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Cellular plasticity is a well-known dynamic feature of tumor cells that endows

tumors with heterogeneity and therapeutic resistance and alters their invasion–

metastasis progression, stemness, and drug sensitivity, thereby posing a major

challenge to cancer therapy. It is becoming increasingly clear that endoplasmic

reticulum (ER) stress is a hallmark of cancer. The dysregulated expression of ER

stress sensors and the activation of downstream signaling pathways play a role in

the regulation of tumor progression and cellular response to various challenges.

Moreover, mounting evidence implicates ER stress in the regulation of cancer cell

plasticity, including epithelial–mesenchymal plasticity, drug resistance phenotype,

cancer stem cell phenotype, and vasculogenic mimicry phenotype plasticity. ER

stress influences several malignant characteristics of tumor cells, including

epithelial-to-mesenchymal transition (EMT), stem cell maintenance, angiogenic

function, and tumor cell sensitivity to targeted therapy. The emerging links

between ER stress and cancer cell plasticity that are implicated in tumor

progression and chemoresistance are discussed in this review, which may aid in

formulating strategies to target ER stress and cancer cell plasticity in

anticancer treatments.

KEYWORDS
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1 Introduction

Cancer cell plasticity refers to the dynamic transition of cellular state that occurs during

cancer initiation and progression (1, 2), which contributes to tumor heterogeneity and

therapeutic resistance (3, 4). Epithelial-to-mesenchymal transition (EMT) and, the reversed

process, mesenchymal-to-epithelial transition (MET) are the well-known forms of cellular

plasticity, representing fundamental processes in the tumor invasion–metastasis cascade (5,

6). Epithelial–mesenchymal plasticity (EMP) encompasses EMT and MET, which are the key

phenomena in tumor metastasis that are associated with cancer stem cell (CSC) generation

and maintenance and therapeutic resistance (7–9), thereby posing a major challenge to
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effective therapy. Furthermore, CSCs exhibit epigenetic plasticity and

therapeutic resistance, which contribute to cancer progression or

relapse. Recent evidence also suggests that drug-resistant cells

possess abnormal energetic and metabolic pathways that are

involved in the induction, maintenance, and alteration of multidrug

resistance (MDR) phenotype (10, 11).

The ER is a central organelle that facilitates protein synthesis,

assembly, folding, and modification. The retention of unfolded or

misfolded proteins within the ER lumen triggers the unfolded protein

response (UPR), which leads to ER stress. Because of its roles in the

regulation of multiple cancer cell functions, increasing evidence has

linked ER stress to tumor progression (12, 13). ER stress has been

shown to influence cancer cell proliferation, apoptosis, inflammatory

response, and metastatic capacity (14). It has also been widely

observed that when exposed to physiologic or pathologic stresses,

cancer cells adopt various identities along a phenotypic spectrum,

which results in cellular plasticity. However, the links between ER

stress and cancer cell plasticity, such as EMP, MDR phenotype, CSC

phenotype, and vasculogenic mimicry (VM) phenotype plasticity,

have not been completely investigated, and new evidence is emerging.

Here, we reviewed the roles of ER stress in cancer cell plasticity and

the underlying molecular mechanisms.
2 Cellular plasticity in cancer

Cellular plasticity, which is observed during development, injury, and

tumor progression, is a critical process that allows cells to assume distinct

phenotypes to adapt to changing conditions (1, 15). Cellular plasticity is

important in tumor proliferation, invasion, metastasis, and

chemoresistance (16). Tumor cells can undergo phenotypic switch in

response to cues from the surrounding microenvironment, such as EMP,

CSC plasticity, drug resistance plasticity, and transdifferentiation,

including VM (Figure 1).
2.1 EMP

Various human cancers exhibit plasticity between epithelial and

mesenchymal states and the presence of EMT, MET, and hybrid

epithelial/mesenchymal (E/M) or partial EMT (pEMT) phenotypes

(17–20). EMT is defined as epithelial cells gradually losing epithelial

characteristics while gaining motility and invasive characteristics of

mesenchymal cells. MET is the reverse of EMT in that the cellular

phenotype changes from mesenchymal cells to epithelial cells, thereby

regaining apical–basal polarity. EMP refers to the ability of tumor

cells to differentiate along the epithelial-mesenchymal spectrum and

exhibit various intermediate hybrid E/M states (21, 22). As evidenced

by pEMT, cells shift along the EMT-MET axis, which implies that

EMT and MET are not binary fates (6). The underlying topographic

map of EMT reveals a plethora of metastable hybrid phenotypic

states, thus distinguishing stable epithelial and mesenchymal states

(23). EMT, MET, and pEMT states can differ depending on tumor

types, dissemination states, and the degrees of metastatic colonization

or dormancy (7). In triple-negative breast cancer (TNBC), for

example, EMP is a crucial mechanism that contributes to

phenotype plasticity and heterogeneity, resulting in a heterogeneous
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clinical behavior associated with a poor prognosis (24). Primary

breast CSCs of TNBC express epithelial and mesenchymal markers,

thus indicating an EMP state (25). EMP is found in the majority of

heterogeneous circulating tumor cell(CTC) phenotypes in the CTCs

of patients with breast cancer (26).

In addition to the well-known transcriptional and post-

transcriptional regulation that underpins EMP (27), plasticity is

epigenetically regulated. Changing specific chromatin modifications

demonstrates the roles of epigenetic regulators during EMP. In

prostate cancer, for example, suppressing the epigenetic regulator

chromatin remodeling proteinHMGA2 with a histone deacetylase

(HDAC) inhibitor inhibits EMP and significantly reduces tumor

growth and metastasis (28). HDAC, Methyl-CpG-binding domain 3

(Mbd3)/nucleosome remodeling and deacetylase (NuRD)complex,

and Ten-eleven translocation 2 (Tet2) hydroxylase have all been

identified as important regulators of EMP and metastasis in breast

cancer (29).

Many functional proteins are involved in EMP regulation. The

coxsackie and adenovirus receptor (CXADR), a tight junction protein,

stabilizes AKT regulators and controls EMP in breast cancer (30).

Syndecan-1, a cell surface proteoglycan, regulates EMP in tumor cells

via nuclear translocation (31). Snail activation mediates EMP induction

in prostate cancer (32). EMP regulators may also accommodate dynamic

changes. The expression of the cell adhesion molecule CD44 is complex,

with many isoforms, and the pattern of isoform expression changes

during EMP transitions (33). Dynamic changes in the cohesin subunit

RAD21 mediate chromatin architecture to control EMP for the

regulation of cell fate in breast and gastric cancers (34). Furthermore,

certain proteins can mediate the EMP process in a two-way manner.

Secretary osteopontin (OPN) activates EMT to initiate cancer metastasis,

whereas intracellular OPN (iOPN) induces MET to promote metastasis

(35). Similarly, the kinesine-1 subunits kinesin family member 5B

(KIF5B)/kinesin light chain 1 (KLC1) modulate the EMP process

differently in breast cancer, with KIF5B being an inducer of EMT and

KLC1 being its suppressor (36). Exosomes (37) and the classical

transforming growth factor (TGF)b signaling pathway can also

regulate tumor cell EMP (38, 39). Furthermore, the tumor

microenvironment influences EMP regulation. Cancer-associated

fibroblasts, for example, drive EMP and the formation of hybrid E/M

states to induce invasive andmetastatic tumor cell clusters (40). The EMP

process also involves various phenotypic subtypes of macrophages in the

tumor microenvironment (41).

EMP is a key mediator of metastatic dissemination and

therapeutic resistance in several solid tumors. By restraining the

EMP of tumor cells, researchers may be able to inhibit the

progression of metastasis by facilitating an asymptomatic state of

dormancy. A recent study has revealed that inhibition of spleen

tyrosine kinase increases systemic tumor dormancy and, thus,

reduces breast cancer metastasis (42).
2.2 Plasticity in drug resistance

According to emerging evidence, cancer therapies are hampered

by reversible mechanisms that cause drug resistance. The plasticity of

cancer cells drives their transformation to a phenotypic state that is

not dependent on the original drug-responsive pathway. Because of
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intratumor heterogeneity and ongoing diversification in response to

therapy, tumor cells survive the treatment and develop new resistant

phenotypes (43). In melanoma, phenotype plasticity is a major cause

for therapeutic resistance and is associated with increased levels of

epidermal growth factor receptor (EGFR), receptor tyrosine

kinaseAXL, or nerve growth factor receptor (NGFR), the expression

of which is further upregulated by v-raf murine sarcoma viral

oncogene homolog B1 (BRAF) inhibitors (44). Hence, therapeutic

strategies could capitalize on this reversibility before relapse tumors

develop genetic alterations that drive resistance. Furthermore,

plasticity allows tumor cells to switch reversibly between drug

resistance and drug sensitivity to escape and survive therapeutic

challenges (45).

According to new research, a drug-tolerant population can switch

between drug-sensitive and drug-tolerant states via non-genetic

mechanisms, such as chromatin remodeling, and evolve into various

resistant phenotypes (46). Plasticity in chemotherapy resistance is

reflected in non-small cell lung cancer (NSCLC) by epigenetic

alterations that allow tumor cells to adapt to new microenvironments

after drug administration (47). Tamoxifen treatment causes acquired

drug resistance in MCF7 breast cancer cells by altering the DNA

methylation status (48). It has been demonstrated that epigenetic

silencing of Spalt-like transcription factor 2 (SALL2) contributes to

tamoxifen resistance in breast cancer by activating the AKT/mTOR

pathway (49). Moreover, the ETS1/miR-23a-3p/ACSL4 axis may

mediate sorafenib resistance via epigenetic regulation of ferroptosis in

human hepatocellular carcinoma (50). Recent research provides more

evidence demonstrating the crucial roles of epigenetic changes in

regulating the resistant phenotype of tumor cells, which could serve
Frontiers in Oncology 03
as promising targets for overcoming clinical resistance. Furthermore, by

activating cellular plasticity, tumor cells may be able to create a tumor-

supportive microenvironment. The highly plastic cells in

this microenvironment change dramatically to resist therapeutic

drugs (51).
2.3 CSC plasticity

CSCs are a subpopulation of tumor cells capable of self-renewal

and tumorigenesis. CSCs retain high stemness and plasticity (52), as

evidenced by the processes of non-CSCs becoming CSCs, CSCs losing

stemness, quiescent CSCs becoming active, and CSCs becoming

quiescent. Non-CSCs in human basal breast cancers, for example,

can acquire CSC phenotypes when zinc finger e-box binding

homeobox 1 (ZEB1) is activated (53). Intravital lineage tracing in

mammary tumors shows that existing CSCs disappear and new CSCs

are formed during mammary tumor growth, thereby demonstrating

the dynamic nature of plasticity in these cells (54). Cells expressing

CSC-associated markers in glioblastoma do not represent a clonal

entity but rather a plastic state that most cancer cells can adapt in

response to microenvironmental signals (55). The dynamic

coexistence of various phenotypes or states in CSCs is becoming

common in various tumor contexts. Malignant cells in glioblastoma

exist in four major cellular states that can interconvert and exhibit

plasticity, which drives intratumoral heterogeneity (56). CSCs have

been shown to exhibit three interchangeable phenotypes in breast

cancer, namely, ALDH+, CD44+CD24−, and ALDH+CD44+CD24−

CSCs, which indicates the plasticity and heterogeneity of CSCs (57).
FIGURE 1

Roles of ER stress in the cellular plasticity of cancer cells. ER stress regulates cancer cell plasticity, including EMP, drug resistance phenotype, CSC
phenotype, and VM phenotype plasticity. ER stress can regulate the EMP of cells that migrate along the EMT–MET axis, such as activation, inhibition, and
pEMT induction. Several studies have found that ER stress influences the cell fate by promoting or suppressing the susceptibility to drug therapy. ER
stress also plays an important role in regulating CSC differentiation and ratio and also regulates CSC plasticity, such as quiescence and activation. The
interchange and coexistence of diverse phenotypes need to be studied further. VM is also another remarkable example of tumor cell plasticity. The
activation of ER stress inhibits the formation of VM phenotypes in highly aggressive cells, thereby impeding tumor angiogenesis and progression. Created
with BioRender.com.
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CSCs can enter a dormant cellular state and exist in the G0 phase,

which makes them resistant to conventional therapies that target

actively dividing cells. Quiescence can be induced by altered

microenvironmental cues or drug treatments. Breast cancer

disseminated tumor cells (BC DTCs) may be instructed to enter

dormancy by bone marrow NG2+/Nestin+ mesenchymal stem cells.

When homeostasis of the bone marrow microenvironment changes,

BC DTCs may emerge and cause a bone relapse (58). Laminin-332, as

a component of the human hepatic CSC niche, plays a role in

sustaining cell stemness and confers chemoresistance and

quiescence (59). One understudied chemoresistance mechanism is

the induction of quiescence. Nuclear factor of activated T cells

cytoplasmic 4 (NFATC4) drives a quiescent phenotype in ovarian

cancer and promotes chemotherapy resistance in vitro and in vivo

(60). Apart from resistance to therapy, epigenetic determinants play

an important role in CSC dormancy (61). SET domain-containing

protein 4 (SETD4) alters heterochromatin formation to epigenetically

regulate CSC quiescence in breast cancer (62). Alterations in cell

states and switches to a dormant or quiescent state are major

impediments to standard therapy (63).

Other studies indicate that quiescent CSCs can be reactivated

under favorable conditions (64, 65). Transfer of mitochondrial DNA

from extracellular vesicles acts as an oncogenic signal, potentially

promoting the emergence of dormant cancer stem-like cells (66).

Nuclear protein DEK is required for CSC activation in breast tumors

as it upregulates cellular activation-related genes, including MYC

targets (67). Understanding the mechanism underlying the activation

of quiescent CSCs may lead to novel therapeutic strategies for

overcoming quiescence-linked chemoradiotherapy resistance.
2.4 Plasticity in VM

VM is another remarkable example of tumor cell plasticity. VM is

a functional microcirculation structure that is independent of

endothelial vessels and describes the plasticity of highly aggressive

tumor cells to develop vasculogenic-like, matrix-rich networks, thus

mimicking endothelial cell activities and providing blood supply for

tumor growth and metastasis (68, 69). EMT, which is based on EMP,

plays a crucial role in the formation of VM during cancer progression.

TGF-b1/ROCK signaling contributes to the formation of VM in

hepatocellular carcinoma by inducing EMT (70). In ovarian

carcinoma (71) and salivary adenoid cystic carcinoma, hypoxia may

promote VM formation by inducing EMT (72). Dickkopf-1 promotes

VM formation in NSCLC by increasing the expression of EMT-

associated proteins (73). VM formation is influenced by several

known EMP regulators, including ZEB1 (74), Twist1 (75), Snail

(76), and Slug (77). The discovery of mechanisms underlying VM

plasticity will shed light on the search for more precise targets in

antiangiogenic treatment.
3 ER stress and cancer cell plasticity

According to emerging evidence, ER stress appears to play an

important role in regulating cellular plasticity. Chronic ER stress

promotes immunosuppressive phenotypes of immune cells in various
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diseases, such as cancer and inflammation (78) (79). inositol-

requiring enzyme 1a (IRE1a)−X-Box Binding Protein 1 (XBP1)

signaling, for example, promotes tumor immune evasion by

enhancing the functions of tumor-associated myeloid cells (80, 81).

Furthermore, thapsigargin-induced ER stress increases interleukin

(Il)-10 transcription and promotes T cell phenotype plasticity (82).

Recent studies in tumor cells show a comprehensive relationship

between ER stress and cancer cell plasticity (Figure 1), including EMP,

drug resistance phenotype, CSC phenotype, and VM phenotype

plasticity. In the following sections, the emerging roles of ER stress

in the regulation of tumor cell plasticity and the underlying

mechanisms have been discussed.
3.1 ER stress and EMP

In recent years, the modulatory role of ER stress in EMP in

various types of tumors has been studied. Increased ER stress and

EMT, for example, have been linked to chemoresistance and poor

survival in patients with lung cancer. ER stress caused by the activates

of valosin-containing protein disrupt the EMT-like state and promote

the migratory and invasive abilities of lung cancer (83). By inducing

ER stress, IL-32 promotes EMT in human lung adenocarcinoma cells

(84). The downstream signaling of the ER stress sensor IRE1a acts as

an EMT regulator (Figure 2A). IRE1a promotes lung cancer

progression and EMT via XBP1 mRNA splicing (85). Furthermore,

IRE1a promotes miR-200 degradation in an IRE1-dependent decay

(RIDD)-dependent manner (86), thereby leading to the depression of

epithelial gene transcriptional repressors (Figure 2A) (87).

Furthermore, sXBP1 is linked to the enhanced mesenchymal

phenotypes of tumor cells. The IRE1–sXBP1 axis may be activated

in response to stressful extracellular conditions that cause ER stress

and regulate the expression of EMT transcription factor. The

interaction of lysyl oxidase-like 2 (LOXL2) and Heat Shock Protein

Family A (Hsp70) Member 5 (HSPA5) in the ER activates IRE1–

XBP1 signaling and induces the expression of EMT markers in an

XBP1-dependent manner (Figure 2A) (88).

ER stress induces the expression of cyclase-associated protein 2

(CAP2) and promotes EMT via the activation of Rac1 and ERK in

liver cancer cells (89). In hepatocellular carcinoma cells, the

expression of hepatitis B virus surface antigen induces ER stress,

which increases the expression and secretion of fibroblast growth

factor 19 (FGF19) to activate JAK2/STAT3 signaling and induce EMT

(90). Additionally, as key players of UPR, activating transcription

factor 6 (ATF6) upregulation and ATF4 downregulation activates

PI3K/AKT/mTOR signaling but reduces Bone Morphogenetic

Protein 2 (BMP2) signaling in colorectal cancer cells to enhance

motility and invasion via EMT (91). ER stress also promotes the

overexpression of T-synthase-specific molecular chaperone Cosmc in

human colorectal cancer cells, which significantly enhances cell

migration and invasion via activation of EMT (92). In squamous

cell carcinomas, ER stress triggers the ectopic expression of

Transmembrane and tetratricopeptide repeat containing protein 3

(TMTC3), which activates the GRP78/Protein kinase RNA-like ER

kinase (PERK) signaling and increases the expression of EMT

markers via an interleukin-like EMT inducer (93). ER stress

suppression decreases the metastatic capacities of TNBC cells by
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inhibiting the Syntenin/SOX4/Wnt/b-catenin pathway, whereas heat

shock protein A4 overexpression reverses these effects (94).

Chemotherapeutic drugs commonly used to treat patients, such as

cisplatin, gemcitabine, vinorelbine, and doxorubicin, also activate ER

stress, which enhances EMT and proliferative phenotypes in cancer

cells (95) (96).

In noncancerous cells, ER stress has been shown to exert a direct

effect on EMP. ER stress, for example, induces EMT and, thus,

increases the migration of lens epithelial cells (97). ER stress

inhibits cell differentiation, downregulates the expression of

cadherin-1 and cadherin-16, and upregulates the expression of

vimentin and SNAI1, thereby indicating the loss of epithelial

features and a shift toward a mesenchymal phenotype in thyroid

cells (98). Alveolar epithelial cells undergo ER stress in a hypoxic

microenvironment, which is accompanied by the increased

expression of mesenchymal markers both in vivo and in vitro (99).

In alveolar epithelial cells, ER stress causes a decrease in the

expression of epithelial markers E-cadherin and Zonula occludens-1

and an increase in the expression of mesenchymal markers S100A4

and a-smooth muscle actin (100). EMT exerts a significant effect on

pulmonary fibrosis. EMT is induced in human lung epithelial cells

after treatment with the ER stress inducers tunicamycin and

bleomycin via HDAC upregulation (101). Furthermore, advanced

oxidation protein products activate ER stress in proximal tubular cells

and induce EMT, as evidenced by p27 and a-SMA overexpression

and E-cadherin downregulation in chronic kidney disease (102).

Protein arginine methyltranferase-1 (PRMT1) causes ER stress and

EMT in renal tubular epithelial cells as well (103).
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ER stress and EMP may also regulate one another, according to

research findings. Inducing EMT makes cells more vulnerable to ER

stress by activating the PERK–eIF2a axis of the UPR. Moreover,

PERK–eIF2a signaling is pivotal for maintaining ER homeostasis and

is required for EMT cells to disseminate (104). ER stress in colorectal

cancer cells is dependent on ZEB-1 induction. Colorectal cancer cells

could not mount ER stress in response to microenvironmental stimuli

in the absence of ZEB-1 (105).

However, apart from the usual role of ER stress in promoting

EMT, some studies have reported the inhibition of EMT by ER stress.

Chemical induction of ER stress inhibits EMT and migration in

retinal pigment epithelial cells possibly by inhibiting TGF-b signaling

(106). Honokiol-induced ER stress markedly inhibits histone

deacetylase-3 expression and blocks EMP and metastatic

dissemination in gastric cancer (107). Furthermore, melatonin

induces ER stress and inhibits EMT via calpain-mediated C/EBP-b
and NF-kB cleavage in gastric cancer (108). In human glioblastoma

cells, sinomenine hydrochloride triggers ER stress, reverses

endogenous and exogenous EMT, and inhibits migration and

invasion. When ER stress is suppressed, the inhibition of

mesenchymal markers (vimentin, Snail, and Slug) is abolished

(109). In addition, a recent study shows that metabolism affects the

ER stress and modulates EMT. In breast cancer cells, TGF-b-induced
EMT could be suppressed by ER stress in response to cholesterol

accumulation in the ER (110).

Additionally, ER stress is involved in the MET process.

Hyperactivated ER stress is a significant reprogramming barrier

that prevents the initial MET step to form induced pluripotent stem
A B

FIGURE 2

(A) Model of the IRE1–XBP1 axis that regulates EMP. Activation of the IRE1–XBP1 signaling pathway induces the expression of EMT transcription factors,
which are direct transcriptional targets of XBP1. Additionally, IRE1a promotes miR-200 degradation via the RIDD process, which results in the
derepression of epithelial gene transcriptional repressors. ER accumulation of LOXL2 interacts with HSPA5, activating the IRE1–XBP1 signaling pathway
and inducing EMT. (B) Examples of roles of the ER stress inducers thapsigargin and tunicamycin in cancer cell plasticity regulation. Calreticulin promotes
TGF-b-induced EMT by repressing E-cadherin and inducing N-cadherin and vimentin. Calreticulin induces EMT via Ca2+-dependent thapsigargin-
induced acute ER stress. Moreover, prolonged calcium signaling induces pEMT in carcinoma cells. On the contrary, tunicamycin-induced ER stress
inhibits the chemoresistance of hypopharyngeal carcinoma cells in 3D cultures. Furthermore, activation of ER stress inhibits the formation of VM
phenotypes in TNBC cells via the TGF-b1/Smad2/3 signaling pathways.Created with BioRender.com.
frontiersin.org
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cells (iPSCs) from mesenchymal somatic cells (111). Adenosine

Deaminase Acting on RNA (ADAR)1-dependent RNA editing

could promote MET and induce iPSC reprogramming by alleviating

ER stress (112). Overexpression of the ER secretion factor ER protein

29 in breast cancer cells results in enhanced MET phenotypes,

including stress fiber loss, E-cadherin upregulation, and vimentin

downregulation (113). The relationship between ER stress and EMP

remains unknown, particularly in the process of cells shifting along

the EMT-MET axis, as evidenced by intermediate hybrid E/M states.
3.2 ER stress and chemoresistance

The role of ER stress in promoting or counteracting cancer cell

chemoresistance is debatable. There is no agreement on the relationship

between ER stress and the development of drug-resistant phenotype in

cancer cells. According to some studies, activating ER stress restores

chemosensitivity, whereas contradictory results have been reported by

other studies. Several investigations have highlighted the role of UPR in

the determination of cell fate by either increasing or decreasing the

susceptibility of cancer cells to chemotherapy drugs (114).

Chemotherapeutic resistance caused by ER stress is common in

aggressive tumors. One of the most important mechanisms promoting

MDR development is ER stress. In cancer cells, ER stress adaptation

results in an MDR phenotype with increased expression of the UPR

sensor protein kinase PERK, which mediates Nuclear factor erythroid-

derived 2-like 2 (Nrf2)-driven transcription of MDR related protein 1

(MRP1). Silencing PERK signaling inhibits tumor growth and enhances

the susceptibility of tumor xenografts to chemotherapy (115). Adaptation

to ER stress also improves DNA repair and damage tolerance, thereby

increasing the resistance of stressed cancer cells to chemotherapeutics

(96). ER stress increases chemoresistance in colon cancer cells by

activating eukaryotic initiation factor 2 (eIF2)/ATF4 signaling (116).

Moreover, by alleviating ER stress, astragaloside IV sensitizes NSCLC

cells to cisplatin (117). Furthermore, ER stress upregulates the expression

of the ZNF263–ARHGEF2 pathway, which contributes to ER stress-

related treatment resistance (118). When exposed to ER stress,

nasopharyngeal carcinoma cells secrete endoplasmic reticulum resident

protein 44(ERp44)-containing exosomes, which boost the

chemoresistance of neighboring cells (119). Induction of UPR

promotes glioma cell metabolism and chemoresistance (120).

Moreover, downregulation of ER stress response inhibits autophagy

and overcomes temozolomide resistance in melanoma cells (121).

On the contrary, ER stress can counteract cancer cell

chemoresistance and mediate cell apoptosis. Tunicamycin, for

example, significantly increases chemotherapy-induced apoptosis by

inducing ER stress in multidrug-resistant gastric cancer cells (122).

Accordingly, our previous study found that tunicamycin-induced ER

stress reduces the chemoresistance of hypopharyngeal carcinoma cells

both in vitro and in vivo (Figure 2B) (123). WW domain containing

oxidoreductase (WWOX) makes epithelial ovarian cancer cells more

sensitive to paclitaxel via ER stress-induced apoptosis (124). Betulinic

acid treatment increases GRP78-dependent ER stress and exerts

chemosensitizing effects in breast cancer (125). transmembrane 9

superfamily 4 (TM9SF4) knockdown increases ER stress, reduces cell

growth, and induces cell death in chemoresistant breast cancer cells

(126). Furthermore, PERK activation induces ER stress and improves
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the chemosensitivity to taxol treatment in colorectal cancer cells

(127), and a combination of 5-FU and withaferin-A upregulates the

expression of ER stress sensors and induces PERK axis-mediated

apoptosis (128). Hence, a thorough understanding of the opposing

roles of ER stress in regulating the drug resistance and sensitivity of

cancer cells may have significant implications for the selection of

different treatment strategies.
3.3 ER stress and CSCs

ER stress plays a crucial role in regulating the functions of stem-

like cells. Endodermal differentiation of mouse embryonic stem cells

could be induced by the ER stress-inducing agents thapsigargin and

tunicamycin (129). ER stress response promotes BMP9-induced bone

formation and matrix mineralization in mesenchymal stem cells

(130). According to research findings, UPR activates ER stress,

which causes rapid loss of stemness in intestinal epithelial cells

(IECs) (131). A recent study found that excessive ER stress causes

apoptosis in intestinal epithelial stem cells, thereby resulting in

aggravated colitis (132). Another study made a similar observation

in IECs. ER stress is induced during the transition from stem cells to

transit-amplifying cells and mediates stem cell loss in a PERK–eIF2a–
dependent manner. Similarly, ER stress disrupts Wnt signaling

downstream of nuclear b-catenin, which causes the death of Apc-

mutated intestinal epithelial stem cells (133). Furthermore, XBP1 has

been shown to decrease the stemness of IECs (134).

In tumors, ER proteostasis is important for maintaining CSC

integrity. In breast cancer, stem-like cells express high levels of ER-

associated p97, the loss of which activates UPR and alters the expressions

of multiple stemness-associated genes, thus leading to the demise of CSCs

(135). ER stress also activates UPR, which promotes the differentiation of

colon CSCs, thus leading to enhanced chemosensitivity (136). For

instance, overexpression of ATF6 and XBP1 reduces the proliferation

and stemness of colorectal cancer cells by activating PERK signaling

(137). Moreover, brefeldin A, an inducer of ER stress in eukaryotic cells,

inhibits CSC-like properties in colorectal (138) and breast cancer cells

(139). Interestingly, CSCs are sensitive to the mitochondrial targeting

antibiotic doxycycline, which induces ATF4-mediated ER stress and

leads to apoptosis selectively in the cancer stem-like cells (140).

Furthermore, the adaptation to ER stress drives the malignancy and

drug resistance of tumor cells. Study of the relationship between CSCs

and adaptation to ER stress has revealed that the proportion of apoptosis-

resistant CSCs is elevated in ER stress-resistant melanoma. Similarly,

Homeobox B9 (HOXB9) regulates the self-renewal of CSCs and

antagonizes ER stress-induced apoptosis by modulating the miR–765–

FOXA2 axis in melanoma cells (141). Therefore, apart from the role of

ER stress in CSC differentiation and apoptosis, mechanisms involving ER

stress regulation on CSC plasticity, such as quiescence and activation, and

the interchange of coexistence of diverse phenotypes need to be

further investigated.
3.4 ER stress and angiogenesis and VM

Evidence suggests that ER stress alters the expression and activity

of vascular growth factors, thereby modulating the functions of
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vascular endothelial cells and tumor angiogenesis (142–145).

Hepatitis B virus small envelope protein-induced ER stress activates

UPR signaling, thereby increasing the expression and secretion of

vascular endothelial growth factor (VEGF) A and, consequently, the

angiogenic capacity of hepatocellular carcinoma cells (146). In

malignant glioma, IRE1 is a critical regulator of tumor angiogenesis

and metastasis. Inhibiting IRE1a is associated with a decrease in

proangiogenic cytokines, such as VEGFA, IL-1beta, IL-6, and IL-8,

and an increase in antiangiogenic gene transcripts (147). In

collaboration with hypoxia-inducing factor 1a (HIF1a), XBP1s
drive the angiogenesis and progression of TNBC as the downstream

transcription factor of IRE1a (148). However, ER stress has been

shown to drive antiangiogenic responses. ER stress-induced miR-153

expression in breast cancer cells activates IRE1a and XBP1, which

inhibits HIF1a expression and tumor angiogenesis by decreasing

VEGFA production (149). Neuronal ER stress inhibits myeloid cell-

induced vascular regeneration by promoting the degradation of

IRE1a-dependent netrin-1 (150). Moreover, C/EBP homologous

protein-10 (CHOP-10) can activate an antiangiogenic response in

postnatal neovascularization under ER stress (151). By activating p38-

mediated ER stress, low-intensity pulsed ultrasound increases

apoptosis and inhibits angiogenesis in endothelial cells (152).

The majority of studies linking ER stress to tumor angiogenesis

have focused on VEGF and other factors with vasomodulatory

properties in angiogenic cascades modulated by the UPR. However,

the influences of ER stress on the VMphenotypes of cancer cells remain

poorly understood. TNBC cells with mesenchymal phenotypes form

tubular VM networks in three-dimensional (3D) matrigel cultures. For

the first time, Liu et al. reported that the activation of ER stress reduces

VM phenotypes in TNBC cells via regulation of TGF-b1/Smads and b-
catenin signaling pathways (Figure 2B) (153). As a potential

transdifferentiation event indicative of the unique capability of certain

aggressive tumor cells associated with EMT and stemness, VM

plasticity has profound implications in tumor progression. Therefore,

the potential regulatory mechanisms involved in ER stress and VM

should be clarified to facilitate the development of targeted therapies

that prevent tumor angiogenesis and consequently impede

tumor progression.
3.5 ER stress, calcium signaling, and EMP

The ER must maintain a tightly controlled oxidizing and Ca2

+-rich folding environment for protein synthesis, folding, and

modification. ER-resident chaperones, such as immunoglobulin

binding protein, calreticulin, calnexin, and protein disulfide

isomerases, play critical roles in ER protein folding and Ca2+

buffering. ER-Ca2+ depletion may disrupt ER homeostasis and the

balance between protein folding load and capacity (154). Many

aspects of tumor activity, including proliferation, angiogenesis,

invasion, EMT, and drug resistance, involve calcium signaling

pathways (155). TGF-b-induced EMT is associated with alterations

in ER calcium homeostasis in human breast cancer cells (156).

Calreticulin is an ER-resident multifunctional protein that

promotes TGF-b-induced EMT (Figure 2B) (157). Moreover, the

effect of cyclophilin B (CypB) regulation on Slug expression in renal

tubular epithelial cells is dependent on its interaction with calreticulin
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and calreticulin-dependent calcium signaling in the ER lumen (158).

Another study found that the ER transmembrane protein

transmembrane and coiled-coil domains 1 (TMCO1) is important

for maintaining calcium homeostasis, promoting EMT in human

gliomas, and inducing cell migration and invasion (159).

Furthermore, EMT remodels Ca2+ influx in breast cancer cells,

possibly by changing the functions of the store-operated Ca2+

channel poreforming subunit ORAI1 and transient receptor

potential canonical type 1 (TRPC1) channels (160). In terms of the

regulation of specific mesenchymal markers, ER ATPase inhibitor

thapsigargin is an inducer of vimentin in breast cancer cells, which

involves store-operated Ca2+ entry (161). Calreticulin induces EMT in

pancreatic cancer via intracellular free Ca2+-dependent, thapsigargin-

induced acute stress and IRE1a-mediated chronic ER stress

(Figure 2B) (162).

EMP-associated hybrid E/M or pEMT states are distinct from

classical EMT and could confer unique malignant properties to tumor

cells (17, 22, 163). Recent studies have revealed the links between

calcium signaling and pEMT (Figure 2B). Prolonged calcium

signaling induces pEMT in carcinoma cells, which is accompanied

by the internalization of membrane-associated E-cadherin and other

epithelial proteins and an increase in cellular migration and invasion

(164). Tumor cells within a mesenchymal state have more

intracellular calcium, and ER, as one of the Ca2+ stores in cells,

might play a role to facilitate intracellular Ca2+ reaching levels

sufficient for P-EMT. However, the point of convergence of the P-

EMT and complete EMT transitions remains unclear. It was reported

that ER stressor thapsigargin increased cytosolic Ca2+ concentration,

while it was also shown to increase levels of active TGF-b1 (165). It is
possible that Ca2+ dysregulation induced the mesenchymal

transformation of cells and then TGF-b1 activation leads to a

complete EMT response. Thus, extracellular signals prompt an

increase in Ca2+ flux, and the release of Ca2+ from ER stores

mediates EMT in multiple ways. Therefore, exploring the potential

therapeutic benefits of targeting Ca2+ signaling to block EMP in

cancer cells could provide a novel complement to standard therapies.
4 Discussion

Cellular plasticity has emerged as a well-recognized mode of

therapeutic resistance in various cancers in recent years. Tumor

progression, metastasis, and drug resistance are driven by cellular

plasticity. The mechanisms governing this cell state switch have also

been elucidated. Persistent ER stress, an emerging cancer hallmark, is

caused by various factors that disrupt ER homeostasis in malignant

cells. It is well known that unresolved ER stress promotes tumor cell

malignancy and drug resistance, thus contributing to the acquisition

of EMP, stemness, and drug resistance plasticity to promote

tumor progression.

However, our understanding of the interactions between ER stress

and cancer cell plasticity and the levels and specificities of regulation

for a specific type of plasticity is still limited and warrants further

investigation. Decoding how the ER stress pathway regulates cell

plasticity is a major challenge for researchers and necessitates defining

the rationale for drug design and application. Deciphering the

molecular connections between ER stress and cancer cell plasticity
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will definitely contribute to the development of new therapeutic

strategies that, when combined with existing anticancer treatments,

will provide better clinical responses in patients.
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