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Introduction: Glucose and glutamine are major carbon and energy sources that

promote the rapid proliferation of cancer cells. Metabolic shifts observed on cell

lines or mouse models may not reflect the general metabolic shifts in real human

cancer tissue.

Method: In this study, we conducted a computational characterization of the flux

distributionandvariationsof thecentralenergymetabolismandkeybranches inapan-

cancer analysis, including the glycolytic pathway, production of lactate, tricarboxylic

acid (TCA) cycle, nucleic acid synthesis, glutaminolysis, glutamate, glutamine, and

glutathione metabolism, and amino acid synthesis, in 11 cancer subtypes and nine

matched adjacent normal tissue types using TCGA transcriptomics data.

Result: Our analysis confirms the increased influx in glucose uptake and glycolysis

and decreased upper part of the TCA cycle, i.e., the Warburg effect, in almost all the

analyzed cancer. However, increased lactate production and the second half of the

TCA cycle were only seen in certain cancer types. More interestingly, we failed to

detect significantly alteredglutaminolysis incancer tissuescompared to their adjacent

normal tissues. A systemsbiologymodel ofmetabolic shifts throughcancer and tissue

types is further developed and analyzed. We observed that (1) normal tissues have

distinct metabolic phenotypes; (2) cancer types have drastically different metabolic

shifts compared to their adjacent normal controls; and (3) the different shifts in tissue-

specific metabolic phenotypes result in a converged metabolic phenotype through

cancer types and cancer progression.

Discussion: This study strongly suggests the possibility of having a unified

framework for studies of cancer-inducing stressors, adaptive metabolic

reprogramming, and cancerous behaviors.
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Introduction

Dysregulation of metabolic pathways is a hallmark of cancer (1,

2). In the past decades, new biotechnologies and experimental

systems have advanced substantial knowledge of metabolic shifts

and their functional roles in the oncogenesis process and the

progression of cancer (3). Metabolic phenotypes of cancer and

stromal cells and mechanistic insights into how the metabolic

system is shifted along the coevolution of cancer and the tumor

microenvironment (TME) have been discovered on different

experimental systems, such as cancer cell lines, mouse models,

patient-derived xenografts, or organoid models (3, 4). Despite a

plethora of knowledge gained on the core components of metabolic

pathways, there are still major gaps in our understanding of the

integrated behavior and metabolic heterogeneity of cells in TME.

Essentially, the metabolic behavior can be determined by different

factors and vary dramatically from cell to cell and tissue to tissue

due to their high plasticity, driven by the need to cope with various

dynamic metabolic requirements and biochemical conditions (3).

The Warburg effect, characterized by a shifted flux ratio

between aerobic and anaerobic respirations, is considered a

common metabolic reprogramming mechanism in human solid

cancer (5, 6). The further discovery of the glutaminolysis pathway

elucidates the role of “fueling” for energy production and the

biosynthesis of other metabolites such as amino acids, which also

expanded the definition of central metabolism in cancer

metabolism (7). In addition to these “common” metabolic shifts,

variations in branches of the central metabolic pathway have been

observed in different cancer types, including biosynthesis of

nucleotide, biosynthesis of serine and glycine, Cori cycle and

gluconeogenesis, malate shuttle and aspartate metabolism, redox

balance and glutathione metabolism, biosynthesis of fatty acids,

synthesis of immune-metabolite 2-hydroxyglutarate from a-

ketoglutarate, and cytosolic metabolism of glutamine and

glutamate (8–11). Notably, the majority of these analyses are

made on cell lines or mouse systems, which cannot mimic the

dysbalanced redox, pH, and oxygen levels. In addition, the nutrient

supplies of the experimental system also differ from those of real

cancer tissue, as both glucose and glutamine are always sufficiently

provided under experimental conditions, while their availability

levels and ratios heavily shift through cancer and determine

metabolic phenotypes. In addition, recent spatial techniques

suggest the heterogenous distribution of metabolic stresses in real

cancer tissues, which promotes metabolic competition and

coadaptation between cancer and stromal cells (12). All the

evidence suggests that the experimental systems under normal

physiological conditions have drastically different biochemical

characteristics compared to the TME of human cancer (13).

We would like to point out that the observations made in

experimental systems may unnecessarily reflect the metabolic and

nutrient-partition activities in human cancer tissues. For example, a

recent study presented that myeloid cells consume the highest

amount of glucose per cell in mouse tumor tissues, followed by T

cells and tumor cells (14). To the best of our knowledge, numerous

analyses of metabolic variations have been conducted on omics data

collected from cancer tissue samples, but explicit analysis that
Frontiers in Oncology 02
mechanically estimates and quantifies metabolic shifts are lacking.

We have recently developed a new graph neural network-based

method, namely single-cell flux estimation analysis (scFEA), to

predict metabolic flux by using single-cell transcriptomics data (14).

To provide an unbiased and comprehensive characterization of

the landscape of metabolic changes in human solid cancer, we

conducted a systematic evaluation of metabolic reprogramming and

characteristics via computational analysis of pan-cancer

transcriptomics data. We first reconstructed the central

metabolism pathway by including glucose, glutamine, glutamate,

and glutathione metabolism and six branches of the central

metabolism network at subcellular resolution. We modified the

scFEA method to fit the analysis of The Cancer Genome Atlas

(TCGA) pan-cancer tissue transcriptomics data. Our analysis

revealed distinct metabolic variations and shifts through different

cancer types. As the Warburg effect has been identified in almost all

analyzed cancer tissues, we did not see a significant contribution of

glutaminolysis in fueling the TCA cycle. We identified that (1)

normal tissues have distinct metabolic phenotypes, (2) cancer types

have drastically different metabolic shifts, and (3) the different shifts

that happened to tissue-specific metabolic phenotypes result in a

converged metabolic phenotype through cancer types and cancer

progression. Our analysis brought novel insights into the

understanding of metabolic shifts in human cancer. Cancer and

tissue type-specific metabolic shifts and the resulting convergent

metabolic phenotype suggested the necessity of a personalized

therapeutic strategy or nutrient and diet design for targeting

metabolism in cancer treatment.
Results

Reconstruction of central metabolism
pathway in the subcellular resolution

To comprehensively evaluate the variations of energy

metabolism in cancer, we collect the central metabolism network

and its branches from the KEGG database and manually curate the

reaction information from literature data based on our previously

curated metabolic network (14). As subcellular compartments have

different levels of enzymes, substrates, biochemical characteristics,

and kinetic parameters, subcellular localization information of

reactions is needed to accurately assess their stoichiometric

relations. Figure 1B illustrates the reconstructed central

metabolism network, including 42 reaction modules, 27

intermediate metabolites, 15 end metabolites, and 320 genes in the

cytosol, mitochondria, and extracellular regions. The reconstructed

central metabolism network includes six major pathways, namely

glycolysis, upper and lower parts of tricarboxylic acid (TCA) cycle,

glutaminolysis, glutamine and glutamate metabolism, and

glutathione metabolism (15), and six minor branches, namely

glyceraldehyde 3-phosphate (G3P) to nucleotide synthesis, 3-

phospho-D-glycerate (3PD) to serine synthesis, aspartate–malate

shuttle, mitochondrial citrate fueling of fatty acid synthesis,

transport of 2-oxoglutarate (2OG) to cytosol, and transformation

of 2OG to 2-hydroxyglutarate (2HG) (9).
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Estimation of sample-wise metabolic
flux and metabolite abundance of
central metabolism

We modified our recently developed method, scFEA, to enable

the application of tissue transcriptomics data (14) (see details in

Methods). scFEA models metabolic fluxes in a tissue based on gene

expression data from a large number of samples by assuming (1) the

total influx of each metabolite is approximately the same as its total

outflux, which is constrained by a quadratic loss over the metabolic

network; and (2) changes in the rate of each reaction can be modeled

as a (nonlinear) function of changes in the expression levels of genes

involved in the reaction and its neighbors, which could bemodeled by

a neural network. Note that assumption (1) is generally true unless

some major in-/outflux for a metabolite is not considered.

Assumption (2) is a combination of three simpler assumptions: (1)

the concentration of an enzyme is a function of reaction rate that

could be well supported by Michaelis–Menten equation; (2) the

concentration of an enzyme is also a (nonlinear) function of the

expression level of its encoding genes, with both functions being

invariant across different samples of different cancer types; and (3)

there exists a latent nonlinear relation between the concentration of

metabolites and the genes involved in its transport and relevant

reactions. Both assumptions (1) and (2) are supported by published

studies (16–18). Intuitively, one can think of this model (for each

reaction) as an integrated Michaelis–Menten model, whose
Frontiers in Oncology 03
parameters and nonlinear form are implicitly estimated by a neural

network using a large number of available gene expression data

(Figure 1A). The detailed formulation and parameters of the scFEA

method utilized in this study are available in Methods.

Figure 1B outlines the flowchart of scFEA, with further details

given in Methods. scFEA models the metabolic flux of each module

using a three-layer, fully connected neural network of genes

involved in the module, which minimizes the total imbalance of

the intermediate substrates across all tissue samples. For the central

metabolism network with K = 42 modules and #   genes as the

average number of genes encoded in each reaction module, there

are 12� K � (#   genes) unknowns to be estimated, where 12 is

determined by the neural network architecture. On the other side,

there are K � N constraints, where K = 27 and N = 5, 253 are the

numbers of intermediate substrates and samples, respectively. As

K � N ≫ 12� K � (#   genes)   in   this study, the large number of

samples in the utilized TCGA pan-cancer data enables sufficient

statistical power to reliably estimation of the unknowns.
Validation and application of scFEA in
predicting the flux of the reconstructed
central metabolism network

We have previously validated scFEA on glycolysis and TCA cycle

pathways by applying the method on our in-house-generated scRNA-
B

A

FIGURE 1

(A) Reconstructed central metabolism pathway. Intermediate and end metabolites are green and yellow labeled, respectively. The example on the
bottom right showcases the neural network-based flux predictive model, which takes genes involved in module 1 (M1) and outputs predicted flux.
(B) Analysis framework of scFEA.
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seq data of 88 patient-derived pancreatic cancer cell lines, Pa03c, and

matched metabolomic profiling under two conditions: knockdown of

APEX1 (APEX1-si) and scrambled control (sc) under hypoxia (14). In

this study, we first applied scFEA to this scRNA-seq data and

metabolomic profile to validate scFEA on the reconstructed central

metabolism pathway. As scFEA has been previously validated over

simplified central metabolism data, the goal of this validation is to

confirm that scFEA can capture the metabolic changes on the newly

reconstructed central metabolism pathway. We first examined the

predicted metabolomic variation trend of the intermediate metabolites

in Pa03c cells and compared the results with metabolomic profiling.

Four metabolites of the glutaminolysis pathway, namely glutamine,

glutamate, malate, and fumarate, that were not covered by our past

analysis were examined here. We have seen that the scFEA-predicted

abundance change of these four metabolites, in both cytosol and

mitochondria, is consistent with the experimentally measured

metabolomic changes (Supplementary Figure S1B). Specifically,

glutamine and glutamate show a slight but insignificant increase in

the APEX1-si condition compared to controls, while malate and

fumarate show significantly decreased abundances.

APEX1 plays a central role in the cellular response to oxidative

stress (19). scFEA predicts increased flux of the TCA cycle, decreased

glycolysis in normoxic cells than hypoxic cells, and increased

glutathione (GSH) to glutathione disulfide (GSSG) in APEX

knockout cells. These observations match the experimentally

observed metabolic changes in the Pa03c cells in our recent studies,

including (1) the knockdown of APEX1 results in increased oxidative

stress and cell death; (2) hypoxia triggers increased glycolytic activity

and lactate production, (3) decreased TCA cycle; and (4)

insignificantly changed glutamine metabolism in Pa03c cells (20).

These observations demonstrated that the scFEA prediction can

capture the major variations in the reconstructed central

metabolism network under different biochemical conditions.

We further applied the modified scFEA on TCGA pan-cancer

transcriptomics data of 11 cancer and subcancer types having matched

adjacent normal controls, namely breast cancer (BRCA) luminal, her2-,

and triple-negative (TNBC) subtypes, colon adenocarcinoma (COAD),

head and neck cancer (HNSC), kidney renal clear cell carcinoma

(KIRC), kidney renal papillary cell carcinoma (KIRP), lung

adenocarcinoma (LUAD), prostate adenocarcinoma (PRAD),

stomach adenocarcinoma (STAD), and thyroid carcinoma (THCA),

totaling 5,253 samples (see details inMethods). Notably, scFEA predicts

sample-wise in-/outflux for each intermediate metabolite. Hence, the

relative abundance change of the intermediate metabolites can be

estimated by the difference between their in- and outflux in each sample.
A pan-cancer-level evaluation of metabolic
variations of the central metabolic pathway
and its branches

We first evaluated the flux changes between cancer and adjacent

normal tissues. Our analysis suggested that the flux of glycolytic

pathway (p< 0.001 in 10 out of 11 analyzed cancer types. Here, the

same representation of the number of significantly increased or

decreased pathways is used for other reaction modules), lactate
Frontiers in Oncology 04
production (seven of 11), lactate export (nine of 11), biosynthesis of

glutathione (eight of 11), glutamate (seven of 11) and glutamine

import (seven of 11), and glutamine (10 of 11), glutamate (eight of 11),

and aspartate (six of 11) metabolism to other amino acids in the

cytosol are consistently increased in cancer vs. normal tissues in

almost all examined cancer types (Figures 2A–D; Supplementary

Figure S1A; detailed p-values are given in Supplementary Table S1).

We also observed a consistent decrease in the flux of fatty acid

biosynthesis (five of 11), glutathione (six of 11) to other amino

acids, enzyme-catalyzed glutathione to GSSG (six of 11), and

cysteine metabolism (five of 11) (Figures 2E, F; Supplementary

Figure S1A). The module from citrate to cis-aconitate (seven of 11)

is consistently decreased, while the module from oxaloacetate to

citrate (seven of 11) is increased in the upper part of the TCA cycle.

The variations of the lower part of the TCA cycle differ through

cancers. Although the glutamine and glutamate metabolism show

distinct variations in cancer vs. normal tissues, we did not see a

significant difference in glutaminolysis, i.e., glutamate to 2OG,

gamma-aminobutyric acid (GABA), and succinate in mitochondria.

We also did not observe a significant increase in the lower part of the

TCA cycle. In addition, multiple cancer types tend to have decreased

succinate to malate (three of 11) and malate to oxaloacetate (four of

11). Supplementary Figure S2 illustrates the detailed flux changes of

metabolic modules in the reconstructed central metabolism network.

We also examined the predicted metabolomic changes in the

central metabolism network. Notably, the flux balance assumption

was considered in scFEA by a quadratic loss. The metabolomic

change derived from predicted flux only reflects a trend of the

variation of intermetabolites rather than their exact concentration

change. We predicted consistently depleted glycolytic and TCA

cycle intermediates, cytosolic glutamine (eight of 11), succinyl-CoA

(five of 11), and cytosolic glutamate (10 of 11) in cancer vs. normal

tissues, while the abundance of lactate (three of 11) and

mitochondrial glutamine (five of 11) tends to be increased.

Figure 3 shows the detailed metabolic variations identified in this

study. Below, we provide a few mechanistic interpretations of the

observed metabolic variations.

Glycolysis
We observed increased glycolytic flux, depleted intermediates,

and increased lactate production in almost all examined cancer

types. These observations are consistent with the well-discussed

Warburg effect. The only contradiction to experimental

observations is that we did not see a significant increase in

glucose uptake. As noted, the flux prediction is based on both

gene expression and neighboring fluxes. Our previous studies

confirmed the consistent upregulation of glucose transporters

(21). The scFEA computes that the real glucose uptake is not

increased, probably because the availability of glucose in TME is

limited (12). We also identified that kidney cancer (KIRC) has the

largest relative increase of glycolytic flux, while the TCA cycle is

largely suppressed in KIRC (Figure 2E) but increases in lung cancer

(LUAD). Our observation is consistent with a recent fluxomic

experiment conducted on multiple patients’ cancer samples,

which also observed a significant decrease in glucose oxidation in

KIRC and activated glucose oxidation in LUAD (22).
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TCA cycle
We observed that the majority of the TCA cycle reactions have a

decreased flux in cancer vs. normal tissues, except for the first step

of acetyl-CoA to citrate. The rate-limiting step from citrate to cis-

aconitate is consistently decreasing. Most cancer types have

decreased succinate to malate and malate to oxaloacetate. We also

observed a consistent decrease of TCA cycle intermediates, except

for the increased succinyl-CoA and varied changes of 2OG,

succinate, and malate through cancer types. Our explanation is

that the overall TCA cycle is suppressed, but the fueling from

glutaminolysis relieves the depletion of TCA cycle intermediates at

a certain level. However, in the TME of human cancer, the flux of

carbon sources from glutaminolysis is not enough to fully refuel the

decreased flux in the lower part of the TCA cycle.

Glutamate and glutamine metabolism
Cancer cells’ uptake of glutamate and glutamine is consistently

increased in cancer vs. normal tissues. However, our flux analysis

suggested that the majority of the glutamate and glutamine are

utilized by the biosynthesis of other amino acids in cytosol rather
Frontiers in Oncology 05
than being transported into mitochondria to fuel the TCA cycle. We

saw that the transport of glutamate from mitochondria to the

cytosol is almost zero in all cancer types. The majority of the

mitochondrial glutamate is utilized for glutathione biosynthesis

than glutaminolysis.

Glutaminolysis
We did not observe a significant increase of glutaminolysis in

cancer vs. normal tissues. However, the metabolomic change of

intermediate substrates suggests that the fueling role of

glutaminolysis truly relieves the largely depleted carbon source in

the TCA cycle.

Glutathione metabolism
Our analysis included three input sources of GSH: biosynthesis

from glutamate in mitochondria, biosynthesis in cytosol and

transport into mitochondria, and reduction from GSSG. We also

considered two outfluxes of GSH, namely biosynthesis of other

amino acids and enzyme-catalyzed oxidation of GSH to GSSG. We

observed an increased influx of GSH from glutamate and cytosolic
A B

D

E F

C

FIGURE 2

Selected fluxomic changes in cancer vs normal. The six panels listed the predicted metabolic flux of (A) the pentose phosphate module, (B) lactate
production, (C) acetyl-CoA to citrate in the TCA cycle, (D) glutathione biosynthesis, (E) citrate to cis-aconitate, (F) glutamine metabolism in the
analyzed cancer types. The x-axis and y-axis represent cancer types and predicted flux, respectively.
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biosynthesis, decreased outfluxes of GSH, and accumulated GSH

abundance in cancer vs. normal tissues. As noted, our flux

estimation only covers the enzyme-catalyzed reaction of GSH to

GSSG, which does not include the reduction of reactive oxygen

species generated under dysregulated metabolism. Based on the

observations, we speculate that the majority of “accumulated” GSH

predicted by scFEA is utilized for antioxidation, the flux of which

was not included in the analysis.

Other branches
We also examined six branches of the central metabolic

network. We observed an increase in nucleotide biosynthesis and

transport of mitochondrial 2OG to cytosolic 2OG, decreased serine

biosynthesis (except for KIRC and KIRP), fatty acid biosynthesis,

and aspartate biosynthesis. We did not observe a significant flux

from 2OG to immunosuppressive metabolite 2HG. A possible

reason is that the reaction from 2OG to 2HG is catalyzed by

mutated IDH1 or IDH2 enzymes, which are not covered by the

current model (9).

The predicted fluxome and metabolomic changes are provided

in Supplementary Table S2.
Pan-cancer analysis suggests a convergent
metabolic phenotype of human cancer

We conducted a pan-cancer comparative analysis of the

predicted fluxome by using tSNE-based dimensional reduction.

Figure 4A shows the 2D-tSNE plots of the analyzed samples from

different cancer types derived by using the predicted flux distribution

of the central metabolism network. Supplementary Figure S3 lists the
Frontiers in Oncology 06
detailed distribution of each cancer and normal tissue type over the

tSNE plot. We further conducted a K-nearest-neighbor-based

clustering of the predicted flux based on their Euclidean distance

and identified 12 clusters (Figure 4B). We have observed that (1)

normal tissue types have distinctly varied metabolic phenotypes; (2)

although some cancer types have different metabolic phenotypes

compared to matched normal tissues, the fluxome of central

metabolism in some cancer tissues, such as breast and colon

cancer, is more similar to their matched normal tissues; (3) the

fluxome of some cancer types are very similar, such as breast, colon,

kidney and lung cancer; and (4) head and neck cancer, kidney renal

papillary cell carcinoma, prostate cancer, and thyroid cancer have

more distinct metabolic phenotypes.

Interestingly, we note a cluster (cluster 2 in Figure 4B) that

consists of large sets of breast, colon, kidney, lung, stomach, normal

breast, and colon cancer samples and small sets of head and neck,

prostate, and thyroid cancer samples, while the other clusters are

either tissue or cancer type specific. Supplementary Table S3 lists

the distribution of cancer and normal tissue types in each cluster.

We further conducted a second tSNE analysis of the fluxome in

cancer normalized by their adjacent normal controls. Specifically,

we computed the Z-score of the flux of each module in a cancer

sample against the flux of all normal controls of this cancer type and

utilized the Z-score profile for tSNE analysis (Figure 4C). Our

results suggest that (1) normal tissues have distinctly varied

metabolic phenotypes, (2) cancer types have drastically different

metabolic shifts (Figure 4C), and (3) the different shifts that

happened to tissue-specific metabolic phenotypes result in a

converged metabolic phenotype through cancer types (Figure 4B).

Figure 4D illustrates the shifts in the flux of mitochondrial

glutamate to 2OG, a key step in glutaminolysis, which shows a
FIGURE 3

Metabolic variations in the central metabolism network were observed in this study. Increased or decreased flux of a reaction module is represented
by a green or red arrow; accumulation or depletion of metabolites are green and red colored; the reactions and metabolites of inconsistent changes
are grey and black colored, respectively. The dashed arrow suggests the predicted flux of the reaction is consistently zero or substantially low. The
green dashed arrow of GSH to antioxidation suggests our inferred increased flux of GSH in antioxidation in cancer.
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significant cancer-type specificity. Similarly, the majority of the

reaction modules in the central metabolic network show different

levels of shifts through cancer types.

We further checked the distribution of the cancer stage vs. the

identified clusters. Cluster 2, which is the converged metabolic

phenotype through multiple cancer types, is consistently enriched

by cancers of more advanced stages for all the cancer types

enriching this cluster (Figure 4E). Hence, with the progression of

cancer, metabolic shifts tend to converge in this cluster. Further

analysis suggests that this cluster has increased glycolytic activity,

lactate production, decreased TCA cycle, slightly increased

glutaminolysis, and more saved glutathione for potential
Frontiers in Oncology 07
antioxidation. However, this cluster does not have the highest

change in such metabolic shifts compared to other clusters.

Hence, we speculate that the central metabolic system,

biochemical condition, redox balance, and demand of energy and

substrates in the cancer tissues in this cluster are more tuned.

To validate the observed converging trend of metabolic

phenotypes through cancer types, we conducted the flux

estimation analysis on Cancer Cell Line Encyclopedia (CCLE)

data of 1,015 cell lines of 18 tissue types, GTEx data of 8,432

samples of 25 tissue types, scRNA-seq data of 4,486 single cells from

eight cell types collected from the melanoma microenvironment

(GSE72056), and scRNA-seq data of 5,902 single cells of 10 cell
B

C D

E

A

FIGURE 4

Metabolic phenotypes identified from pan-cancer analysis. (A, B) tSNE plots of cancer and normal tissues derived by using predicted flux. (C) tSNE
plot of the cancer tissues derived by using flux change between cancer vs. adjacent normal controls. (D) Flux change between cancer vs. adjacent
normal controls of the reaction of mitochondrial glutamate to 2OG. (E) Distribution of cancer stages in each cluster with respect to cancer types.
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types collected from the head and neck cancer microenvironment

(GSE103322). We conducted the same tSNE-based dimensional

reduction and visualization by using the predicted fluxome of the

four datasets. We observed that the metabolic phenotype of CCLE

cancer cell lines is quite randomly distributed with respect to the

tissue origins (Figure 5A), while the normal human tissues show

distinct tissue type-dependent metabolic phenotypes (Figure 5B).

Both scRNA-seq data suggest that the diversity of metabolic

phenotypes of immune and stromal cells is higher than that of

cancer cells (Figures 5C, D). Specifically, cancer cells collected from

different patient samples show lower divergence of the fluxome of

central metabolism pathways compared to immune and stromal

cells. Our analysis of these four independent datasets partially

validated the converged trend of metabolic phenotypes of

different cancer types observed on TCGA data.

Sun et al. summarized 42 metabolic stress marker gene sets (23).

We also examined the correlation between sample-wise gene

expression level of the metabolic stress marker gene sets computed

by single-sample Gene Set Enrichment Analysis (ssGSEA) vs. the

scFEA-predicted sample-wise fluxome (Figure 6). As the majority of

the stress marker sets are biosynthesis-related, the decreasing of which

suggests elevated metabolic stress or unmet demand. We observed that

the TCA cycle, biosynthesis of amino acids and fatty acids, and the

enzyme-catalyzed reaction of GSH are positively correlated with the

stress marker sets, while the glycolysis, lactate production,
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glutaminolysis, and antioxidation role of GSH have negative

correlations. Our analysis identified biosynthesis-favored (positive

correlation) and unfavored (negative correlation) metabolic modules

in the central metabolism network. Notably, glutaminolysis-related

modules, especially the import of glutamine and glutamate are

unfavored in cancer tissues with high biosynthesis, suggesting a

limited role of glutaminolysis in fueling the biosynthesis of large

molecules. An alternative explanation is that when redox reactions

involved biosynthesis activity are suppressed, more glutamine and

glutamate and their cytosolic reactions are needed by cancer cells to

sustain sufficient amino acids and macromolecule biosynthesis.
Discussion

In this study, we reported the convergence of metabolic

phenotypes in the disease progression of multiple cancer types

derived from a pan-cancer-level analysis of 5,253 TCGA cancer and

normal samples. This result is consistent with our previous

observations on single-cell RNA-seq data of the TME of

melanoma and head and neck cancer, i.e., immune and stromal

cells tend to have higher metabolic heterogeneity compared to

cancer cells (14). While the Warburg effect has been identified as

a common hallmark of almost all cancer types, heterogeneity in the

means of energy production has rarely been studied, i.e., the choice
A B

DC

FIGURE 5

Metabolic phenotypes were identified from four independent datasets. (A–D) tSNE plots of (A) the CCLE cancer cell line, (B) GTEx normal tissue,
(C) GSE72056 single cells from TME of melanoma, and (D) GSE103322 single cells from TME of head and neck cancer, derived by using the
predicted fluxome of the central metabolism network.
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between the anaerobic glycolytic pathway and aerobic TCA cycle

pathway. Our observations provide new theories of the trajectories

of metabolic shift that occurred in the oncogenesis process; that is,

for a large set of solid cancer types, their metabolic phenotypes,

determined by the flux distribution of the central metabolic

pathways, tend to converge through the oncogenesis process. This

indicates that it is the converged phenotype, rather than the path to

convergence, that embodies the hallmark property of cancer

progression. This “convergence” theory is rational, as for cancer

cells, the optimal flux distribution should allow cells to sustain a fast

cell proliferation rate and high fitness level under hostile and

dynamic biochemical conditions in TME, which is independent of

cancer types and tissue origins. This theory could also explain why

metabolic inhibitors have not been very successful in cancer

treatment. While different tumor tissues may converge to the

same metabolic state, they may undergo different paths to such

convergence. Hence, simply blocking a particular path may not stop

the cancer progression to the desirable phenotype. A future

direction is to comprehensively characterize the converged

metabolic state that is most desirable for cancer progression,

including the level of reaction rate and the ratio of energy

produced using different branches. Also, new computational

measures are needed to identify the trajectory of metabolic shifts

for each cancer and the distance of its current metabolic phenotype

to the optimal metabolic state. Our current analysis suggests that

genetic mutation is not enough to explain how heterogeneous paths

are formed toward an optimal metabolic phenotype. We speculate
Frontiers in Oncology 09
that the shifts and evolution of metabolism are triggered by the

coevolution between cancer and the intra- and intercellular

biochemical condition within its TME and facilitated by

epigenetic regulations.

Numerous computational analyses have been proposed to study

metabolic variations in cancer and other systems (24–29). However,

while substantial efforts have been paid on reconstructing metabolic

pathways, a fundamental question that remains unaddressed is how

metabolic activities differ among cells of different morphological types,

physiological states, tissues, or disease backgrounds that have the same

genetic constitutions. Compared to other omics data such as

metabolomics, fluxomics, and proteomics that can be applied to

study metabolic reprogramming in cancer, transcriptomics data are

of the highest availability. Although transcriptomics experiments have

been utilized to characterize metabolic alterations in diseases (30, 31),

existing analyses tend to portray the average change of intermixed and

heterogeneous cell subpopulations within a given tissue (32–34). This

makes it impossible to further study the metabolic heterogeneity and

cell-wise flux changes in complex tissue, in which cells are well

understood to rewire their metabolism and energy production in

response to varied biochemical conditions (8, 35–37). Compared to

other well-studied biological mechanisms, such as immuno-response

or transcriptional regulatory activity, there are substantial gaps in

characterizing metabolic changes using omics data with tailored

systems biology models and statistical metrics.

To the best of our knowledge, our recently developed scFEA is the

first and only method to estimate cell-wise metabolic flux and
FIGURE 6

Correlation between the fluxome of the central metabolic network and the expression level of 42 metabolic stress-related modules.
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metabolomic changes by approximating the underlying dynamical

systems models (38). Our analysis demonstrated the feasibility of

deciphering the cause and impact of metabolic variations by using

multi-omics data in an explicit way, namely data-driven and AI-

empowered systems biology. On the other hand, in our preliminary

study, we identified three major remaining challenges in leveraging the

high-resolution multi-omics data and the stochiometric relations of the

metabolic network that need to be solved to best characterize the

dynamics and context specificity of metabolic activities: (1) How to

reconstruct disease, tissue, and cell group specific metabolic network? A

complex tissue microenvironment may be constituted by cells with

different metabolic abnormalities, heterogeneous metabolic networks,

varied preferences, and dependencies (39–43). Mapping multi-omics

data to a common and static metabolic network precludes the

discovery of hidden and dynamic relationships among the metabolic

units, making it impossible to identify the key players in disease tissue

or cells and to predict the vulnerability of a particular phenotype to a

certain metabolic factor. (2) How to accurately estimate metabolic flux

and identify the key causes of metabolic variations by using multi-omics

data? A big gap inmetabolic modeling is how tomap diverse data types

onto quantitative metabolic models in order to elucidate the metabolic

fluxome more thoroughly and hence achieve functional

characterization and accurate quantification of all levels of metabolic

activities and their interactions (44–46). Although our recent progress

and other studies provide a preliminary solution, no existing method

can effectively handle the heterogeneity of directions of highly

reversible reactions and imbalance of intermediate metabolites

among cells within a disease microenvironment. (3) How to

comprehensively define and assess the mechanisms and representation

forms of metabolic variations on multi-omics data?Metabolic variations

happen on different levels, such as genes, enzymes, metabolites,

network structure, or flux (kinetic models). How to design valid

metrics and statistical models to quantify the true impact of such

variations on context-specific metabolic activity remains unsolved.

As noted, our study and method demonstrated a prototype of a

new research direction, namely “data-driven and AI-empowered

systems biology.” For given omics data and a to-be-studied biological

process, the underlying goal is to identify a mathematical model that

could not only quantify the biological process but also approximate its

dynamic property over the data. The established model should leverage

the coherency of the physical or chemical laws of the system and the

goodness of fitting the data. Compared to the conventional differential

equation-based systems biology model, our approach does not rely on

the preassessed kinetic parameter and is therefore not limited by the

reductionist paradigm that can be applied to characterize a relatively

large system, such as the central metabolism network, in

complex disease.
Methods

Data used in this study

TCGA transcriptomic data
TCGA RNA-seq v2 FPKM data of the nine cancer types (11

subtypes) were retrieved from the Genomic Data Commons (GDC)
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data portal using TCGAbiolinks (47). Log(FPKM+1)-normalized

gene values were utilized for flux estimation. Clinical data were

obtained in XML format from GDC and parsed with an in-house

script. GENCODE gene annotations used by the GDC data

processing pipeline were downloaded directly from the GDC

reference file webpage.
Validation datasets

GTEx data
GTEx RNA-seq data and sample information (48) were

downloaded via the Xena browser. Log(FPKM+1)-normalized

gene values were utilized for flux estimation. We only included

the tissue types that had at least 20 samples.

CCLE data
CCLE RNA-seq data and sample information (49) were

downloaded from DepMap. Log(FPKM+1)-normalized gene

values were utilized for flux estimation. We only included the

tissue origins that have at least 20 cell line types.

GSE72056 scRNA-seq data
GSE72056 dataset (50) is collected from human melanoma

tissues. The original paper provided cell classification and

annotations, including B cells, cancer-associated fibroblast (CAF)

cells, endothelial cells, macrophage cells, malignant cells, NK cells, T

cells, and unknown cells.

GSE103322 scRNA-seq data
GSE103322 dataset (51) is collected from head and neck cancer

tissues. The original paper provided cell classification and

annotations, including B cells, dendritic cells, endothelial cells,

fibroblast cells, macrophage cells, malignant cells, mast cells,

myocyte cells, and T cells. Notably, as indicated by the original

work, malignant cells have high intertumoral heterogeneity.

Pa03c scRNA-seq data (GSE173433)
We have previously collected Pa03c scRNA-seq data (19) of 40

APEX1 knockdown (KD) and 48 scrambled control cells of Pa03c

patient-derived pancreatic cancer cell line under hypoxia condition.

We also collected metabolomic profiling of selected metabolites of

APEX1 KD and scrambled control Pa03c cells under hypoxia by

using S-1 Mitoplates (Biolog, Hayward, CA, USA).
Main methods

scFEA
We have directly applied our scFEA method to the TCGA and

the two scRNA-seq data against the iron metabolic map. While the

details of the method are given in Alghamdi et al. (14), we outline

the key ideas of the algorithm. The inputs to scFEA are gene

expression data and a factor graph-based representation of the

metabolic map. Let FG(C1�K ,RM1�M ,   E =  fEC!R, ER!Cg) be a
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given factor graph, where C1�K = fCk, k = 1,…,Kg is the set of K

metabolites, RM1�M = fRm,m = 1,…,Mg the set of M metabolic

reactions (represented as a rectangle in Figure 1A), EC!R and ER!C

represent direct edges from the reaction Rm to metabolite Ck and

from metabolite Ck   t o reaction Rm, respectively. For the kth

metabolite Ck, define the set of reactions consuming and

producing Ck as FCk
in = fRmj(Rm ! Ck) ∈ EC!Rg and FCk

out = fRmj(
Ck ! Rm) ∈ ER!C  g, which is derived from the stoichiometric

matrix of the given metabolic map. For an RNA-seq dataset with

N cells, denote Fluxm,j as the flux of the mth reaction in the cell

j,   j = 1… N , and Fj = fFlux1,j,…, FluxM,jg as the whole set of the

reaction fluxes. Denote Gm = fGm
1 ,…,Gm

img as the genes associated

with the reactions in Rm, and Gm
j = fGm

i1,j,…,Gm
im ,jg as their

expressions in sample j, where im is for the number of genes in

Rm.

We model Fluxm,j = f mnn(G
m
j j   qm) as a multi-layer fully

connected neural network with the input Gm
j , where qm

represents the parameters of the neural network. Then the qm
and cell-wise flux Fluxm,j can be solved by minimizing the following

loss function L, where l   serves as a hyperparameter:

L =o
N

j=1
o
K

k=1

( o
m∈F

Ck
in

Fluxm,j − o
m0∈F

Ck
out

Fluxm0 ,j)
2 +o

N

j=1
o
M

m=1
(Fluxm,j

− Fluxm,j

�
�

�
�)2 + lo

N

j=1
(oM

m=1Fluxm,j − TAj)
2

where TAj is a surrogate for the total metabolic level of cell j, which

is assigned to a constant or total expression of all the metabolic genes in

j. As tissue transcriptomics data are always dense, we only include three

loss terms in scFEA that are sufficient to predict fluxome. The three loss

terms in L from left to right are (1) loss of flux imbalance, (2) loss of

non-negative prediction, and (3) loss to control nonzero trivial

solution. As noted, the fundamental assumptions of scFEA regarding

nonlinearity relations of transcriptome and metabolome and

minimizing flux balance are still held in bulk RNA-seq data. In this

study, we modified scFEA by only removing a loss term designed for

highly sparse input and removing the data imputation step. We do not

consider this modification a significant methodology-level novelty. The

application of scFEA to bulk RNA-seq data has already been

demonstrated in our previous work. In this study, we carefully

examined the convergence of the loss function of scFEA on different

inputs. scFEA achieved a good convergence in all the analyzed bulk

tissue/cell and single-cell data (52). Supplementary Figure S4 showcases

the convergency of the loss function when applying scFEA to

different datasets.

tSNE analysis
tSNE analysis was conducted using Rtsne v0.16 R package

against a full fluxome profile with default parameters.
K-nearest-neighbor clustering
K-nearest-neighbor clustering was conducted using the Seurat

v3 R package against the top 12 principal components. The number
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of clusters is determined by default settings in the Seurat

package (53).
ssGSEA
We applied the ssGSEA2.0 R package to estimate the levels of

the selected RMs on individual samples (54, 55). The ES score

computed by ssGSEA was utilized to represent the level of each RM.

Gene sets of the RMs were collected and annotated in our previous

work (14).
Statistical test of differential analysis
We have utilized the Mann–Whitney U test for all differential

analyses, including differential gene expression analysis and the

difference in predicted flux. We utilized p-value of< 0.001 as a

significant cutoff for the multiple differential tests of metabolic flux

and abundance.
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