an extensive impact on cellular conduct (13, 25, 70). The lipid

metabolic rewiring, under the control of transcription factors and

other regulators, affects the survival signaling and induction of

death through the altered composition of lipids in T-cell cancer

(23). Moreover, the structural impact due to the spatial abundance

of specific lipid moieties implies the manifestation of

chemoresistance (26, 130). The modulation of lipid metabolic

wiring also affects their susceptibility toward antitumor immune

response and potential to cause immunosuppression. Benefits of

revamped lipid metabolism to T-cell cancer act through various
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dimensions. These means include integration of the regulators, their

spatial arrangement, modulated expression profile, and impacting

vulnerability to the action of death-inducing stimulants.
Transcriptional regulation of
metabolic players

Malignant cells of T lymphocyte origin also display a strenuous

control of molecular troupes engaged in transcriptional regulation

of lipid metabolism (13, 105). SREBPs are known as master

regulators of lipid metabolism in normal cells as well as cancer

cells. T-cell cancer has been reported to modulate cell physiology

through an elevated level of SREBPs (31). The level of SREBP

expression correlates with mTOR in a variety of leukemic cancer

cells (31). SREBP favors the elevated expression of FASN in T-cell

lymphoma (131). The transcriptional expression of FADS2 is also

upregulated in malignant cells by SREBP (69). The expression of

FADS2 is sought to be the provider of sapienate from palmitate

(132). A higher level of sapienate provides the plasticity and makes

cancer cells able to dodge the therapeutic inhibition of other key

enzymes in lipid metabolism, such as SCD (69, 133). The “master

transcriptional factors” also interplay with SREBPs and promote

tumor progression through the modulation of lipid metabolism

(134). The well-established regulator of cancer cell physiology, HIF-

1a, is also linked with lipid metabolism (135, 136). The HIF-1a
stabilization encourages fatty acid uptake and their accumulation in

lipid droplets (135). T-cell malignancies also have heightened

expression levels of HIF-1a (131, 137). HIF-1a induces the level

of FABP and adipophilin (135). Adipophilin, a type of perilipin, is

essentially required to initiate the formation of lipid droplets (17).

The enhanced uptake driven by HIF-1a stabilization in cancer cells

protects them from ROS-induced cell death (135). SREBP and HIF

are linked with their activation through mTOR. The SREBP is also

sought to compensate for the lipid requirement in the absence of

HIF-1a stabilization through de novo synthesis of lipid moieties

(135). HIF-1a-mediated proliferation utilizes a NOTCH1-mediated

sequence of events in T-cell acute lymphoblastic leukemia (137).

NOTCH1 also associates with lipid metabolism in T-ALL cells’

sensitivity toward therapeutic targeting (138). Interestingly, SREBP

and HIF-1a are also essential for normal T cells to control the

metabolic programming of effector T cells during the onset of the

adaptive immune response (139). Lipid metabolism follows the

inimitable course in the normal and different forms of cancer cells.

The number of investigations on lipid metabolism in T-cell

malignancies is still growing, and the broad spectrum of its

regulation is being uncovered (13, 22).
Lipid as a structural support

Lipid is the major constituent of biological membranes deciding

the boundaries of cells and the organelles within. The varying

composition of cellular lipid content as well as those of

membrane influence cellular physiology and imply pathological
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consequences (3, 140). The rapidly dividing cells in malignant

disorders need membranes as essential structural components

(141). These varieties of lipid molecules have their structural

advantages in providing physical strength and a distinctive

assemblage of receptors and adhesion molecules (89, 141). The

strength provides survival advantages to cancer cells to tolerate

dynamic but otherwise hostile tumor microenvironments for other

infiltrating cells (89). The assortment of receptors and unique

membrane proteins in lipid rafts triggers the critical signaling

events favoring cancer progression (68). This structural

component of the membrane, lipid rafts, is targetable for the

therapy of cancer (68, 141).

The structural assemblage of lipid rafts also has a critical role in

maintaining cellular strength in T-cell leukemia (9). Structural

disruption of lipid rafts in T-cell cancer cell lines leads to the

induction of apoptosis through the depletion of survival signaling

(9). These pieces of evidence indicate that lipid rafts are structurally

holding the components of PI3K/AKT pathways. Structural

compartmentalization through lipid rafts also affects the

regulation of apoptotic cell deaths. The translocation of death

receptors in leukemia cells by ether lipids is reported to mediate

the induction of cell death (142). The approaches enforcing the

localization of death receptors in lipid rafts have used lipid or lipid-

derivative molecules (9, 142). This collectively indicates that the

structural assemblage of lipid rafts is intrinsically programmed to

prevent the recruitment and co-expression of components of cell

death-inducing signals.

The structural integrity of lipid rafts is contributed by sphingolipids

and cholesterols, regulated by SREBPs (29, 143). The cholesterol levels

of cells as well as circulation correlate with the frequency of lipid rafts

and caveolae in cancer cells (144). The contribution of cholesterol in

strengthening the dynamic structures in the plasma membrane has

been reported in T-cell cancer as well (131). The declined expression of

SREBP along with increased membrane fragility of lymphoma of T

cells indicates the role of cholesterol in the maintenance of physical

strength. The altered lipid metabolism regulation not only affects

tolerance to osmotic disturbances but also affects their resistance to

the activity of anticancer drugs like cisplatin in T-cell lymphoma (105,

131). Cholesterol is known for conferring rigidity to the membrane of

cells (145). The abundance of lipid rafts along with the level of

cholesterol and other lipid moieties entopically retain survival and

death regulatory protein molecules and adjust their function (9, 146).

The retention of proteins and other signaling molecules in lipid rafts

contributes to sustained and enhanced survival signals along with

dynamic changes leading to the onset of metastasis (140, 144). The

dynamic structural nature of lipid rafts serves as an essential

determinant for migratory potential and invasive behavior of

leukemia cells (140, 147).

Therapy resistance is also governed, at least partially, by the

composition of lipids in the membrane of cancer cells (140, 141,

148). The membrane rich in cholesterol and with a low level of

oxidizable fatty acids is observed in drug-resistant cancer cells (25,

148). The structural variation in the membrane due to altered lipid

levels is also suggested to affect the susceptibility toward immune

cell-mediated destruction of cancer cells (25). Depleting the

cholesterol-synthesizing signaling protein has been shown to
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improve the immunotherapy response in cancers (149). The

lower level of cholesterol improves the recognition of tumor cells

by immune cells (25, 149). Elevated phospholipids, cholesterol, and

sphingolipids in the membrane of cancer cells can blunt the

antitumor immune response (25, 149).
Lipid as a signaling moiety

Lipid-mediated signaling governs essential functions in

transformed cells of T-cell origin (25). These bioactive lipid

molecules involved in cellular signaling are commonly referred to

as “signaling lipids” (24). The unique role of these signaling lipids is

stated in tumorigenesis as well as in invasion and metastasis (8, 24,

150). Lipid-derived signaling molecules correlate with the outcome

of the malignancies (8). Among many, broadly eicosanoids,

phosphoinositides, and sphingolipids are major small signaling

lipids that have a substantial role to play in cancer cell physiology

(24). Interestingly, FABPs mediate signaling events along with their

role in conveying fat molecules toward lipid droplets (24, 118).

Moreover, FABPs regulate the epigenetic alteration in the DNA of

leukemia cells (151). FABP5 is sought to supply ligands for PPARb/
d and mediate the cancer progression (118).

Cholesterol has a differential impact on cellular signaling by

assisting the lipid raft assemblage. Cholesterol in lipid rafts endorses

receptor and receptor-complex aggregation (152). Lipid rafts

mediate the signaling, through encompassed receptors, favoring

the progression and evolution of malignant cells (9, 152). Moreover,

the metabolic conversion of cholesterol generates oxysterol among

many other bioactive compounds. Oxysterol is an activator of the

liver X receptor, known to affect the function and metabolism in T

cell-derived malignancies (153). Nevertheless, oxysterol-binding

protein (OSBP)-related proteins (ORPs) favor the leukemogenesis

of T cells in HTLV infection-induced carcinogenesis (154).

Interestingly, OSBPs and OSBP-like proteins promote cancer cell

survival through RAS signaling (155). Members of OSBPs are

overexpressed in T-ALL cells (156). Although various reports

indicate the tumor growth-promoting impact of oxysterols, it is

worth mentioning that studies also demonstrated their tumor-

inhibitory effects (157).

Cholesterol also serves as a precursor for steroid hormones

including estrogen. Estrogen affects various human health-related

conditions and is known to favor a variety of cancer types (158).

Apart from conventional cancers of hormone-responsive tissues,

lymphoma of T-cell origin also expresses receptors of gonadal

steroidal hormones (159). Experimental pieces of evidence

indicate that estrogen upkeeps the proliferation of murine T-cell

lymphoma and reduces apoptotic cell death (159, 160).
Lipid metabolism and prevention of
cell death in T-cell malignancies

Metabolic acquaintances with various forms of cell dying

including programmed cell death are long-established (73, 74,
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133). The connections between lipid metabolism and their

metabolites are also emerging as vital players in influencing cell

death (161). Various lipid molecules, ceramide, and cardiolipin, the

most common ones, are implicated in the regulation of

mitochondria involving cell death in a Bcl2-regulated manner

(162). Ceramide synthesis is elevated in T-ALL cells (163).

Ceramide also confers protective effects against the induction of

cell death by Bcl2 inhibitors (163). Interestingly, ceramide synthesis

correlates with efficient TCR signal transduction and T-cell

activation (164).

Another membrane lipid, cardiolipin, prevalent in the inner

leaflet of the inner mitochondrial membrane flips to the outer leaflet

during induction of apoptotic cell death after ROS detection (165).

These transitions of cardiolipin occur even before changes known

for assaying cell death including the detection of phosphatidylserine

and DNA fragmentation (73, 74, 165). Upregulated levels of

cardiolipins have been reported in types of cancer including

leukemia (166, 167). Cardiolipin induction also favors the

promotion of cancer through modulating cell death of T-cell

cancer (166). Elevated cardiolipin aids in withstanding

mitochondrial damage by interacting and facilitating the

mitochondrial translocation of the BCR-ABL (167).

The elevated level of CPT1 and CPT2 observed in leukemia cells

(168) correlates with the prevention of cell death (60). Elevated

levels of CPT in leukemia cells were also found to be targetable

through specific inhibitors (70). The pathways and intermediates of

FAS also influence cell death (13, 87). The elevated level of FASN

correlates with a low level of apoptosis in transplantable murine T-

cell lymphoma (13). The inhibition of FASN was found to alter the

expression profile of many apoptotic regulators such as Bcl2, p53,

caspase, and HSP70 (13).

The high accumulation of cholesterol synthesis pathway

intermediate has a protective effect against oxidative cell death in

T-ALL cells (109). ACAT-1 triggers the esterification of cholesterol

and promotes its storage or integration in the membrane.

Cholesterol esterification correlates with the suppressed level of

apoptosis in cancer cells (169). Various cancer cells including

leukemia cells have an elevated level of ACAT-1 (170).

A concerted, linked, and independent role of lipid metabolites,

enzymes, pathways, and their regulators can be suggested in the

modulation of cell death. The CPT1 activity maneuvers the strength

of FAO along with impacting apoptotic cell death (23). The studies

indicate that specific inhibition of FASN induces apoptotic cell

death without affecting CPT1 activity (13). These two contrasting

pathways (FAS and FAO) operate exclusively; however, they can be

suggested to avert cell death in distinct circumstances.
Immunosuppression and
immune escape

Metabolic links with tumor-induced immunosuppression are

well established in T-cell malignancies (8). Stratified analysis

correlates lipid metabolism-associated genes with the prognosis of

leukemia (8). Moreover, immune response-related genes were
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signature genes (8). These lipid metabolism risk signature genes

largely affect the outcome of immunotherapy (8). A unique feature

of the tumor microenvironment is the accumulation of specific

lipids due to uniquely rewired lipid metabolism (27). Owing to the

high glycolytic flux of tumor cells, the nutritional composition of

the tumor microenvironment is largely governed by malignant cells

(72). The fractional enrichment of long-chain fatty acid in the

microenvironment impairs infiltrating cytotoxic T cells (27).

Tumor cells drive the unavailability of preferred nutrients in the

microenvironment for infiltrating immune cells. This leads to the

uptake of low-density lipids, with their peroxidation causing

diminished antitumor immune response (171). The cholesterol-

rich tumor microenvironment has adverse consequences on

antitumor immune response (153). Cholesterol metabolites also

negatively affect the prevalence of cytotoxic T cells in the tumor

microenvironment (143). The transcriptional regulation of 27-

hydroxycholesterol is epigenetically governed by ZMYND8.

Various studies have characterized the link of ZMYND8 with

tumor growth promotion in leukemia cells (172) (11). The link

between tumor-induced suppression of cytotoxic T cells also

outreaches to the activity of Treg cells through modulation of

lipid metabolism (143). Moreover, suppression of cytotoxic T

cells decreases IFN levels favoring tumor growth promotion by

macrophages, also known as tumor-associated macrophages (173).

Such maintenance of tumor-associated macrophages requires

SREBP-1-governed lipid metabolism (72, 173). Impairment of

macrophages’ antitumor activity and promotion of growth by

tumor-associated macrophages are well established in the

lymphoma of T-cell origin (174, 175). The inhibition of SREBP

makes leukemia cells susceptible to anti-PD-1 immunotherapy

(176). Moreover, inhibition of SREBP1 negatively affects the

tumor growth-promoting abi l i ty of tumor-associated

macrophages (173). Therefore, it can be concluded that SREBP is,

if not major, at least one of the key contributors to

immunosuppression observed in cancers of T cells.

The level of eicosanoid lipids, like prostaglandins, is altered in

leukemic cells (177). Lipids of eicosanoids have immunomodulatory

consequences (177). The prostaglandin E2 promotes the tumor

progression of T-acute lymphoblastic leukemia by affecting the

cAMP signaling pathway (178). Prostaglandins have contrasting

roles in the immune response. Prostaglandin E2 prevents the

activation of helper T cells by inhibiting the signal transducers of

T-cell receptor signaling (179). Production of eicosanoids

(prostaglandins and leukotrienes) is governed by cyclooxygenase

(COX) enzymes. A variety of hematological malignancies of T cells

have elevated levels of COX enzymes (180, 181) and are

therapeutically targetable (181). The inhibition of COX enzymes in

T-cell lymphoma decreases the level of lactate (181). Lactic acidosis of

the tumor microenvironment is detrimental to the antitumor

immune response of macrophages and T cells (182). The level of

lactate has been linked with sustained lipid metabolism in cancer cells

(183). The lactate level in the tumor microenvironment of T-cell

lymphoma correlates with the activation of M2-type tumor-

associated macrophages (175).
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The activity of FASN in cancer cells has staid acquaintances

with the regulation of antitumor immune response. The elevated

level of FASN, observed in T-cell tumors, correlated with the

decreased level of antitumor response by tumor-infiltrating

macrophages (184). Moreover, inhibition of FASN through small

molecule inhibitors withdraws the suppression of hematopoietic

differentiation of bone marrow cells (184). This indicates the

essentiality of FASN modulating antitumor immune response in

hematological malignancies.

Lipid metabolism has a diversified impact on cancer physiology

and cancer-immune cross talk. The varied arms of lipid

metabolism, including lipid uptake and synthesis of fatty acids

and sterols, along with lipid derivatives not only modulate the

tumor cell survival potential but also affect their immune sensitivity

and antitumor immune response. The lipid metabolites affect the

hematological differentiation, tumor tissue infiltration, and

subsequent antitumor activation of immune cells. Moreover, the

intervened disposition of lipid metabolism regulates the level of

other immunosuppressive metabolites, such as lactate, in the tumor

microenvironment. Many of these pathways and metabolites

associated with lipid metabolism are found altered in

malignancies originating from T cells and modulate the

immune response.
Lipid metabolism and
chemoresistance interface in
T-cell cancer

Chemoresistance is a leading obstacle in the clinical

management of malignant disorders (74). Malignancies

originating from T cells are also no exemption from this (26,

185). Moreover, the onset of chemoresistance correlates with

metabolic alterations in T-cell cancer (130, 185, 186). Although a

majority of investigations aiming to link metabolism are mainly

focused on glycolytic metabolism (187, 188), the role of altered lipid

metabolism in the onset and maintenance of chemoresistance is

gaining attention (130, 186). Hyperglycoytic phenotype has been

linked with aggressive cancer cells (189). A major product of

glycolytic metabolism, lactate affects both lipid metabolism and

chemoresistance (74, 183). Oxidative metabolism of fat contributes

to the maintenance of chemoresistance along with conserving the

stem cell ness (186). Leukemia cells resistant to chemotherapy

preferentially rely on their oxidative metabolism of fatty acids

(130). Nevertheless, upregulated CD36 is required for these

chemoresistance leukemic cells (130). CD36 mediates the IL-6-

driven resistance against standard chemotherapeutic agents

through elevated fatty acid uptake in leukemia cells (190). CD36

and autophagic events are also inversely regulated (191).

Suppressed autophagy is linked with chemoresistance in T-ALL

cells (192). CD36-mediated lipid accumulation provides ATP

through FAO, which energizes the machinery responsible for

manifesting resistance in leukemia cells (130).

Sphingolipids are also linked with the chemoresistance of

cancer cells including T-ALL cells (20, 191). Augmented levels of
Frontiers in Oncology 12
ceramide synthase and its product ceramide have been confirmed to

elevate therapy resistance in T-ALL cells (163, 173). Ceramide

synthase provides ceramide, a precursor of sphingolipids.

Ceramide level correlates with the expression of ABCB1 (193).

Daunorubicin-resistant cells of T-cell leukemia display elevated

levels of ABCB1 expression (194). Obstructing the assembly of

Fas and Fas-associated protein with the death domain in T-cell

leukemia by ceramide synthase is suggested as one of the

mechanisms preventing the induction of cell death by therapeutic

drugs (163).

Another enzyme of lipid metabolism, sphingosine kinase, also

has an implementation in chemoresistance (20). Sphingosine

kinase-1 confers resistance to standard chemotherapeutic drugs in

cancer cells of hematopoietic origin (195) and has been suggested as

a putative target for the therapy of lymphocytic leukemia (196).

Moreover, sphingosine kinase contributes to tumor cell

aggressiveness by aiding in the ceramide pathway in leukemia

cells (197). Sphingosine kinase level correlates with the unfolded

protein response in T-ALL cells (196). The unfolded protein

response contributes to the rapid progression of the disease as

well as aids in chemoresistance in leukemic cells (198). The

regulatory connection of unfolded protein response ranges to

other arms of lipid metabolism such as cholesterol and fatty acid

synthesis and oxidation (199). Cholesterol can induce unfolded

protein response leading to phenotypic alterations (200). An

enzyme hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1),

involved in cholesterol synthesis, modulates the unfolded protein

response in leukemia cells (201). Nevertheless, high cholesterol

levels are also connected to resistance to chemotherapy (202).

Elevation in cholesterol level, through either sequestration or

biosynthesis, is suggested as a means to protect leukemia cells

from chemotherapeutic drug-induced cell death (203). Dong et al.

(2010) indicated the involvement of cholesterol biosynthesis with

chemoresistance in T-ALL cells against doxorubicin using stable

isotope labeling by amino acids in cell culture (SILAC) approach

(204). Supplementation of cholesterol in culture media had a

salvage effect on drug-induced death in Jurkat cells (204).

Moreover, the level of membrane cholesterol regulates the activity

of ABC protein and the manifestation of chemoresistance (205).

The high level of cholesterol and sphingolipids in lipid rafts of T-

ALL cells contributes to resistance against therapy (145).

Interestingly, lipid rafts in lymphoma cells are demonstrated to

retain the constitutively expressed apoptotic protease-activating

factor-1 (APAF1) to prevent cytochrome c-mediated cell death in

response to chemotherapeutic drugs. Lipid rafts also contribute to

the activity of FASN in cancer cells (12). Inhibiting the FASN

through RNA silencing as well as chemical inhibitor reverses the

resistance of cancer cells against Herceptin (12). Pharmacological

inhibition of FASN through orlistat modulated the tumor

microenvironment and reversed the drug resistance in a murine

T-cell lymphoma (105). FAO pathways are also suggested to affect

the sensitivity of cancer cells toward the action of therapeutic drugs.

In leukemia cells, the resistant populations have a high oxidative

metabolic rate when compared with the susceptible population of

cells (130). FAO is suggested to provide the required ATP to drive

survival when other sources are blocked therapeutically (22).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1122789
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mehta et al. 10.3389/fonc.2023.1122789
The varied dimensions of lipid metabolism support the survival

of malignant cells of T cells by playing their energy source,

regulating the function of drug exporters, signaling cascade, and

disrupting the assembly of death inducers. Their contribution to the

onset of chemoresistance underlies activating the survival signals

and providing nutrients, and energy and fueling the molecular

pumps to expel the drug molecules. Targeting the constituents of

lipid metabolism has chemosensitizing and therapeutic

consequences on T-cell malignancies. This can be explored as an

adjuvant strategy in the clinical management of T-cell malignancies.
Lipid metabolism: a novel therapeutic
target for T-cell malignancy

Therapeutic targeting of cancer metabolism has clinical

relevance (206). The successful attempt of targeting metabolism

in T-cell malignancies has been carried out in various investigations

(29, 131, 207). Targeting lipid metabolism in cancers of T-cells has

demonstrated promising results (13, 22, 105, 208). Moreover,

modulation of lipid metabolism or their regulators is found to

modulate an effective therapeutic intervention against T-cell

malignancies (131). Targeting lipid metabolism has a direct

cytotoxic effect on cancer cells as well as an adjuvant effect

through potentiating the effect of chemotherapeutic drugs (130,

208). Nevertheless, the consequences of targeting lipids include

improved immunotherapy-mediated destruction of leukemic cells

(175, 208).

In a murine transplantable T-cell lymphoma, pharmacological

inhibition of FASN has a direct inhibitory effect on the survival of

tumor cells (13). The augmented level of the pro-apoptotic molecule

such as p53, and caspase and diminished level of anti-apoptotic

Bcl2, HSP70 were observed in lymphoma cells of T-cell origin

exposed to orlistat, a FASN inhibitor (13). FASN inhibition also has

a chemosensitizing effect in T-cell cancer. Modulated tumor

microenvironment in response to FASN inhibition along with the

reversal of multidrug resistance phenotype was linked with

decreased expression of ABC proteins (105). Augmented

differentiation and antitumor activation of macrophages indicate

decreased immunosuppression in the tumor-bearing host of a T-cell

lymphoma treated with a FASN inhibitor (184). Downregulated

expression of PD-L1 on human leukemic T cells by orlistat can be

linked with their declined immunosuppressive ability after FASN

inhibition (15). Interfering FASN expression by either RNAi or

EGCG alleviates the effectiveness of differentiation therapy in

leukemia (209). Various other plant-derived chemicals have the

potential to inhibit leukemic cell lines (210). Phytochemicals can

suppress FASN leukemic cells. Ginger extract, gallic acid, cerulenin,

and ginkgolic acids have demonstrated promising success in

inhibiting leukemia cells by diminishing the FASN activity (104,

211, 212).

Many investigations suggest CPT1A as a therapeutic target in

malignant disorders (70, 168, 213). CPT1A is responsible for fueling

FAO through translocating cytoplasmic fatty acid to mitochondria

(70, 213, 214), thus aiding in the dynamic and robust energy
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requirement of malignant cells (213). One CPT1A inhibitor, (R)-

N-(tetradecyl carbamoyl)-amino carnitine (ST1326), inhibits the

occurrence of lymphoma (28) and leukemia (70). The inhibition of

CPT1A and associated FAO in leukemia cells by etomoxir or

ranolazine augmented the efficacy of ABT-737-mediated cell

death through pro-apoptotic Bak protein (124). The inhibition of

leukemic T cells by N-farnesyl-norcantharimide (NC15) correlates

with alteration in fatty acid metabolism genes (215). Moreover,

resistant T-ALL cells show an altered rate and relatively high

dependence on FAO over exogenous glutamine (71). This

suggests the essential role of FAO for hematological malignancies

during drug-induced stress conditions.

Cholesterol metabolism is also one of the effective targets in the

treatment of T-cell malignancies (29). The metabolism and uptake

of cholesterol in child T-ALL have marked differences from normal

cells. Statins are one of the common cholesterol-lowering agents

through the inhibition of HMGCR. Simvastatin, atorvastatin,

fluvastatin, and lovastatin have the potential to inhibit leukemia

cells in both laboratory experiments and clinical settings (216–218).

Moreover, statins are adjuvant to other drugs and chemosensitizes

leukemia cells (217). Lowering cholesterol levels improves the

chemosensitivity of leukemia cells to the activity of rituximab and

fludarabine (202).

Anticancer activities of cholesterol-lowering statins are also

affected by the activity of SREBPs (219, 220). The weak statin

sensitivities are linked with the activity of SREBPs and HMGCR

(219, 221). This notion points out the targetable nature of these two

regulators of lipid metabolism. The chemical targeting of SREBP or

SCAP/SREBP complex in acute lymphoblastic leukemia showed

promising success (220, 222). SREBP inhibition in cutaneous T-cell

lymphoma impairs the survival of malignant cells (31). However,

malignant cells tend to compensate for SREBP inhibition by

escalating the FASN activity. Therefore, dual inhibition of SREBP

and FASN has enhanced suppressing effect on survival of T-cell

cancer (31). SREBP mediates the MYC-induced tumorigenesis in

hematopoietic malignancies (223) and co-regulates the FASN

expression (223, 224). Various natural compounds are suggested

to inhibit SREBP expression in tumor cells. One of the plant

compounds, methyl jasmonate, decreases the levels of SREBP as

well as FASN expression in cells of T-cell lymphoma (131). The

declined expression of SREBP in T-cell lymphoma treated with

methyl jasmonate correlated with decreased survival as well as

augmented susceptibility to the activity of cisplatin (131).

Cholesterol and sphingolipids contribute to the integrity and

functioning of lipid rafts (29, 143). Lipid raft integrity is

essentially required for the invasive behavior of T-cell leukemia

(140). The destruction of lipid rafts leads to the disengagement of

transient receptor potential vanilloid, type 6 (TRPV6) calcium

channel, which is suggested as the underlying mechanism (140).

Lipid metabolism has several molecular targets for therapeutic

interventions of T-cell cancer. They variedly range from molecules

involved in lipogenesis as well as in the oxidation of lipids. Lipid

metabolism inhibition in tumor cells has direct cytotoxic

consequences on T-cell malignancies. In many cases, targeting

one arm of lipid metabolism is being compensated by the other

arm. However, the exclusive role of each component in different
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stages of tumor initiation, progression phenotypic evolution as well

as invasion, is indispensable by malignant T cells. Targeting lipid

metabolism also offers the reversal of therapy resistance.

Considering the promising results of targeting lipid metabolism

indicated by available laboratory or primary clinical investigation,

further investigation is needed to strengthen its clinical relevance

and applicability.
Conclusion

The distinctive metabolic setup for lipids governs the numerous

aspects of the physiology of T cells as well as malignancies derived

from T cells (184). During different stages of maturation and

differentiation, lipid metabolism acts as a maneuvering tool in the

life of T cells (33). The differential lipid metabolism contributes to

the necessity during different stages of T-cell life, and its divergent

operations also support diverse requirements of T-cell subsets (32).

Moreover, regulatory events controlling T-cell response are also

backed by unique lipid metabolism in regulatory cells (10, 54).

Nevertheless, divergent lipid metabolism also contributes to the

initiation and maintenance of T-cell malignancies. The anabolic

and catabolic arms of lipid metabolism [biosynthesis, accumulation,

and oxidation of lipid moieties] are inter-regulated. In T-cell

malignancies, FASN-mediated FA synthesis provides essential

lipid constituents to meet the demand for biological building

blocks to sustain rapid cell division (13). The lipid molecules also

provide essential survival advantages by strengthening the structure

of cells by modulating the composition of the membrane. Moreover,

the specific composition of lipids in cell membranes contributes to

maintaining the lipid rafts in T-cell cancer (9, 68). The integrity of

lipid rafts essentially maintains the surface expression of receptor

and adhesion molecules involved in enhanced cell survival signaling

and membrane dynamics during invasion and metastasis (9, 25, 68).

Nevertheless, the specific lipid composition of cells is also linked

with immunosuppression and immunoescape measures in

malignancies of T cells (8, 13). The elevated rigidity provided by

high cholesterol levels along with enriched non-oxidizable lipid

content in the membrane confers resistance to chemotherapeutic

drugs (47, 200). Apart from structural advantage, lipid provides

reserve fuels for dynamic and robust requirement during metastatic

and chemoresistance manifestation (3, 17).

Rewiring of lipid metabolism generates molecular moieties

involved in cellular signaling and regulates cancer progression in

hematological malignancies. The signaling lipids maintain the

required level of survival signaling and prevent the induction of

cell death in T-cell cancer (12, 163). Various cancer types including

T-cell cancer have unique transcriptional regulations affecting the

cell physiology and favor the progression of malignancies (23, 31).

The various arms in lipid metabolism act in a concerted form in

T-cell malignancies. The accumulation of lipid molecules is also

contributed by the uptake of free lipid molecules from the cellular

exterior, their incorporation, and storage in the form of lipid

droplets. The qualitative and quantitative abundance of lipid type

and forms affects cellular stress including endoplasmic stress and

unfolded protein response leukemic cells (16, 17, 147, 198). The
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oxidation of reserve lipids offers energy to perform various cellular

functions as well as to provide precursors for numerous bioactive

lipids (17, 23, 145).

Collectively, reprogrammed lipid metabolism aids in

phenotypic characteristics of T-cell malignancies in a much-

intervened fashion. The interknitting of lipid metabolism is

limited to their catabolism and anabolism, but they also connect

their dots with carbohydrate and amino acid metabolism. The

indispensability of lipid metabolism has been suggested to be a

promising therapeutic target. Targeting FA biosynthesis and FA

oxidation has been attempted in preclinical and clinical

investigations, and both have encouraging outcomes against

malignancies of T cells (13, 23, 104, 209). The direct inhibition of

cancer progression by targeting lipid metabolism as well as

alleviation of chemo- and immunotherapy response has been

demonstrated by various investigations (104, 129, 209, 217).

Considering the demonstrated as well as envisaged impact of lipid

metabolism in T-cell malignancies, investigations exploring the

connections between hallmark characters with the unambiguous

arrangement in lipid metabolism are further warranted.
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