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Deep learning for real-time
detection of breast cancer
presenting pathological nipple
discharge by ductoscopy

Feng Xu1*‡, Chuang Zhu2*‡, Zhihao Wang2‡, Lei Zhang1†‡,
Haifeng Gao3‡, Zhenhai Ma5‡, Yue Gao5, Yang Guo6,
Xuewen Li7, Yunzhao Luo1, Mengxin Li1, Guangqian Shen1,
He Liu1, Yanshuang Li1, Chao Zhang1, Jianxiu Cui1, Jie Li1,
Hongchuan Jiang1* and Jun Liu1*

1Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China,
2School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China,
3Breast Disease Prevention and Treatment Center, Haidian Maternal and Child Health
Hospital, Beijing, China, 4Department of Breast Surgery, The Second Hospital of Dalian Medical
University, Dalian, China, 5Department of General Surgery , Beijing Huairou Hospital, Beijing, China,
6Department of Breast Surgery, Beijing Yanqing District Maternal and Child Health Care
Hospital, Beijing, China, 7Department of General Surgery, Beijing Pinggu Hospital, Beijing, China
Objective: As a common breast cancer-related complaint, pathological nipple

discharge (PND) detected by ductoscopy is oftenmissed diagnosed. Deep learning

techniques have enabled great advances in clinical imaging but are rarely applied in

breast cancer with PND. This study aimed to design and validate an Intelligent

Ductoscopy for Breast Cancer Diagnostic System (IDBCS) for breast cancer

diagnosis by analyzing real-time imaging data acquired by ductoscopy.

Materials and methods: The present multicenter, case-control trial was carried

out in 6 hospitals in China. Images for consecutive patients, aged ≥18 years, with

no previous ductoscopy, were obtained from the involved hospitals. All

individuals with PND confirmed from breast lesions by ductoscopy were

eligible. Images from Beijing Chao-Yang Hospital were randomly assigned (8:2)

to the training (IDBCS development) and internal validation (performance

evaluation of the IDBCS) datasets. Diagnostic performance was further

assessed with internal and prospective validation datasets from Beijing Chao-

Yang Hospital; further external validation was carried out with datasets from 5

primary care hospitals. Diagnostic accuracies, sensitivities, specificities, and

positive and negative predictive values for IDBCS and endoscopists (expert,

competent, or trainee) in the detection of malignant lesions were obtained by

the Clopper-Pearson method.

Results: Totally 11305 ductoscopy images in 1072 patients were utilized for

developing and testing the IDBCS. Area under the curves (AUCs) in breast cancer

detection were 0·975 (95%CI 0·899-0·998) and 0·954 (95%CI 0·925-0·975) in

the internal validation and prospective datasets, respectively, and ranged

between 0·922 (95%CI 0·866-0·960) and 0·965 (95%CI 0·892-0·994) in the 5

external validation datasets. The IDBCS had superior diagnostic accuracy
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compared with expert (0.912 [95%CI 0.839-0.959] vs 0.726 [0.672-0.775];

p<0.001), competent (0.699 [95%CI 0.645-0.750], p<0.001), and trainee (0.703

[95%CI 0.648-0.753], p<0.001) endoscopists.

Conclusions: IDBCS outperforms clinical oncologists, achieving high accuracy in

diagnosing breast cancer with PND. The novel system could help endoscopists

improve their diagnostic efficacy in breast cancer diagnosis.
KEYWORDS

breast cancer, deep learning, pathological nipple discharge, ductoscopy, diagnosis
Introduction

Breast cancer (BC) accounts for 24.2% of all cancers diagnosed

in women worldwide, constituting the first female cancer (1).

Pathological nipple discharge (PND) represents a common BC-

related complaint (2). Compared to other imaging methods such as

sonography, mammography and MRI, ductoscopy is currently the

only intuitive and effective technique for clinical screening and

diagnosis of BC because it allows for direct visualization of

intraductal lesions that cause PND (3). Meanwhile, ductoscopy

solves the problem of intraductal lesion localization and reduces the

scope of surgery in most PND cases. Additionally, some surgical

indications for PND have been revised, avoiding unnecessary

surgery in some patients. However, early BC with PND often

lacks typical endoscopic features leading to a missed diagnosis.

Besides, intraductal biopsy under ductoscopy makes it difficult to

diagnose the tumor histologically without surgery (4). On the other

hand, there is a huge deficit of endoscopists in China, whose

number is far from meeting the actual clinical needs. In addition,

endoscopists in different levels of hospitals have distinct levels of

expertise. As a result, there is a low detection rate for breast cancer

with PND, which seriously affects the prognosis and aggravates the

economic pressure on patients.

Deep-leaning (DL) methods have been utilized more commonly

compared with other traditional machine-learning techniques (5).

DL approaches have an outstanding capability of retracting visual

properties of objects, even those not detectable by humans, and

quickly analyzing large datasets (6, 7). DL-based approaches are

increasingly applied to real-time computer-aided diagnosis (CAD)

systems in gastrointestinal endoscopy (8–10). Mounting evidence

reveals advantages for DL CAD models in detecting and

characterizing diverse cancerous tumors (11, 12), at all levels of

the gastrointestinal tract (13). To improve the diagnosis of

intraductal lesions, especially BC, by ductoscopy, we aim to

design tools that enhance real-time detection of intraductal

cancers, providing guidance utilizing a pre-trained deep

learning algorithm.

In this work, a deep learning model was designed for BC

detection based on a fully convolutional network, called the

Intelligent Ductoscopy for Breast Cancer Diagnostic System
02
(IDBCS). The IDBCS and oncologists were comparatively

assessed for diagnostic performance in internal test and

prospective sets based on endoscopic images in patients

administered routine ductoscopy screening for pathological nipple

discharge. The IDBCS was next validated in other external

validation sets in five municipal hospitals. The current study

demonstrated that IDBCS had encouraging performance in

distinguishing cancerous lesions. The novel IDBCS-based artificial

intelligence platform could yield higher malignancy detection rates,

thus improving patient survival.
Methods

Study design and patients

The present multicenter, case-control, diagnostic trial was

carried out in 6 hospitals in China. Endoscopic images were

retrospectively retrieved for the design and validation of an

Intelligent Ductoscopy for Breast Cancer Diagnostic System

(IDBCS) from the imaging database of Beijing Chao-Yang

hospital (BCYH) between January 2018 and December 2020.

To generalize IDBCS applicability in clinic, endoscopic images

were also retrieved from 5 municipal/provincial hospitals in China,

including Beijing Haidian District Maternal and Child Health Care

Hospital (HDH), the Second Hospital of Dalian Medical University

(DLH), Beijing Huairou Hospital (HRH), Beijing Pinggu Hospital

(PGH), and Beijing Yanqing District Maternal and Child Health

Care Hospital (YQH).

All images were acquired at high-resolution but utilizing

multiple endoscopes (FVY-680, Blade, China; Schoelly, German)

and saved as jpeg files. Five endoscopists at BCYH, with at least 5

years of experience and >500 examinations performed, evaluated

the image quality.

Inclusion criteria were: 1) PND with unilateral single duct; 2)

postoperative histopathology; 3) complete baseline data, including

age, duration of PND, characteristics of PND, color of nipple fluid,

lesion base, intraductal location and morphology of tumor, and

palpable mass; 4) ductoscopy carried out for pretreatment

examination; 5) ductoscopy images with standard white light.
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Exclusion criteria were: 1) PND during pregnancy or lactation; 2)

incomplete postsurgical pathological data; 3) poor quality ductoscopy

images such as narrow-band imaging, motion-blurring, blank and

out-of-focus; 4) PND manifested as multiple ducts.

The present trial had approval from the respective institutional

review boards of various participating hospitals, and followed the

Helsinki declaration. Each patient assessed in the prospective

validation dataset (BCYH) provided signed informed consent

prior to enrolment. In individuals with endoscopic images stored

in retrospective databases at various participating hospitals, the

requirement for informed consent was waived by the respective

institutional review boards.
Development of the IDBCS algorithm

Dataset
Images from Chaoyang Hospital were divided into training and

internal validation datasets according to a ratio of 8:2. To better

train the AI model, image augmentation methods (14), e.g.,

horizontal and vertical flipping, were adopted. The training

dataset was employed for model training, and the internal

validation dataset was utilized to evaluate the model’s performance.

Overview
The IDBCS algorithm was developed based on a deep

Convolutional Neural Network (15) (CNN), and achieved patient-

level diagnosis using a voting mechanism. Specifically, the IDBCS

algorithm consists of two stages. In the first stage, multiple images

from the same patient are fed into the backbone (DenseNet) to obtain

a series of positive probability scores. In the second stage, the model

uses a voting mechanism where the positive probability scores of all

images are averaged to obtain an average score, and when the average

score exceeds a threshold, the patient is classified as positive.

Backbone
During the development of the IDBCS algorithm, we applied

four deep learning models, including VGG (16), Inception-v3 (17),

ResNet (18), and DenseNet (19), which were all trained using the

same dataset. DenseNet had the best performance in the validation

dataset. Therefore, DenseNet was selected to develop IDBCS.

DenseNet consists of multiple dense blocks and connects each

layer to the others by feed-forward. In DenseNet, every layer

takes supplemental input from the previous layers and transmits

the extracted features to following layers. Thus, every layer can

receive collective knowledge from the previous ones. The DenseNet

structure solves the problem of vanishing gradient during the

training process, reduces the number of parameters, and

improves the inference speed while ensuring high performance,

which matches the real-time diagnosis characteristics of

IDBCS. (Figure 1).

Training
For each ductoscopy image, we scale the image to 224 pixels in

length and width, and normalize the image with a mean set to
Frontiers in Oncology 03
[0.4914, 0.4822, 0.4465], variance set to [0.2023, 0.1994, 0.2010]. We

train the model on Tesla T4 GPU with the learning rate set to 0.01

and the batch size set to 32.
Validation of the IDBCS algorithm

We first used the internal validation and prospective datasets

retrieved from Chaoyang Hospital to preliminarily assess the

model’s performance. To further assess the model’s robustness

and generalization, 5 external validation datasets from different

hospitals were utilized for model testing.

For performance comparison between IDBCS and endoscopists,

we invited 3 experts, 3 competent, and 3 trainees to diagnose 102

patients in the prospective Chaoyang dataset. Before the diagnosis,

all 9 doctors had no information about the dataset to ensure the

authenticity of the experiment.
Statistical analysis

Diagnostic accuracy (ACC), sensitivity (SENS), specificity

(SPEC), positive (PPV) and negative (NPV) predictive values, and

the area under the receiver operating characteristic (20) (ROC)

curve (AUC) were determined to evaluate the performance of the

IDBCS in breast ductal tumor diagnosis.

All the metrics are calculated based on patient-level malignant

probability according to the following equation.

Ppatient = average(p1, p2, p3 … pn) (1)

where p1,p2,…,pn are the malignant probability of all the images

from the same patient. All the metrics are calculated according to

the following equations.

ACC =
TP   +  TN

TP   +  TN   +   FP   +   FN
  (2)

SENS =
TP

TP + FN
(3)

SPEC =
TN

TN + FP
(4)

PPV =
TP

TP + FP
(5)

NPV =
TN

TN + FN
(6)

where TP, TN, FP, and FN represent true positives, true

negatives, false positives, and false negatives, respectively.

For the comparison of IDBCS and endoscopists for diagnostic

performance, we collected the diagnostic results of expert,

competent and trainee endoscopists. According to these

diagnostic results, ACC, SENS, SPEC, PPV and NPV were

calculated to assess the difference in diagnostic performance

between IDBCS and endoscopists. Meanwhile, all statistics were
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two-sided, and 95% confidence intervals for various metrics were

determined by the Bootstrap method (21). All continuous variables

were compared by the t-test. All statistical analyses were performed

with the MedCalc software (22) and python 3.7.
Results

Baseline features of the training and test
datasets

Between January 1, 2018, and December 31, 2020, 456 patients

were treated at BCYH (Figure 2). Due to unknown pathological

diagnosis and incomplete pathological data, 107 patients were
Frontiers in Oncology 04
excluded. Following quality control, 8033 images were excluded

as tumor-free or poor-quality images. For cancer cases, only the

images of cancerous tumors were examined (n=1552); for those

with no malignancy, 1720 images were utilized as controls

(Figure 2). In the prospective validation dataset, 151 cancerous

tumors and 360 control images were prospectively obtained

between January 1, 2021, and December 31, 2021.

At the other five participating hospitals, between January 1,

2020, and December 31, 2020, 793 cancer and 242 control images

were obtained from DLH, 902 cancer and 400 control images from

HDH, 583 cancer and 276 control images from HRH, 185 cancer

and 50 control images from YQH, and 371 cancer and 99 control

images from PGH. Overall, 7684 ductoscopy images in 1072

participants were utilized for IDBCS development and testing.
A

B

FIGURE 1

Flowchart depicting the diagnostic process of IDBCS. Part (A) in this figure shows the whole process of automatic diagnosis of ductoscopy images.
The image obtained by the ductoscopy machine is transmitted to the server containing the AI algorithm in real-time, and the result is given after the
automatic diagnosis of the AI algorithm, and the corresponding explanation is given for the diagnosis result. Part (B) in this figure shows the model
structure of the diagnosing algorithm. Ductoscopy images were normalized first and then fed into the DenseNet model. DenseNet contains several
Dense Blocks and calculates features of the input images. The output features were fed into the classifier with a voting mechanism and the
diagnosing result was given.
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BC prevalence rates were 26.8% (77/287) in the training dataset,

29.0% (18/62) in the internal validation dataset, 31.4% (32/102) in

the prospective validation dataset, 27.7% (41/148) in DLH, 34.1%

(73/214) in HDH, 26.7% (32/120) in HRH, 22.4% (15/67) in YQH,

and 23.6% (17/72) in PGH (Table 1).

In the training set, bloody PND accounted for 35.1% (27/77) in

the BC patient group versus 13.3% (28/210) in control patients

(p<0.001). Ages were 46 (23-85) and 43 (19-80) years in the BC and

control groups, respectively. Compared with non-BC patients, PND

colors in BC patients were: colorless (n=2 vs. n=51), yellow (n = 48

vs. n=131), brown (n = 17 vs. n=18), and red (n = 10 vs. n=10)

(p<0.001). There were 16.9% BC patients with palpable masses,

whereas 5.2% of patients with palpable masses were pathologically

proven as non-BC (p=0.002) (Table 1). In addition, irregular lesions

that were visible by ductoscopy accounted for 57.1% (44/77) in the

BC patient group versus 32.4% (68/210) in control patients

(p<0.001). The detailed baseline characteristics in other test

datasets and a study flowchart are shown in Table 1 and

Figure 2, respectively.
Diagnostic performance of IDBCS

In order to identify the most suitable base model for breast

cancer diagnosis, the performances of Resnet, DenseNet, Inception

and VGG were compared. Finally, we trained and assessed the

performance of DenseNet as the best model in all seven validation

sets (Supplemental Figure 1). We found that the Intelligent

Ductoscopy for Breast Cancer Diagnostic System (IDBCS) had
Frontiers in Oncology 05
high performance in identifying BC patients. In internal and

prospective BCYH validation datasets, diagnostic accuracies were

88.7% and 91.2%, respectively. In external validation datasets,

accuracies were 84.2% for HDH, 86.6% for YQH, 87.8% for DLH,

89.7% for HRH, and 90.3% for PGH. The sensitivity and specificity

of the novel IDBCS were >80% in the totality of validation datasets;

its NPVs were higher than 90%, and PPVs were 66.7-76.7%

(Table 2). IDBCS’ specificity and PPV were the lowest in DLH

among all validation datasets. Elevated AUCs (0.922-0.965)

suggested a great diagnostic performance for the IDBCS in the

five validation datasets (Figure 3).

Furthermore, this model was extended to be compatible with

two groups of tasks for cancer subtype prediction. The numbers of

lesions in the two categories were 170 (ductal carcinoma in situ,

DCIS) and 40 (invasive breast carcinoma, IBC), respectively. The

overall accuracies in differentiating the two groups ranged from

50.0% to 70.3% in all validation datasets (Supplemental Figure 2).

The model performed well in distinguishing benign from malignant

tumors, while showing lower potential in differentiating cancer

subtypes (DCIS vs. IBC).
Performance of IDBCS versus endoscopists

Table 3 summarizes the results of the IDBCS and 9 endoscopists

for differentiating between 511 (151 [29.5%] cancer and 360 [70.5%]

control images) in the prospective validation dataset. IDBCS detected

BC with an accuracy of 0.912 (95%CI 0.839-0.959). In comparison,

expert endoscopists had markedly reduced accuracy (0·726, 95%CI
FIGURE 2

Flowchart for the development and validation of the IDBCS system for diagnosing breast cancer with pathological nipple discharge.
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TABLE 1 Baseline characteristics.

BCYH train-
ing set

BCYH inter-
nal valida-
tion set

BCYH pro-
spective
test set

DLH test
set

HDH test
set

HRH test
set

YQH test
set

PGH test
set

Non-
BC

BC Non-
BC

BC Non-
BC

BC Non-
BC

BC Non-
BC

BC Non-
BC

BC Non-
BC

BC Non-
BC

BC

Patients 210 77 44 18 70 32 107 41 141 73 88 32 52 15 55 17

Images 1376 1241 344 311 360 151 793 242 902 400 583 276 185 50 371 99

Age (year)

≤40 97 32 18 5 30 12 47 18 54 30 31 10 19 6 24 7

>40 113 45 26 13 40 20 60 23 87 43 57 22 33 9 31 10

Duration of PND (month)

≤6 174 69 36 16 49 26 61 28 100 49 62 25 40 11 30 13

>6 36 8 8 2 21 6 46 13 41 24 26 7 12 4 25 4

PND characteristics

Serous 182 50 37 10 60 15 88 20 108 40 69 20 44 10 45 13

Bloody 28 27 7 8 10 17 19 21 33 33 19 12 8 5 10 4

Spontaneous or not

Spontaneous 120 46 34 15 43 23 84 32 111 58 68 17 28 8 36 9

Non-
spontaneous

90 31 10 3 27 9 23 9 30 15 20 15 24 7 19 8

Color of PND

Colorless 51 2 7 2 14 3 55 9 36 20 25 8 14 3 10 6

Yellow 131 48 30 8 46 12 33 11 72 20 44 12 30 7 35 7

Brown 18 17 5 7 7 13 9 11 16 18 13 8 6 3 4 1

Red 10 10 2 1 3 4 10 10 17 15 6 4 2 2 6 3

Ductal wall

Smooth 124 37 32 7 42 13 80 18 60 33 51 16 38 7 40 10

Rough 86 40 12 11 28 19 27 23 81 40 37 16 14 8 15 7

Lesion base

Broad 63 31 19 10 23 17 43 21 46 34 42 18 13 8 25 9

Narrow 147 46 25 8 47 15 64 20 95 39 46 14 39 7 30 8

Morphology

Regular 142 33 27 6 51 14 81 16 90 32 53 15 30 6 34 8

Irregular 68 44 17 12 19 18 26 25 51 41 35 17 22 9 21 9

Tumor surface

Smooth 187 53 37 11 60 18 90 21 110 45 72 21 44 11 45 13

Bloody 23 24 7 7 10 14 17 20 31 28 16 11 8 4 10 4

Palpable mass

Present 11 13 5 6 4 7 14 13 15 15 3 5 6 2 3 4

Absent 199 64 39 12 66 25 93 28 126 58 85 27 46 13 52 13
F
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0.672-0.775; p<0.001), as well as competent endoscopists (0.699, 95%

CI 0.645-0.750; p<0.001) and trainee endoscopists (0.702, 95%CI

0.648-0.753; p<0.001). Moreover, there was no statistical difference in

specificities. However, sensitivities, PPVs and NPVs for all three

categories of endoscopists were significantly lower than those of

IDBCS (p<0.001).

Among endoscopists, expert endoscopists had significantly

higher sensitivity than the competent (0.250, 95%CI 0.167-0.349 vs.

0.188, 95%CI 0.115-0.280; p<0.001) and trainee (0.146, 95%CI 0.082-

0.233; p<0.001) endoscopist groups. Other diagnostic indicators such

as accuracy, specificity, PPV and NPV were similar among these

endoscopist groups. Here we also attached our model and the data of

previous articles for comparison in Supplemental Table 1.
Visual explanation of the decision made by
the IDBCS

To investigate IDBCS interpretability, we used the Score-CAM

(23) algorithm to identify important regions on a single tumor

image that supports the algorithm’s decision. The heatmap in

Figure 4 highlights the important regions in red and the less

important ones in blue. In the heatmaps, the important regions in

malignant tumors were often accompanied by hemorrhage.

Therefore, we designed a study to further investigate the

correlation between hemorrhage and IDBCS interpretability.

According to the study results, the average intersection over

union (IoU) value between the areas of malignant tumors and

those of hemorrhage was 0.598, which was higher than the average

IoU (0.175, p<0.001) in benign intraductal lesions.
Diagnosing system based on IDBCS

The developed IDBCS with DenseNet was able to analyze and

process as many as 31 images per second (32ms per image) on
Frontiers in Oncology 07
average for real-time ductoscopy diagnosis using Nvidia Tesla T4

GPU. We also test the diagnosing speed of IDBCS under the other

backbones: VGG (250 images per second), ResNet (70 images per

second), and Inception (43 images per second). Our IDBCS can

meet real-time requirements under all the above four backbones.

Although the diagnosing speeds under VGG, ResNet and Inception

are faster, IDBCS with DenseNet can achieve higher diagnostic

accuracy. In addition, we apply the IDBCS algorithm to the current

ductoscopy system. Specifically, the ductoscopy images were

transmitted to our computing server and then the diagnosing

result given by IDBCS will be shown on the monitor in real-time.

The demo video in our supplementary file shows an example of

IDBCS real-time diagnosing.
Discussion

Here, a deep learning model was utilized for constructing an

artificial intelligence-based BC diagnostic system, termed IDBCS,

which was trained and validated with 11305 endoscopy images

acquired in 1072 individuals in 6 hospitals with diverse experiences

and amounts of pathological nipple discharge cases. The IDBCS had

high accuracy, sensitivity, and specificity for BC detection in

retrospective and prospective observational settings. This study

first performed artificial intelligence-guided breast cancer

detect ion according to PND endoscopic images . We

demonstrated that the IDBCS was superior to endoscopists in

differentiating malignancy from benignity for intraductal tumors.

Additionally, an evidence-based visual explanation derived from the

IDBCS was provided, which may be used routinely in the clinic.

PND is one of the three major symptoms of breast disease.

Malignancy rates between 1% and 23% have been reported in PND

cases (24). To characterize PND, mammography and

ultrasonography are frequently employed, but the results are often

negative (25). Moreover, breast MRI does not add much (26).
TABLE 2 Performance of IDBCS in different validation sets.

BCYH validation External validation set

Internal validation
set

Prospective
set

HDH YQH DLH HRH PGH

AUC 0.975 [0.899, 0.998] 0.954 [0.925,
0.975]

0.924 [0.883,
0.954]

0.924 [0.833,
0.975]

0.922 [0.866,
0.960]

0.944 [0.885,
0.978]

0.965 [0.892,
0.994]

ACC (95%
CI)

88.71 [78.11, 95.34]
91.18 [83.91,
95.89]

84.17 [78.92,
88.55]

86.57 [76.03,
93.67]

87.76 [81.34,
92.58]

89.66 [82.63,
94.54]

90.28 [80.99,
96.00]

SENS (95%
CI)

88.89 [65.29, 98.62] 84.38 [67.21,
94.72]

91.67 [82.74,
96.88]

80.00 [51.91,
95.67]

80.49 [65.13,
91.18]

86.67 [69.28,
96.24]

94.12 [71.31,
99.85]

SPEC (95%
CI)

88.64 [75.44, 96.21] 94.29 [86.01,
98.42]

80.95 [74.19,
86.59]

88.46 [76.56,
96.65]

90.57 [83.33,
95.38]

90.70 [82.49,
95.90]

89.09 [77.75,
95.89]

PPV (95%
CI)

76.19 [57.98, 88.13] 87.10 [72.04,
94.65]

67.35 [59.98,
73.95]

66.67 [47.48,
81.56]

76.74 [64.22,
85.85]

76.47 [62.34,
86.45]

72.73 [55.39,
85.14]

NPV (95%
CI)

95.12 [84.02, 98.64]
92.96 [85.48,
96.73]

95.77 [91.30,
98.00]

93.88 [84.72,
97.70]

92.31 [96.53,
95.73]

95.12 [88.65,
97.99]

98.00 [87.95,
99.70]
95% confidence intervals are included in brackets. AUC, area under the receiver operating characteristic curve; ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predict value;
NPV, negative predict value. BCYH, Beijing Chao-Yang Hospital; HDH, Beijing Haidian District Maternal and Child Health Care Hospital; DLH, the Second Hospital of Dalian Medical
University; HRH, Beijing Huairou Hospital; PGH, Beijing Pinggu Hosptial; YQH, Beijing Yanqing District Maternal and Child Health Care Hospital.
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Furthermore, galactography and cytological analysis of nipple

discharge have low sensitivities, and generally do not identify the

associated pathology (27). Currently, ductoscopy that visualizes

intraductal lesions as a minimally invasive procedure is the most

commonly utilized imaging modality for evaluating PND. However,

the learning curve of ductoscopy is long, and its routine use in PND

cases is limited in clinic. A recent meta-analysis (28) showed pooled

sensitivity and specificity for ductoscopy of 50% (36-64%) and 83%

(81-86%), respectively, which is similar to the detection ability of

endoscopists in this study. Therefore, novel tools for helping

endoscopists differentiate benign tumors from cancerous ones on

ductoscopy images are urgently needed.

DL methods have been predominantly utilized for image

processing. An advantage of DL models is the possibility of

immediate and consistent data reporting, thus reducing the

workload, as well as inconsistencies, and misdiagnoses.

Additionally, it overcomes the inherent limitations of doctors,

including perceptual bias and visual fatigue (29). Besides,
Frontiers in Oncology 08
the DL model-associated visual display further provides

evidence-based classification to help endoscopists interpret the

images. Recently, DL has been broadly employed in endoscopy.

Previously published reports have developed DL models based

on gastroscopy and colonoscopy images for identifying

gastrointestinal tumors (10–12). Li Caofeng et al. developed an

endoscopic image-based nasopharyngeal cancer detection model

to diagnose nasopharyngeal cancer (30). In this study, the IDBCS

was designed for visual diagnosis of breast cancer including the

largest amount of ductoscopy images from routine white-light

imaging methods.

The IDBCS could decrease the reliance upon the endoscopists’

expertise for visual breast cancer diagnosis and increase diagnostic

consistency. A strength of this work is that it included diverse

noncancerous pathologies (i .e . , intraductal papil loma,

inflammation, and ductal hyperplasia) in the control group and

utilized pathological assessment as the gold standard. Consequently,

IDBCS could learn noncancerous properties that usually complicate

breast cancer diagnosis, likely enhancing model performance and

avoiding verification bias. The IDBCS underwent training and fine-

tuning with multiple images acquired in individuals diagnosed at

our center over 3 years, with encouraging performance in a short

learning time, indicating IDBCS ‘learns’ efficiently and has high

productivity. The overall accuracy of the novel IDBCS system was

91.2%, which surpasses the value reported for endoscopists’

diagnosis (31, 32). At our center, the IDBCS system also had

markedly elevated accuracy and specificity compared with

endoscopists at various levels of expertise. The above findings

suggest the IDBCS system has great potential for improving the

diagnosis of breast cancer with PND.

Retrospective trials have assessed the association between

nipple discharge and BC. Ye Han (33) reported the endoscopic

characteristics of bloody discharge, morphology and a wide tumor

base independently predict breast cancer with PND. A meta-

analysis (34) showed that bloody nipple discharge is a predictive

factor of BC risk among diverse discharge colors. However, few

reports focused on the interpretability between bloody nipple

discharge and BC risk. In the current study, the important

regions of malignant tumors were often accompanied by

hemorrhage based on the Score-CAM algorithm. To our

knowledge, marked redness could be associated with dilated

tumor vessels, and the abrupt rupture and necrosis of the local

tissue are associated with tumor-induced fibrosis. Currently, IDBCS
FIGURE 3

IDBCS’s performance on different validation datasets. The datasets
contain BCYH internal validation set, BCYH prospective internal
validation set, HDH external validation set, YQH external validation set,
DLH external validation set, HRH external validation set, and PGH
external validation set. The ROC curve and AUC were all calculated on
the patient level, which has been clarified in equation (1).
TABLE 3 Performance of IDBCS versus human endoscopists in identifying breast cancer in a randomly selected subset of patients (n=102) from the
prospective validation group.

ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%)

IDBCS 91.18 [83.91, 95.89] 84.38 [67.21, 94.72] 94.29 [86.01, 98.42] 87.10 [72.04, 94.65] 92.96 [85.48, 96.73]

Expert endoscopist 72.55 [67.18, 77.47] 25.00 [16.72, 34.88] 94.29 [90.23, 97.01] 66.67 [51.09, 79.29] 73.33 [70.92, 75.62]

Competent endoscopist 69.94 [64.46, 75.02] 18.75 [11.51, 28.01] 93.33 [89.07, 96.31] 56.25 [40.03, 71.23] 71.53 [69.40, 73.58]

Trainee endoscopist 70.26 [64.80, 75.33] 14.58 [8.21, 23.26] 95.71 [92.02, 98.02] 60.87 [41.10, 77.62] 71.03 [69.19, 72.79]
95% confidence intervals are included in brackets.
ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predict value; NPV, negative predict value.
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is included in the routine endoscopic workflow with real-time

evaluation at BCYH, providing free-access to deep learning-aided

breast cancer screening and diagnosis.

There were several limitations in this study. Firstly, the

number of enrolled participants was not large. To overcome this

limitation of small sample size, extensive data augmentation was

carried out in model training. In addition, the proposed model can

only differentiate malignant tumors from benign ones. Although

two BC types were included, i.e., ductal carcinoma in situ and

invasive BC, the overall accuracy of the model in differentiating

them was poor due to their small sample sizes. Future

investigation will expand the new model to further determine

whether the malignant lesions detected are DCIS or IBC.

Furthermore, the training and test datasets mostly included

northern Chinese cases, and IDBCS’ performance in other

ethnicities is unknown. Finally, other clinical data, e.g., age,

PND characteristics and tumor morphology were not

considered. Therefore, a multi-source imaging diagnosis model

should be established for clinical application in breast cancer

detection based on deep learning.

Overall, an efficient real-time AI system using ductoscopy

images was developed for breast cancer detection in the real

world. The IDBCS system had excellent performance in BC

detection in independent validation datasets. However, since this

study was limited by a poor diagnostic value for different BC
Frontiers in Oncology 09
subtypes, multicenter prospective validation with larger datasets is

warranted for high-level evidence in breast cancer subtype analysis.
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phenomenon means that the hemorrhage is an important reason for malignant tumor diagnosing.
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SUPPLEMENTARY VIDEO 1

Instruction of IDBCS real-time diagnostic video. This video shows the real-

time diagnostic process of IDBCS. The diagnostic results are marked in the
upper left corner of the video, with 0 for benign tumor and 1 for malignant

tumor. In this video, all tumors appeared are benign. They appeared at
seconds 11, 18, 21, 24, 54, and 84 of the video, and were all successfully

diagnosed by the algorithm.
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