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Brain tumors represent the leading cause of disease-related mortality and

morbidity in children, with effective treatments urgently required. One factor

limiting the effectiveness of systemic therapy is the blood-brain-barrier (BBB),

which limits the brain penetration of many anticancer drugs. BBB integrity is often

compromised in tumors, referred to as the blood-brain-tumor-barrier (BBTB), and

the impact of a compromised BBTB on the therapeutic sensitivity of brain tumors

has been clearly shown for a few selected agents. However, the heterogeneity of

barrier alteration observed within a single tumor and across distinct pediatric

tumor types represents an additional challenge. Herein, we discuss what is known

regarding the heterogeneity of tumor-associated vasculature in pediatric brain

tumors. We discuss innovative and complementary preclinical model systems that

will facilitate real-time functional analyses of BBTB for all pediatric brain tumor

types. We believe a broader use of these preclinical models will enable us to

develop a greater understanding of the processes underlying tumor-associated

vasculature formation and ultimately more efficacious treatment options.

KEYWORDS
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Introduction

The BBB is established through physical and functional interactions of different cell types,

referred to as the neurovascular unit (NVU) (1–3), including non-fenestrated endothelial cells

(ECs), pericytes, astrocytes andmicroglia (2–4). In addition to these cellular components, the BBB

is further supported by a specialized extracellular matrix (ECM) (5). Here we focus on the

structure and function of these BBB components, highlighting complexities within tumor

vasculature of pediatric brain cancer and advances in innovative vasculature modelling. For

detail into physiological structure and function of NVU components we refer to Table 1. In the

context of brain tumors, the BBB is commonly referred to as the blood-brain tumor barrier

(BBTB) (3) and is generally thought to be more permeable and ‘leaky’ (3, 35) than the BBB under
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normal physiological conditions. Leakiness is generally considered to be a

consequence of cancer cells disrupting the function or distribution of cells

that make up the NVU (36, 37). This relationship is displayed in Figure 1.

Clinically, BBB dysfunction in brain tumors is assessed by contrast

enhanced magnetic resonance imaging (CE-MRI) using a gadolinium-

based contrast agent (38). Studies over the past decade have highlighted

that not all pediatric brain tumors alter BBTB similarly. Instead, BBTB

function is heterogenous between tumor types as well as within

individual tumors (39–42). Understanding BBTB heterogeneity will

allow the development of more targeted and effective treatments of

distinct tumors. Here we discuss observations made in the most common

and also most lethal malignant pediatric brain tumors, Medulloblastoma

(MB) and Diffuse Intrinsic Pontine Glioma (DIPG).
Recent findings highlighting the
heterogeneity of the BBTB integrity
in medulloblastoma

Medulloblastoma (MB) is the most common type of malignant

pediatric embryonal tumor that forms in the cerebellum (43). Large

scale genomics studies have defined MB into four major subgroups,
Frontiers in Oncology 02
namely Wingless (WNT), Sonic Hedgehog (SHH), Group 3 (Gp3)

and Group 4 (Gp4). These subgroups have been further subdivided

into a total of 13 subtypes with distinct molecular and clinical features

(43–46). Standard treatment for children greater than three years of

age includes surgery, radiation to the cranio-spinal axis and adjuvant

chemotherapy (43, 44). WNT-driven MB displays the most favorable

prognosis among the four subgroups (43, 44), in part attributed to

their robust therapeutic response. CE-MRI studies clearly show

variable BBTB integrity across MB subgroups. Solid enhancement

indicative of increased BBTB permeability was observed in WNTMB.

Heterogeneous contrast enhancement was observed in patients with

SHH and Gp3 MB, indicating variable BBTB permeability among

regions of the same tumor. Minimal or non-enhancing tumors with

an entirely intact BBTB were characteristic of Gp4 (47–49).

Elegant preclinical studies are consistent with clinical observations,

with heterogeneous BBTB permeability observed in various widely used

preclinical MB mouse models. High-resolution dynamic CE-MRI

analyses was recently used to evaluate the integrity and permeability

of BBTB in a murine genetically engineered mouse model (GEMM) of

SHH MB and patient-derived orthotopic xenograft (PDOX) models

from SHH and Gp3 MB (39). BBTB integrity was highly variable in

preclinical models of MB, with heterogeneous contrast enhancement
TABLE 1 Structure and function of neurovascular unit components.

Structure Function

Endothelial
Cells

• Continuous monolayer of ECs that are tightly connected via transmembrane tight
junction proteins (3, 6, 7)
• ↑ Mfsda2 expression, ↓ transcytosis (8–10)
• Lack desmosomes and fenestrae (6, 10)

• Facilitates bi-directional transport of substances between
brain parenchyma and blood (9, 10)
• Transport mediated via (6, 10–12):
○ Paracellular diffusion
○ Carrier and receptor mediated transcytosis (9, 11)

• Secrete PDGF-B to recruit pericyte anchorage (10, 13)

Astrocytes • Endfeet processes encapsulate all CNS capillaries and arterioles (3, 10)
• Fine processes extend to synapses, nerve cell bodies, and nodes of Ranvier (7, 14, 15)
• Astrocyte to astrocyte connection and communication via gap junctions (5, 14)
• Two types (14–16):
○ protoplasmic astrocytes: uniform distribution within grey matter

• Complex cells that envelope synapses and microvasculature
○ Fibrous astrocytes: distributed along white matter tracts

• Contact nodes of Ranvier and Oligodendroglia

• Facilitate bi-directional signalling between ECs and neurons
controlling blood flow and neural activity (3, 14, 17)
• Regulator of ion and water homeostasis (3, 10, 14, 15)
• Phagocytic functions: clearing synaptic debris and protein
aggregates (15)
• Promotes and maintains BBB integrity
• Regulator of immune cell entry in the brain (17–19):
○ physiological (restrict)
○ pathological (promote)

Pericytes • Envelop capillaries, highly abundant in the CNS (7, 10)
• Connect with ECs via tight, gap and adherens junctions at peg-socket contacts (20,
21)
• Physiologically static, can remodel upon loss of neighbouring pericytes (7)

• Promote and maintain angiogenesis via crosstalk with ECs
(10, 21, 22)
• Regulates expression of tight and adherens junction proteins
in ECs, thereby controlling BBB permeability (22)
• Regulate capillary blood flow via neuronal coupling (23, 24)
• Redirect and modulate polarisation of astrocyte endfeet on
capillary wall (13, 21)

Microglia • Resident immune cells of the CNS (25, 26)
• Symmetrical extension and retraction of processes allows for surveying of the
environment during physiological conditions (27, 28)
• Little turnover during physiological conditions, remain quiescent (18, 26)
• Activation of resting microglia gives rise to M1 (pro-inflammatory) and M2 (anti-
inflammatory) microglial (18)

• Survey and respond to pathophysiological stressors within the
brain microenvironment to maintain homeostasis (18, 25, 28)
• Mediate tissue repair, activation of inflammation, and
neuronal degradation/repair (18, 28)
• Rapidly respond to threats in pathological conditions,
indicative of morphological changes and chemokine release (28,
29)
• Secrete cytokines to upregulate EC adhesion molecules and
activate an immune response (25)

Basement
Membrane

• Highly organised protein sheet comprised of extracellular matrix proteins (5, 30–32)
• Two types of BM in the brain: endothelial BM and parenchymal BM (5, 31, 33)
• Highly dynamic structure (30, 31)
• Two main families of ECM receptors that aid in cell-cell and cell-matrix
connections: dystroglycans and integrins (5, 33)

• Provides structural support, cell anchoring and signalling
transduction between cells (5, 30, 33)
• Physical barrier restricting paracellular transport of cells and
larger molecules and proteins (including infiltrating leukocytes)
(5)
• Mediates tissue shape and cell polarity (34)
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observed in both SHH and Gp3 PDOXMB. The invasive front of SHH

PDOX tumors displayed minimal contrast enhancement, indicating

clear differences in vascular integrity where tumor tissue meets the

brain parenchyma. A completely intact functional BBTB was observed

in SHH MB tumors initiated in an independent GEMMs despite

significant tumor burden (39, 50), consistent with findings from an

additional GEMM model of SHH MB (50). Together, these findings

indicate that distinct biological processes govern tumor vascularization

in tumors that initiate endogenously (GEMM tumors) compared to

ectopic tumor cell engraftment in an adult host mouse. Recently,

lineage tracing studies performed in a GEMM of SHH MB showed

that Sox2-positive MB cells extend protrusions to directly ensheathe

nearby capillaries, similar to astrocytes endfeet, contributing to a more

intact BBTB formation and function (51). These Sox2-positive MB cells

that construct the BBTB were shown to be mechanoresponsive, with

Piezo2-mediated signaling regulating both the state of Sox2-positive

MB cells and the BBTB. Knockout of Piezo2 resulted in a compromised

BBTB, as shown by intratumoural accumulation of systemically

administered 1kDa Cadaverine and 70kDa Dextran (51), and

extended survival in response to etoposide treatment compared to

tumor-bearing controls. Another study systemically administered

70kDa tetramethylrhodamine (TMR)-dextran to demonstrate that a

GEMM model of WNT MB lack a functional BBTB (50), consistent

with the solid enhancement observed in patients with WNT MB.

Increased BBTB permeability has been suggested to dictate the

improved therapeutic response of WNT MB (52). Indeed, functional

studies have shown that tumors with a permeable BBTB from a

genetically engineered mouse model (GEMM) of WNT MB

responded to vincristine, which does not penetrate well into normal

brain tissue (52). Disruption of WNT signaling restored BBTB

function, blocked delivery of vincristine to the tumor and rendering

them resistant to therapy in vivo. Together these studies point to the
Frontiers in Oncology 03
influence of tumor genotype on the development of an intact BBTB and

reinforce that in vivo preclinical models of MB faithfully recapitulate

the intratumoral and intertumoral heterogeneity of the BBTB

phenotype of primary MB.

Various alterations in a number of components of the NVU is

likely contributing to BBTB dysfunction in MB. The degree of BBTB

permeability observed by MRI was shown to be correlated to

differences in the structural and subcellular features of tumor-

associated vasculature (39). Intact tumor-associated vasculature of

the GEMMmodel of SHH MB displayed organized, linear expression

of junctional markers CD31 and CLDN5, outlining a continuous

vessel structure with extensive astrocytic encircling (39, 51). Basement

membrane components, pericyte coverage and tight junction proteins

were significantly reduced in this model upon genetic deletion of

Piezo2, leading to increased leakage of fluorescent dyes into the brain

parenchyma (51). In SHH and Gp3 PDOX models, the BBTB is

compromised with abnormal barrier features such as disorganized

endothelial cell-cell junctions, minimal astrocyte coverage and the

presence of fenestrated, immature endothelium as determined by the

expression of fenestrae marker Plvap (53, 54), and the loss of Glucose

transporter 1 (Glut1) (53). Similar defects were observed in tumor-

associated vasculature of PDOX and GEMM WNT MB, with

hemorrhagic, aberrant vascular networks displaying a non-BBB

immunophenotype characterized by the ectopic expression of Plvap

and the loss Glut1 (52). Transmission and scanning electron

microscopy confirmed fenestrated pores connecting the luminal

and abluminal compartments of endothelium of tumors from

GEMM WNT MB, with disruption of endothelial tight junctions

also confirmed (52). These vascular changes were not observed in

tumor endothelium from GEMM SHH MB. Transcriptomic analysis

also confirmed that this endothelium was more similar to peripheral

endothelium with the down-regulation of endothelial tight junctional
FIGURE 1

Overview of the structural and anatomical position of the cellular components forming the neurovascular unit (NVU) of the blood-brain-barrier (BBB). In
the BBB the endothelial cells act as the interface between the circulating blood and the brain parenchyma. Interlocked with the endothelial cells via
“peg-and-socket” connections are the pericytes which aid in maintaining and promoting BBB integrity. Additional components of the NVU are astrocytic
endfeet that encapsulate all CNS capillaries for maintenance of the BBB. In the presence of a tumor, heterogeneity of the BBB from the edge (A) to the
core (B) has been identified. (A) At the edge of the tumor, the BBB remains intact, with unperturbed transport across the endothelial cells (paracellular
and carrier/receptor mediated transcytosis). At the core of the tumor (B), permeability of the BBB increases due to loss of astrocytes and pericyte
coverage. In the endothelial cells, junctional integrity diminishes via loss of tight and adherens junctional proteins, while endothelial fenestrations
increase leading to enhanced permeability.
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protein Cldn5 and Glut1, while endothelium from GEMM SHH MB

was very similar to normal brain endothelium (52). Decreased

pericyte coverage was also observed in tumors from GEMM WNT

MB compared to normal coverage in GEMM SHH MB (52).

Whilst the above-mentioned studies have begun to explore

functional differences in BBTB integrity and the structural and sub-

cellular features of tumor-associated vasculature in MB, very little is

known regarding the processes driving tumor vascularization. Several

mechanisms of tumor vascularization have been defined including

sprouting angiogenesis, intussusceptive angiogenesis, vessel co-

option, vasculogenic mimicry and lymphangiogenesis (55).

Histological analysis of brain tumor sections implies a role for

angiogenesis and vascular mimicry in GEMM and PDOX tumor

sections of SHH and Gp3 MB (39), with an earlier study identifying

elevated Vascular endothelial growth factor (VEGF), a principal

angiogenic factor, in cell line xenograft Gp3 models and Gp3 MB

patients (56). Given vasculature architecture has been shown to

influence therapeutic response (52, 57), further characterization of

tumor vasculature and the processes driving this in MB is necessary to

ensure effective treatment of this disease.
An intact BBTB represents a major
hurdle in the treatment of Diffuse
Midline Glioma

Diffuse Intrinsic Pontine Glioma (DIPG), more recently termed

Diffuse Midline Glioma (DMG) (58), is a highly aggressive, lethal

pediatric brain tumor that grows diffusely throughout the brainstem

(59, 60). Surgical options are limited for DMG patients, largely due to

the location of the tumors. Chemotherapy or other targeted therapies

have not been shown to significantly improve survival rates for DMG

patients (60, 61). One proposed explanation for the failure of

systemically delivered therapies in DMG is due to the intact nature

of the BBTB (59, 62, 63), as evidenced by the failure of contrast-

enhancing agents to penetrate tumor tissue. Histological and

molecular analyses of primary DMG, PDOX and in utero

electroporation (IUE) mouse models, all revealed a minimal change

in vascular phenotype within tumors compared to normal brain (58).

The ECs displayed continuous expression junctional proteins CLDN5

and CD31, normal expression of the transporter Glut1 and did not

express the pathological marker, Plvap. Extensive coverage by

pericytes was also revealed and administration of 10kDa TMR-

dextran in the IUE model, showing limited leakage. Together, these

findings suggest that blood vessels are unaffected by the presence of

DMG cells, possibly explaining why systemic therapy is not

efficacious for this disease. Instead, novel delivery technologies such

as small lipophilic drugs designed to cross an intact BBTB with

minimal active efflux, are likely to be more successful. Another

emerging technology is MRI-guided focused ultrasound (MRIg-

FUS) that induces transient openings of the BBB by acoustic

activation of circulating microbubbles. This technique has been

shown to disrupt the BBB in a controllable manner in both animal

models and in patients with high grade gliomas (64, 65). More

recently, a similar approach was applied to target blood vessels in a

PDOX model for DMG, revealing a significant increase in intra-
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tumoral doxorubicin concentrations and reduced tumor volume

through MRIg-FUS (66).

The studies described here have begun to unravel the complexity

of BBTB in MB and DMG and the relevance of modifying BBTB

function for more effective, targeted treatment. However, before we

can do this, a better understanding of the processes underlying tumor

vascularization and the tumor-specific changes in NVU composition

and BBTB function are urgently required. Next, we describe a range of

innovative preclinical models that can be utilized to accelerate this

understudied aspect of pediatric brain tumor biology.
Innovative preclinical models
to interrogate pediatric brain
tumor vasculature

Preclinical mouse PDOX and GEMM models of MB and DMG

are widely used as the gold standard for preclinical testing of novel

therapeutics (67–69). Studies utilizing these models clearly show that

a greater understanding of how tumor cells interact with each other,

and their surrounding microenvironment is urgently needed. Further

to this, we need to better understand how tumors orchestrate

structural and functional changes in their associated vasculature

before we can develop effective, targeted therapies for pediatric

brain tumors. Such mouse models have further uncovered the

important roles for astrocytes (70), pericytes (13, 71, 72) and

microglial (73) cells for BBB development and integrity. However,

the complex interplay of the NVU in the context of tumor progression

and therapy response remains to be determined.

In murine models, non-invasive techniques such as positron

emission tomography (PET), computed tomography (CT), and

more commonly MRI, have uncovered changes in the BBTB (74).

However, longitudinal dynamic high-resolution imaging is required

to understand the interactions between the developing tumor and its

associated microenvironment. Live imaging technologies have been

developed for rodent brains (75, 76), however these approaches are

incredibly costly and present with a number of technical challenges

due to the location of MB and DMG within the cerebellum and the

pons of the brain stem respectively.
Dynamic modelling of tumor-vessel
interactions in zebrafish

A vertebrate model that is rapidly developing as a robust model

for cancer research is the zebrafish (77–81). A major reason for the

expansion of zebrafish studies is the cost-effectiveness of the model

due to the large number of offspring that can be obtained from a

single mating and lower husbandry costs associated with zebrafish

housing. Another great advantage is that zebrafish embryos and

larvae are optically transparent and develop ex utero, allowing live

visualization of organs and cells during zebrafish development.

Although structural similarities of zebrafish and human proteins

remain to be determined, whole genome sequencing has identified

that approximately 80% of disease associated genes in humans are

conserved in zebrafish (82). This finding combined with the ease of
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genetic manipulation in zebrafish (83–85), led to the development of

genetically engineered zebrafish models for a range of cancer types

(86). In addition to genetic models, xenografting approaches are also

widely applied to study cancer biology in zebrafish. Since the adaptive

immune system in zebrafish is fully functional from 28 days post

fertilization (dpf) (87, 88), mouse or human cancer cells are tolerated

without inflicting an immune response prior to this stage.

The brain is challenging to image in higher vertebrates due to the

presence of a thick skull, zebrafish brains are much more accessible

and thus researchers can visualize and monitor tumor cell behavior in

space and time. The anatomy of zebrafish brains is comparable to that

of mammalian brains, with significant homology in molecular

signatures and structure of distinct brain regions (89). Notable

differences however do exist in terms of size and organization of

distinct brain regions (90–92). In terms of the BBB, live imaging of

zebrafish vascular transgenic marker lines has been applied to

establish that the BBB in zebrafish begins to form at three days

post-fertilization (dpf) and is fully functional at 10 dpf (93, 94). The

zebrafish NVU is made up of endothelial cells, pericytes and radial

glial cells (95). The radial glial cells express key astrocytic markers

including Gfap, glutamine synthase and Aqp4 (95) and therefore are

considered to perform orthologous roles to astrocytes (95).

Transgenic marker lines, labelling distinct cell types of the NVU

have been developed (96–99), allowing live visualization of the

morphology, abundance, and dynamic behavior of distinct NVU

cell types simultaneously.

In the context of brain cancer, zebrafish provide a powerful model

to monitor dynamic interactions between tumor cells and NVU cell

types, therefore determining what pathological changes might be

contributing to BBTB malfunction. To date a small set of genetic

zebrafish models have been established to study pediatric brain

tumors (100–102). One such model that recapitulates central

nervous system primitive neuroectodermal tumors (CNS-PNETs)

was developed by Solin and colleagues (102), whereby TALEN-

mediated genome editing was applied to inactivate retinoblastoma1

(rb1). When placed on a p53 null background, these rb1 knockout fish

developed malformations of the skull and lesions on the eye.

Histological analysis of the lesions revealed that the majority

resembled CNS-PNET tumors and others were glial-like (102).

Others have tested whether oligoneural precursor cells (OPCs)

could give rise to CNS-PNETs by overactivated NRAS/MAPK

signaling exclusively in these sox10 expressing cells (101). This

resulted in the development of large lesions in 6-week old zebrafish

with conserved genetic and histologic hallmarks. Since hundreds of

zebrafish embryos can be derived from a single paired mating it is

highly suited for drug screening, especially when screening water

soluble compounds that can be added to the zebrafish water. The

authors utilized a screening approach to show that addition of MEK

inhibitors to the fish water could effectively inhibit the growth of

CNS-PNETs upon orthotopic xenografting (101). Human derived

pediatric brain tumor cells have not been studied using zebrafish

xenografting, however, tumor cells derived from adult brain cancers

have been grafted successfully showing that human cells can utilize

the zebrafish brain microenvironment to proliferate and migrate from

the initial injection site (87). One challenge to utilizing zebrafish for

xenografting is the optimal physiological core temperature of 28°C.

However, zebrafish can adapt to changes in temperature. Previous
Frontiers in Oncology 05
studies have successfully grown zebrafish at temperatures of up to 36°

C for xenografting purposes without notable side effects (103–106).

Whether changes in temperature might invoke more subtle changes

in the biological response to xenografted cells remains to be

determined (107, 108).

Nevertheless, we propose that with well-established methods in

place to visualize NVU cell types in the zebrafish brain (96–99) and

determine BBB permeability (95), the zebrafish model is perfectly

positioned to enable in depth studies that will generate new

knowledge into the fundamental aspects of pediatric tumor

heterogeneity, drug responses, metastatic potential, and alteration of

the microenvironment.
Microfluidic tumor-vessel
co-culture models

Traditional in vitro cell culture methods have been used in basic

research for many years to study mechanisms of cancer cell growth

and evaluate drug efficacy. Various pediatric brain cancer cell lines are

currently commercially available, with the most widely published MB

models such as D283MED, D341MED, D425MED, UW228-2 and

DAOY propagated in vitro for decades. As seen with other widely

utilised brain cancer cell lines (109), it is increasingly likely that the

original molecular features and biological behaviour of tumor cells

would have been lost, failing to recapitulate tumour heterogeneity.

Additionally, it is well appreciated that these simplistic 2D cell culture

systems do not model the spatial, cellular and chemical complexity of

tumors and the associated TME (110), limiting the translational

utility of these model systems.

3D spheroid models are being increasingly developed for a variety

of pediatric brain cancers (111, 112) replicating elements of the tumor

microenvironment such as a gradient distribution of nutrients,

oxygen, pH, cell-cell and cell- extracellular (ECM) contact (113).

3D tumor spheres derived from a variety of pediatric brain cancers

including PDOX models of Gp3 MB (114) and primary biopsy

material from MB, Ependymoma, Glioblastoma and Astrocytoma

patients (111) have been recently established. Whilst pediatric 3D

tumor spheroid cultures represent an important advance for the field,

they still lack several essential components of the brain specific TME

such as the ECM and the diverse non-cancerous cells including

endothelial cells (ECs), pericytes, fibroblasts, immune cells,

astrocytes, neurons and microglia (115, 116). Advances in cellular

engineering, biomaterials and biofabrication technologies have led to

the development of co-culture platforms whereby 3D tumor

spheroids can be grown in the context of blood vessels and

biologically relevant ECM hydrogels (117). To model the brain

endothelium specifically, distinct types of brain ECs have been

employed to form so called 3D BBB models. Of particular interest

are recent protocols that utilize induced pluripotent stem cell (iPSC)

derived brain microvascular ECs (iBMECs) (118–122). This is

because these iBMECs when grown with other NVU cell types have

been shown to form a tight BBB with physiologically relevant barrier

properties as measured by transendothelial electrical resistance

(TEER) and extravasation of fluorescent dyes (118–122). The

validation of structural and functional features of an intact BBB

supports the utility of these models to monitor how tumor cells alter
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the BBB and how this impacts the efficacy of therapeutics. Further

details on the overall benefits and drawbacks of BBB culture have been

reviewed elsewhere (123–125).

Although 3D BBB-tumor co-culture models have not yet been

implemented to study tumor spheroids derived from pediatric brain

cancer, data from adult brain tumors supports the feasibility of this

approach (126, 127). For glioblastoma, tumor spheres were grown

alongside an iPSC-derived BBB to test combination therapies.

Vincristine and doxorubicin, two anti-cancer drugs that do not

cross the BBB, were added to the 3D vessel in combination with

mannitol and gintonin, to temporally open the BBB (128). Drug

uptake was significantly improved within the 3D glioblastoma

spheroid in combinations with mannitol and gintonin addition

which induces BBB permeability (128). With platforms and

applications of organ-on-a-chip models now widely accepted for a

variety of diseases (129–134), it is imperative that these models are

adapted and transitioned for the study of pediatric brain cancer.

These innovative in vitro platforms in conjunction with animal

models will be highly important to better understand the molecular

mechanism of such ailments and providing novel therapeutics that

have been thoroughly tested to target tumors in the presence of a

heterogeneous BBTB.
Discussion

Ineffective drug delivery is thought to be a contributing factor

underlying the failure of novel therapeutic strategies in early phase

clinical studies after demonstrating significant preclinical anti-tumor

efficacy. Understanding the plasticity of the BBTB by utilizing

complementary pre-clinical models will help to overcome one of

the biggest barriers to effective intratumoral drug penetration. This

review has summarized recent discoveries that emphasize the

relevance of BBTB heterogeneity in pediatric brain tumors. We

propose that, in order to better understand how BBTB differences

arise and what the functional consequences are for treatment, multi-

disciplinary approaches that utilize innovative pre-clinical models

hold great potential.
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