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Background: The canonical Wnt inhibitor Dickkopf-1 (Dkk-1) has the capacity to

modulate homeostasis between canonical and non-canonical Wnt pathways and

also signal independently of Wnt. The specific effects of Dkk-1 activity on tumor

physiology are therefore unpredictable with examples of Dkk-1 serving as either

a driver or suppressor of malignancy. Given that Dkk-1 blockade may serve as a

potential treatment for some types of cancer, we questioned whether it is

possible to predict the role of Dkk-1 on tumor progression based on the tissue

origin of the tumor.

Methods: Original research articles that described Dkk-1 in terms a tumor

suppressor or driver of cancer growth were identified. To determine the

association between tumor developmental origin and the role of Dkk-1, a

logistic regression was performed. The Cancer Genome Atlas database was

interrogated for survival statistics based on tumor Dkk-1 expression.

Results: We report that Dkk-1 is statistically more likely to serve as a suppressor in

tumors arising from the ectoderm (p=0.0198) or endoderm (p=0.0334) butmore

likely to serve as a disease driver in tumors of mesodermal origin (p = 0.0155).

Survival analyses indicated that in caseswhere Dkk-1 expression could be stratified,

high Dkk-1 expression is usually associated with poor prognosis. This in part may

be due to pro-tumorigenic role Dkk-1 plays on tumor cells but also through its

influence on immunomodulatory and angiogenic processes in the tumor stroma.

Conclusion: Dkk-1 has a context-specific dual role as a tumor suppressor or

driver. Dkk-1 is significantly more likely to serve as a tumor suppressor in tumors

arising from ectoderm and endoderm while the converse is true for mesodermal

tumors. Patient survival data indicated high Dkk-1 expression is generally a poor

prognostic indicator. These findings provide further support for the importance

of Dkk-1 as a therapeutic cancer target in some cases.
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Introduction

The canonical Wnt/b-catenin (cWnt) pathway has garnered

intense interest for its role in the regulation of cancer progression.

The earliest work on cWnt signaling strongly implicated it as a

driving factor in tumorigenesis based on initial observations that

cWnt is upregulated by viral integration in murine breast tumors

(1), and mutations of the adenomatous polyposis coli (APC)

protein that constitutively drive cWnt signaling cause colon

carcinoma (2, 3). Since this early work, a substantial body of

literature has continued to bolster the understanding that cWnt

signaling has the capacity to drive uncontrolled proliferation of

tumor cells and support phenotypic adaptations that result in

oncogenesis (4, 5).

To date, 19 homologous members of the Wnt ligand family have

been discovered in human tissues (6), generally consisting of 350-400

amino acids and harboring posttranslational lipid and glycosyl

modifications (6, 7). Wnt ligands can signal to the nucleus

through at least 4 classes of pathway; the canonical or b-catenin
mediated pathway, and the non-canonical planar cell polarity (PCP),

calcium-mediated, and receptor tyrosine kinase triggered pathways

(7–13). Wnt signaling is regulated at the intracellular level by cross-

talking signaling pathways (9, 14), inhibitory intracellular molecules

such as axin and APC (14, 15), and also in the extracellular space by

at least six forms of secreted inhibitors (16). Frizzled related proteins

(FRP), klotho, and Wnt inhibitory factor (WIF) all act by

sequestering Wnt and preventing the ligand from binding to

frizzled receptors. This class of Wnt inhibitor has the theoretical

capacity to inhibit both canonical and non-canonical (ncWnt) forms

of Wnt signaling. On the other hand, sclerostin (SOST), Mesd and

dickkopf-1, 2 and 4 all target the LRP5/6 receptor and are therefore

predicted to specifically inhibit the cWnt pathway.

Dickkopf-1 (Dkk-1) is the most intensely studied of the cWnt

inhibitors, initially identified as a factor with the capacity for

induction of a second head when its mRNA was injected into

xenopus embryos (17). Dkk-1 is 35-40 kDa secreted glycoprotein

consisting of two cysteine rich domains. Detailed structural analysis

of Dkk-1 complexed with LRP5/6 indicate that both cysteine rich

domains have the potential to interact with LRP5/6 (18, 19) whereas

specific residues on second cysteine rich domain target the co-

receptor kremen triggering internalization of the Dkk-1, Kremen,

LRP5/6 complex (20–22). As well as its well-established role as a

cWnt inhibitor, Dkk-1 has also been reported to signal

independently of b-catenin in ways that enhance or inhibit

malignant characteristics (23–30). Therefore, while Dkk-1 can act

as a tumor suppressor in some cases by direct inhibition of cWnt,

the complications of Dkk-1 signaling make its specific effects on

tumor physiology unpredictable. Indeed, there are a growing

number of examples of Dkk-1 serving as a driver of tumor

expansion and metastasis in the literature (31, 32), and reports

that high Dkk-1 levels serve as a poor prognostic indicator in many

forms of hard tissue sarcoma (33), bladder cancer (34),

hepatocellular carcinoma (35), cervical cancer (36), small cell lung

(37), prostate (38) and breast (39) cancers.

Given that Dkk-1 blockade may serve as a valuable adjunct

treatment for some types of malignancy (28, 40, 41), we questioned
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whether it is possible to predict the potential role of Dkk-1 (and the

effect of its blockade) on tumor progression based on the tissue

origin of the tumor. By systematic literature review, we tested the

hypothesis that the developmental origin (ectoderm, mesoderm,

endoderm) of the parental cell type of a tumor dictates whether

Dkk-1 is more likely to serve as a tumor suppressor or tumor driver.
Methods

Database search

The Pubmed database (https://pubmed.ncbi.nlm.nih.gov/) was

searched using the term “Dkk-1 and cancer” with the date range set

to 1999-2022. After exclusion of reviews and editorials, original

research articles that described Dkk-1 in terms a tumor suppressor

or driver in a cancer cell or tumor growth were identified and

shortlisted (Figure 1A). The developmental origin (ectoderm,

mesoderm, endoderm) of each tumor or cancer cell in each study

was categorized using definitions provided by the LifeMap

Embryonic Development and stem Cell Compendium web

resource (https://discovery.lifemapsc.com).
Statistical analysis

Analysis was performed using R version 4.2.2 (2022–10–31).

Studies were categorized based on whether Dkk-1 was reported as a

driver or suppressor of tumorigenesis (functional categorization),

then further categorized on the basis of tumor origin (ectoderm,

mesoderm, endoderm). To determine the association between tissue

layer and the role of Dkk-1, a logistic regression was performed. The

independent and dependent variables were designated tissue layer

and tumor suppression, respectively.
Survival analysis

The DrBioRight bioinformatics platform https://drbioright.org

was employed to interrogate The Cancer Genome Atlas (TCGA)

database for overall survival statistics for patients harboring tumors

with high or low Dkk-1 expression (high or low categorization was

defined by Dkk-1 expression above or below the mean value). The

dataset included specimens from brain, ovary, lung, prostate, uterus,

bladder, testis, esophagus, pancreas, kidney, liver, cervix, soft tissue,

breast, thymus, pleura, colon, stomach, bile duct, thyroid, head neck,

bone marrow, rectum, skin, lymph nodes, adrenal gland, eye cancer

patients. Survival data were analyzed by log rank test.
Results

Database search and categorization

The PubMed database was searched using the terms “Dkk-1 and

cancer” between 1999-2022, yielding 260 results. Original research
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articles were shortlisted if they described Dkk-1 in terms of a tumor

suppressor or driver in a cancer cell or tumor, and also specified the

nature of the tumor or cancer cell studied, resulting in 57 remaining

articles (Tables 1 and 2, Figure 1A). The studies were then sub-

categorized, resulting in 22 studies describing Dkk-1 as a tumor

driver (Table 1) and the remaining 35 describing Dkk-1 as a tumor

suppressor (Table 2). The studies were then further categorized on

the basis of tumor origin (ectoderm, mesoderm, endoderm), but in

cases where tumors were indicated to be of mixed tissue origin or

have underwent epithelial to mesenchymal transition (EMT), more

than one developmental origin was assigned. Several tissues and all
Frontiers in Oncology 03
three developmental layers were broadly represented in the dataset

(Figures 1A, B).
Developmental origin and functional
categorization of Dkk-1

Upon initial inspection of the data, the developmental origin of

tumors where Dkk-1 is reported as a suppressor appeared to be

predominantly ectodermal or endodermal (Figures 1C, D), whereas

those tumors where Dkk-1 adopted a driver role appeared to be
A

B

D

E

C

FIGURE 1

Dataset employed for systematic review of driver or suppressor status by Dkk-1 in tumors. (A): PRISMA flow chart summarizing data curation.
(B): Frequency Tumor types covered by the dataset. (C): Tumor types categorized based on developmental origin of the tumor and driver or
suppressor status. Numbers are greater than the number of articles evaluated due to dual classification of some tumors. (D): Distribution of data
based on developmental origin of tumor and driver or suppressor status. (E): Plot of odds ratios for Dkk-1 adopting a tumor suppressor role for each
of the developmental layers. Error bars represent 95% confidence intervals and asterisk represents p < 0.05.
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predominantly mesodermal in origin (Figures 1C, D). The logistic

regression model confirmed this interpretation, with odds ratios

obtained for tumor suppression of 3.00 (95% CI = [1.16, 9.22], p =

0.0334) for the endoderm layer, 0.33 (95% CI = [0.12, 0.79], p =

0.0198) for the mesoderm layer, and 4.66 (95% CI = [1.52, 20.24],

p = 0.0155) for the ectoderm layer (Figure 1E). These odds ratios

indicate that, for tumors originating in the mesoderm, there is an

associated lower odds of observing a tumor suppressive role.

Conversely, for tumors originating in the other two developmental

layers, there is an associated higher odds of observing Dkk-1 serving a

tumor suppressive role. Collectively, these data indicate that the

developmental origin of the tumor can predict whether Dkk-1

adopts a driver or suppressor role.
Dkk-1 expression and patient survival

The DrBioRight platform and the TCGA database was employed

to correlate overall patient survival data with the level of Dkk-1

transcription in tumors. Tumor specimens with Dkk-1 transcription

levels that were above the medium value was categorized as “high

expressors” and those with values lower were categorized as “low
Frontiers in Oncology 04
expressors”. Of the six tumor subtypes where survival significantly

differed with respect to Dkk-1 transcription, five had reduced

survival probability associated with high Dkk-1 expression (lung

adenocarcinoma, head and neck squamous cell carcinoma,

mesothelioma, stomach adenocarcinoma and pancreatic

adenocarcinoma) whereas one demonstrated a relatively weak

association with survival and high Dkk-1 expression (Figure 2).
Discussion

The data herein indicate that Dkk-1 plays multi-faceted and

often contradictory roles in malignant disease progression. Dkk-1 is

a unique member of the Wnt inhibitor family in that it can signal by

Wnt-independent pathways, and in its capacity as a specific cWnt

inhibitor, it can dysregulate the balance between canonical and

ncWnt pathways, providing ample means for pleiotropic roles in

different tissues.

As an inhibitor of cWnt, this apparently contradictory role for

Dkk-1 probably arises in part from the multiple and diverse

physiological roles of cWnt in tissue maintenance, where it serves

as a proliferative inducer, survival factor, regulator of cell
TABLE 1 List of studies where Dkk-1 is reported as a tumor driver.

PMID Tissue (metastasis) Layer Secondary layer

35277659 Bone Mesoderm

30478297 Bone Mesoderm

28682874 Bone Mesoderm

27049730 Bone Mesoderm

24577091 Bone Mesoderm

21098705 Bone Mesoderm

35296660 Breast Ectoderm Mesoderm

24528599 Breast Ectoderm Mesoderm

26515701 Breast (bone) Mesoderm

25788273 Gut Endoderm

35269944 Liver Endoderm Mesoderm

27322059 Lung Mesoderm Endoderm

34884726 Muscle Mesoderm

33384994 Neural Ectoderm

27322059 Pancreas Endoderm

19711349 Pancreas Endoderm

18561248 Prostate (bone) Mesoderm

34437475 Prostate (bone) Mesoderm

20957670 Prostate (bone) Mesoderm

16140917 Prostate (bone) Mesoderm

35531363 Uterine Mesoderm

20847303 Vascular Mesoderm
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differentiation or pluripotency and modulator of attachment and

migration (9, 10, 42–47). Intriguingly, the general mechanism of

cWnt signal transduction is tightly conserved between tissue types

and throughout evolution, raising the question of how cWnt

maintains its remarkable diversity of function (47, 48). This likely
Frontiers in Oncology 05
arises from combinatorial activity of the seventeen extracellular

Wnt ligands known to modulate cWnt/b-catenin-mediated

signaling in human cells [The Wnt homepage: web.stanford.edu/

group/nusselab/cgi-bin/wnt/human, KEGG: www.genome.jp/

pathway/hsa04310] and ten subtypes of Frizzled receptor (7).
TABLE 2 List of studies where Dkk-1 is a reported as a tumor suppressor.

PMID Tissue Layer Secondary layer

24859848 Bone Mesoderm

20019092 Bone (Ewing) Ectoderm Mesoderm

35712490 Breast Ectoderm

30340507 Breast Ectoderm

27277008 Breast Ectoderm

25351982 Breast Ectoderm

20139903 Breast Ectoderm

18571836 Breast Ectoderm

18157634 Breast Ectoderm

18377964 Cervix Mesoderm

14555616 Cervix Mesoderm

35625973 Gut Endoderm

30655833 Gut Endoderm

22367735 Gut Endoderm

21317455 Gut Endoderm

18461655 Gut Endoderm

16491118 Gut Endoderm

19995224 Head/neck Ectoderm

29458569 Liver Endoderm

25344678 Liver Endoderm

17964517 Liver Endoderm

19746230 Liver Endoderm

15451431 Lung Endoderm

19148141 Lymphoblast Mesoderm

22420644 Melanocyte Ectoderm

17141200 Melanocyte Ectoderm

23354304 Neural Ectoderm

20920327 Neural Ectoderm

11840333 Neural Ectoderm

18632632 Prostate Endoderm Mesoderm

30405834 Renal Mesoderm

35198054 Thyroid Endoderm

24848709 Thyroid Endoderm

23261982 Thyroid Endoderm

22430125 Thyroid Endoderm
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Further levels of sophistication arise from crosstalk between cWnt

and other pathways such as the SMAD pathway (49, 50), mitogen

activated protein kinase pathways (50–52) and Hippo pathway

components YAP and TAZ (53). The cell-specific role of cWnt,

and subsequently Dkk-1, is therefore likely to be determined in

large part by cell-inherent characteristics such as the expression

profile of the Wnt ligands, Frizzled receptors, and the activity of

cross-talking signaling pathways. It is also conceivable that stimuli

from the microenvironment also plays a role in differentiating the

output from cWnt signaling. This can occur through stimuli from

adjacent stromal cells, most notably via b-catenin’s participation in

adherens junction formation (54), or through attachment to

extracellular matrix components (55).

This complexity is illustrated by the multiple roles cWnt plays in

dorsoventral body axis specification and the formation of pre-dorsal

mesenchyme of the Spemann-Mangold Organizer (56–58). This

process, involving cytoskeletal organization, cell migration,
Frontiers in Oncology 06
differentiation and mitosis, is orchestrated predominantly by

precise spaciotemporal control of cWnt signaling (48, 58).

Similarly, cWnt plays multiple roles in cochleal development,

orchestrating the proliferation, differentiation and dedifferentiation

of epithelial and mesenchymal tissues (59). Due to lipid modifications

that permit tethering to cell membranes, cWnt signaling is

particularly adaptable to short range gradient-mediated signaling

permitting localized cell proliferation and differentiation with high

fidelity and at close quarters (7, 60). In contrast, the role of cWnt is far

simpler in embryonic stem (ES) cells cultured on simple feeder layers,

serving as an activator of downstream targets such as the cyclins and

protooncogenes that drive proliferation (47).

In the adult, cWnt is also a potent proliferative inducer for

several endodermal organs including liver (61–63), pancreas (64–

66), and intestine (67, 68), and it plays a key role in the progression

of malignancy that originates from these tissues (68–70). The

predominant role of cWnt signaling in driving proliferation of
FIGURE 2

Kaplan-Meier survival plots for various tumor types where Dkk-1 has high or low transcriptional status (defined as above or below the mean value for
the dataset respectively). HNSC, head and neck squamous cell carcinoma; LUAD, lung adenocarcinoma; MESO, mesothelioma; STAD, stomach
adenocarcinoma; PAAD, pancreatic adenocarcinoma; ESCA, esophageal carcinoma. Data were recovered from TGCA and processed by the
DrBioright platform. Data were analyzed by log-rank test.
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intestinal cells is illustrated by the observation that abnormally high

cWnt signaling results in accelerated cell division without

profoundly affecting differentiation (68). In tissues of the

ectoderm, cWnt also plays a predominantly mitogenic role for

early neuroprogenitors (71, 72) but topologically and temporally

regulated cWnt signaling is also necessary to orchestrate early stages

of neurodifferentiation and morphogenesis (73–75). Canonical Wnt

signaling plays a key role in driving proliferation of skin

keratinocyte progenitors (76), and like neurons, it also plays an

additional role in cell fate determination, with b-catenin deficient

stem cells adopting an epidermal fate and b-catenin positive cells

possessing the tendency to differentiate into follicular keratinocytes

(77). In tissues of the mesoderm, cWnt adopts more extensive roles

in lineage specification than in the other developmental layers. For

example, in developing tendons of chicken limbs, downregulation

of cWnt results in the differentiation of mesenchymal stem cells

(MSCs) into tenocytes (78), whereas cWnt was necessary for

differentiation of the same MSCs into osteoblasts (78–81). In

hematopoietic stem cells (HSCs) self-renewal, plasticity and

differentiation is determined by the amplitude of cWnt activity.

Using APCmutants with varying capacity to perturb degradation of

b-catenin, it was determined that slight elevation of cWnt activity

was sufficient to upregulate in vivo engraftment and self-renewal of

HSCs, but further elevation of cWnt activity enhanced

differentiation into myeloid progenitor cells and T-cells in a dose-

dependent manner (82). Cardiac development is regulated in part

by cWnt signaling but this requires precise spaciotemporal

exposure to stimuli (83, 84). For instance, activation of the cWnt

pathway promotes differentiation of ES cells into cardiomyocytes

but simultaneously suppresses differentiation into hematopoietic

and vascular lineages. On the other hand, activation of cWnt

signaling in the late phase of the embryoid body formation

inhibits cardiomyocyte differentiation and promotes the

expression of hematopoietic/vascular markers (83).

It is reasonable to posit that if cWnt has a predominantly

proliferative role in the tissue origin of a tumor, the likelihood that

Dkk-1 will serve as a tumor suppressor is high (e.g. in ectoderm and

endoderm) (Figure 3A), whereas the role of Dkk-1 is more complex

in tumors arising from tissues that tend to employ cWnt to direct

cell lineage commitment (e.g. in mesoderm). In tissues where cWnt

directs differentiation and lineage commitment, Dkk-1 can serve as

a tumor driver by maintaining tumor cells in dedifferentiated state

and facilitating their expansion. One of the best examples of this

process is the reported derivation of malignant fibrous

histiocytomas from MSCs by exposure to Dkk-1 (85). Dkk-1 can

also modulate the balance between cWnt and ncWnt activity in

favor of upregulated ncWnt signaling (Figure 3Bi). In some cases,

upregulated ncWnt signaling caused by Dkk-1 enhances survival

and proliferation of malignant cells through activation of stress

resistance pathways often mediated by downstream JNK signaling

(24, 27–30). Dkk-1 can also signal independently of cWnt/b-catenin
in ways that enhance or inhibit malignant progression. For example,

Dkk-1 has the capacity to activate the calmodulin dependent

protein kinase II and so as to diminish tumor cell proliferation

(23), interact with transforming growth factor beta (TGFb)
signaling so as to upregulate tumor invasion (24) (Figure 3Biii),
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and Dkk-1 can directly engage the cytoskeleton-associated protein 4

(CKAP4) receptor so as to trigger phosphatidylinositol-3-kinase/

AKT and NF-kB signaling to increase cancer cell survival, motility

and chemotherapeutic resistance (25, 26, 86) (Figure 3Bii). Dkk-1

has also been shown to localize to the nucleus in drug-resistant

colorectal cancer, correlating with enhanced expression of survival

factors such as aldehyde dehydrogenase. The mechanism of Dkk-1

is this case in not well understood, but direct or indirect association

with chromatin is probable (87) (Figure 3Biv).

In tumors where expression data could be stratified into high

and low Dkk-1 expression, patient survival data indicated high

Dkk-1 expression was generally a poor prognostic indicator. With

limited mechanistic data it is difficult to ascertain whether Dkk-1 is

upregulated in these tumors in an effort to limit high cWnt signaling

(88), or whether Dkk-1 is upregulated to serve a pro-tumorigenic

role. The reason for this observation is probably partly attributed to

the pro-tumorigenic role Dkk-1 can play in the progression of some

malignancies (e.g . pancreatic ductal adenocarcinoma,

osteosarcoma) but Dkk-1 also has the capacity to modulate the

stroma of tumors (Figure 3C). In early studies of bone malignancies

such as multiple myeloma, osteosarcoma and metastatic prostate

cancer, it was found that Dkk-1 played a key role in bone

engraftment (89) and local disruption of bone turnover to favor

of osteolysis (27, 90). Dkk-1 was also found to irreversibly corrupt

the ability of local osteoprogenitors to differentiate into osteoblasts,

while forcing them to adopt a tumor-supportive role through

provision of survival factors and osteolytic signals (91–93). Dkk-1

also has the capacity to act directly on local endothelial progenitors

to stimulate angiogenesis (94–96). In more recent studies, Dkk-1

has also been shown to potently modulate the immunological

landscape of the tumor in favor of immune evasion (97). In this

capacity, Dkk-1 has been reported to stimulate the activity

of immune suppressive macrophages in gastric cancer (98),

increase numbers of regulatory macrophages and T-cells in

cholangiocarcinoma (99), and Dkk-1 expression is correlated with

natural killer T-cell quiescence in prostate cancer (100).

Interestingly, Dkk-1 has been shown to enhance the activity of

immune suppressive myeloid derived suppressor cells (MDSCs) by

directly targeting cWnt activity, resulting in greater numbers of

intratumoral MDSCs that can participate in immune evasion (101).

Therefore Dkk-1, especially in tumors with a highly developed

stroma, can act in both an autocrine and paracrine manner to drive

tumor growth.

To our knowledge, this is the first time a relationship between

the malignant driver/suppressor role of Dkk-1 and the

developmental origin of the tumor has been demonstrated. While

this preliminary work could offer a biological explanation for some

of the controversies of the field, it has limitations. The hypothesis

was tested using a relatively small data-set, limiting the current

predictive power of this work, and another concern lies in the need

to address paracrine actions of Dkk-1 on the tumor originating

from host tissue. Further research utilizing the growing repository

of clinically-annotated single-cell resolution transcriptomic data

from the tumor and its associated stroma could provide

substantial mechanistic clarification, and in the future, predict the

efficacy of Dkk-1 blocking agents for a broad range of malignancies.
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In summary, a systematic review of the literature indicated that

Dkk-1 is more likely to play a suppressor role in tumors of

ectodermal and endodermal origin where cWnt signaling is a

predominantly proliferative force. In the case of mesodermal

tissues, the role of cWnt is more complex, and Dkk-1 appears to

be more likely to be associated with tumor promoting roles. Survival
Frontiers in Oncology 08
analyses using datasets from the TCGA database indicated that

were where survival rates for patients can be stratified by high and

low Dkk-1 expression, high Dkk-1 levels are usually associated with

poor prognosis. This in part may be due to pro-tumorigenic roles

Dkk-1 plays on tumor cells but also through immunomodulatory,

developmental and angiogenic influences on the stroma too.
A

B

C

FIGURE 3

Tumor driver and suppressor roles adopted by Dkk-1. (A): Dkk-1 acts as a tumor suppressor by inhibiting proliferative cWnt signaling. (B): Tumor
driver mechanisms of autocrine Dkk-1 activity. (Bi): Dysregulation of balance between cWnt and ncWnt mechanisms in favor of ncWnt-mediated
tumor survival pathways (e.g. ref: 27–30). Differentiation pathways mediated my cWnt may be affected, predisposing tumor cells to a more primitive,
malignant phenotype (e.g. ref: 27, 85). (Bii): Dkk-1 engages the CKAP4 receptor triggering PI3kinase and AKT activation resulting in enhanced
proliferation, survival and migratory capacity (e.g. ref: 26, 86). (Biii): Dkk-1 participates in synergistic crosstalk with TGFb enhancing invasion and
migratory capacity (e.g. ref: 14, 24). (Biv): Dkk-1 interacts with nuclear components enhancing expression of survival factors that facilitate
chemoresistance (e.g. ref: 87). (C): Paracrine roles for Dkk-1 as a tumor driver modulating angiogenesis, immunoregulation, host tissue architecture
and secretion of survival factors by stromal cells. Diagrams created by Biorender.com.
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Overall, the available data suggest that Dkk-1 blocking strategies

may be effective in directly preventing the expansion of specific

tumor types, but a more universal application for Dkk-1 blockade

may lie in its capacity to target tumor-supporting components of

the stroma.
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